丛枝菌根改善旱作水稻/绿豆间作系统中作物生长和氮磷利用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禾本科与豆科作物间作是在产量和资源利用率方面有着显著优势的一种广泛应用的种植模式,而且也是农业可持续发展方面的一项重要生产措施。水稻和绿豆都是热带和亚热带地区重要的粮食作物,水稻旱作不仅具有重要的节水意义,而且使得水稻和其他作物间作成为可能。在旱作水稻/绿豆间作系统中,绿豆生育期短,不仅可以早腾茬,而且由于其含氮量高,C/N比窄,残留在土壤中的绿豆根系将快速矿化分解,为水稻后期的生长提供养分。丛枝菌根真菌(AMF)是土壤中广泛分布的一类土壤微生物,几乎陆地植物的80%都可以与其共生形成丛枝茵根。丛枝菌根形成以后,能够促进宿主植物对土壤矿质元素的吸收,调节宿主植物的代谢,增强植物的抗逆性。因此,AMF繁殖体在现代可持续农业上可以作为土壤生物改良剂。然而,丛枝菌根在间作系统中的作用仍不清楚。
     本研究以旱作水稻和绿豆间作系统为研究对象,采用盆栽试验系统研究了不同AM真菌、不同供磷水平、不同分隔方式、不同水分状况等条件下,间作系统中菌根的形成、茵根对改善绿豆的固氮效率及旱作水稻和绿豆对氮吸收和转移的影响以及菌根对改善旱作水稻和绿豆磷素吸收的影响。主要研究结果如下:
     1.对旱作水稻/绿豆间作系统幼苗接种3种不同的丛枝菌根真菌[Glomus caledonium(Gc), Acaulospora laevis(Al),G. mosseae(Gm)],测定不同菌种对旱作水稻/绿豆间作系统根系的侵染状况,接种AMF后,水稻的菌根侵染率在12.5%-36.7%,绿豆的菌根侵染率在54.8%-66.7%。在三个不同的菌种中,尤以Gc的接种效果最佳。接种这三种不同AMF对间作系统作物接种的侵染以及建立共生体的能力不同,对作物生长发育的促进效应有明显差异。其中绿豆对Gm的依赖性最高,达47%。菌根侵染率对绿豆干重有显著的影响,菌根侵染率和绿豆作物地上部干物重和根系干物重都呈极显著正相关关系,相关系数分别为r=0.993和r=0.783。接种丛枝菌根真菌可显著增加水稻/绿豆间作系统作物对N、P的吸收,但这三种AMF对水稻和绿豆的可溶性糖和可溶性蛋白含量的影响无显著差异。
     2.选用G. caledonium菌种,研究了不同磷营养条件下丛枝菌根对水稻/绿豆间作系统中作物生长的影响。结果表明,土壤有效磷含量直接关系到丛枝菌根的形成和发育。接种AMF后,水稻中的P含量显著高于不接种处理;在10 mgP.kg-1水平下,水稻和绿豆对菌根菌的依赖性最高,这时水稻的侵染率也最高。在所有的磷水平下,接种AMF均显著提高水稻和绿豆的叶绿素含量,而且随着磷水平的提高,水稻和绿豆的磷含量、磷吸收量以及叶片叶绿素含量均随之增加。在旱作水稻/绿豆间作系统中,接种AMF对绿豆吸磷量的提高效果最佳,10 mgP.kg-1条件下,绿豆的吸磷量提高了98.34%。在不同施磷水平下,水稻和绿豆的根系活力和叶片可溶性糖量随磷水平的提高而增加。
     3.采用15N标记法,在旱作水稻/绿豆之间通过塑料网膜、尼龙网和无分隔三种种植方式研究菌根在旱作水稻和绿豆根间物质传递中的作用。结果表明,在AM形成的菌丝桥的作用下,水稻的总吸磷量提高了57%,绿豆的P和N的总吸收量分别提高了65%和64%,并且绿豆的根瘤量增加了54%。在无间隔条件下,当接种AMF时,绿豆向水稻的N转移率从5.4%提高到了15.7%,而且在根系不分隔或者用30 um尼龙网将两种作物的根系分隔但菌丝能穿过之间没有显著差异。我们发现无论接种或者不接种AMF从水稻到绿豆叶片的15N转移率仅2.7%。可以推断,禾本科与豆科植物间作能提高菌根侵染率,丛枝菌根的形成能显著增加水稻和绿豆对N、P的吸收、显著提高绿豆结瘤数以及绿豆向水稻的氮素转移。
     4.采用土培试验研究了不同土壤水分条件下接种AMF(G caledonium)对水稻/绿豆间作系统营养、生理代谢和抗旱性的影响。结果表明,水分胁迫严重抑制植株的生长,但对丛枝菌根的生长发育和侵染率影响不大。接种AMF不仅有利于植株对N、P的吸收,而且改善了植株的水分状况,增加可溶性糖累积,降低脯氨酸含量,减轻水分胁迫对植株生长的抑制。因此,菌根可以改善植株的水分状况,增加叶片相对含水量。
     5.研究了接种不同AMF对水稻/绿豆间作系统叶片抗氧化酶活性的影响。结果表明:接种AMF能提高作物体内的蛋白质含量,降低MDA的含量,增强叶片超氧化物岐化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、苯丙氨酸解氨酶(PAL)和多酚氧化酶(PPO)活性。抗氧化酶的活性与AMF对植株的侵染率有很好的相关性。表明接种AMF有利于增强水稻/绿豆间作系统中植株的抗逆性。
     总之,在水稻和绿豆间作系统中,AMF能显著提高水稻和绿豆的菌根侵染率和丛枝丰富度,提高抗氧化胁迫的能力以及氮、磷吸收和转移,该研究结果为在田间接种丛枝菌根真菌来发挥作物潜能、提高作物生产效率提供了一条新途径,为田间采用旱作水稻与绿豆间作的栽培措施,以达到节水、高产、环保和资源高效利用提供理论依据。
Cereal-legume intercropping is a widely used agricultural practice with a significant advantage in yield increasing and in resource utilization, which has been considered as an important practice in the sustainable agriculture development. Rice(Oryza sative) and mungbean (Vigna radia ta L.) are important food crops in the world, especially in tropical and subtropical regions. Arbuscular mycorrhiza fungi (AMF) distribute widely in the environment, which are found in about 80% of the terrestrial plants. Significant roles of arbuscular mycorrhizal fungi have been obtained for the plant, for example, they can promote the absorption of phosphorus in roots, accelerate the growth of plants, protect the plant against disease. The fungi in return benefit from the supply of carbohydrates derived from plant leaf photosynthesis. Thus, propagula of AMF have been used as biological soil amendments in modern sustainable agriculture. However, the contribution of arbuscular mycorrhiza, the common existed mutualistic symbiosis between most of crop roots and mycorrhizal fungi, has not yet been fully understood in the intercropping system.
     To evaluate the contribution of AMF in rice and mungbean intercropping system, we inoculated AMF to intercropped rice and mungbean. By labeling 15N isotope, the interactions among AMF, rice and mungbean were conducted to test the hypothesis that AMF could improve the efficiency of biological N fixation by the legume plants, utilization of N and P and total plant yield for the two crops.
     1. Intercropping of rice(Oryza sativa var. Japonica Nipponbare) and mungbean (Vigna radia ta L. var. Chuanyuan) in sterilized medium was inoculated with Glomus caledonium, Acaulospora laevis and G. mosseae for both crops, and Rhizobium Leguminosarum for mungbean. It showed that all of the three AMF could result in forming of arbuscular mycorrhizal for both rice and mungbean. The inoculation rate was 12.5%-36.7% for rice and 54.8%-66.7% for mungbean. Meanwhile the promoting effect of different AMF on plant growth was varied considerably, but the infection rate、hyphal length and stimulating effect of different AMF isolates on plant growth were differed markedly, suggesting G. caledonium was the effective isolate.Inoculation AMF to the both intercropped crops increased the the acquisition of P by both crops and the leaf chlorophyll content and the growth of the mungbean very significantly. The soluble sugar content, soluble protein content in leaves of AMF-inoculated plants were also increased largely in comparison to that in untreated plant leaves. The improvement of rice and mungbean growth and physiological characters were resulted mainly from directly increased phosphorus acquisition by fungal tissues and subsequently promoting phosphorus content of inoculated plants.
     2. The effect of phosphate application on AMF colonization and inoculation biological response with G. caledonium in sterilized medium was evaluated by a pot experiment. The highest mycorrhizal colonization into rice was obtained in the treatment of 10 mg/kg P applied in the culture medium, while it was 20 mg/kg P for mungbean. There was no significant effect of AMF inoculation on the growth of rice/mungbean seedlings at low and middle levels of P-application (0-10 mg/kg P for rice,0-20 mg/kg P for mungbean). However, the high level of P (50 mg/kg P) inhibited AMF infection in both plant roots and alightly decreased the dry weight of inoculated rice in comparison with that non-inoculation rice. The total uptake of phosphorus, chlorophyll content in the leaves and the plant growth was imrproved and were related to the infection rate of AMF in the mungbean.
     3. Using the methods of plastic net and nylon membrane partition and tracing 15N transferring between the intercropped upland rice and mungbean, we assayed the contributions of inoculation with arbuscular mycorrhiza fungi (AMF), G. caledonium 90036, on nutrient acquisition and biomass yield of rice and mungbean. Treatments with separation of the whole root systems by a plastic net, with and without barrier of nylon membrane to allow penetration of the fungal hyphae were used in the intercropping system. The results demonstrated that intercropping with legume crops significantly improved the formation of arbuscular mycorrhiza, particularly in the upland rice roots. The improved inoculation of mycorrhiza by the intercropping increased total P uptake by 57% in rice, total P and N acquisition by 65% and 64% in mungbean, respectively, and 54% of nodulation in the mungbean. The percentage of total 15N transfer from mungbean to rice leaves was increased by 5.4-15.7% due to inoculation with AMF. In contrast, only 2.7% of transfer from rice to mungbean and no AMF effect were detected. It is concluded that cereal and legume crop intercropping could increase mycorrhizal innoculation, which in turn improves the nodulation, leading to N and P acquisition and N transfer in the legume.
     4. The effects of AMF G. caledonium on the intercropping system of rice and mungbean growth, physiological metabolism and drought resistance of rice/mungbean in pot culture under different water content were assessed. The results showed that water stress seriously repressed plant growth, but did not influence the growth and AMF infection of plants. The P and N uptake of plant could be enhanced andsubaequently improved plant water status. While the repression degree of water stress on plant growth was greatly reduced, many photosynthesis parameters of inoculated plants were obtained mainly through direct water uptake by fungal tissues and through the improvement of nutrition. The accumulation of soluble sugar decreased proline content and effectively adjusted permeation ability of cell indirectly, and promoted the drought resistance of rice/ mungbean plants.
     5. In a pot experiment, the effects of inoculation with thre different AMF strains on the stress of rice/mungbean were studied. Three AMF strains used are G. caledonium, A. laevis and G. mosseae and the plants were sampled at the 30,45,60 days after inoculation with AMF. The AMF treatments decreased the content of malondialdehyde(MDA) in the leaves, but significantly increased the concentrations of soluble protein, and the activity of superoxide dismutase(SOD), catalase(CAT), peroxidase (POD), phenylalanine ammonialyase(PAL) and polyphenol oxidase(PPO) in the leaves of AMF inoculated plants. It is concluded that the AMF inoculation decreased the degree of stresses of the intercropped rice/mungbean under water and nutrient deficient conditions.
     The present study demonstrate that inoculation of a screened AMF G. caledonium to the plants in cereal-legume intercopping system might be a novel approach to high-yield, environment-friendly and effective utilization of water and nutrient resources in agriculture production.
引文
Abbott LK, Robson AD, de Boer G. The effect of Phosphorus on the formation of hyphae in soil by vesicular-arbuscular mycorrhizal fungi. G. fasciculatunr. New Phytol,1984,97:437~246
    Af Geijersstam L, Martensson A. Nitrogen fixation and residual effects of field pea intercropped with oats. Acta Agriculturae Scandinavica Section B:Soil & Plant Sci 2006,56:186~196
    Aggarwal PK, Garrity DP, Liboon SP, Morris RA. Resource use and plant interactions in a rice-mungbean intercrop. Agron J.1992,84:71~78
    Aist JR. Papillae and related wound plugs of plant cells. Annu Rev Phyto,1976,14:11~21
    Allen ME. Mycohrrizae:arbuscular mycohrrizae. In:Encyclopedia of environmental microbiology. Gbariel Bitton.Ed. A wiley-Interscience Publication, John wiley and Sons. Inc. NewYork.2002.4: 2120~2124
    Allen Jr LH, Albrecht SL, Colon-Guasp W, Covell SA, Baker JT, Pan D, Boote KJ. Methane emissions of rice increased by elevated carbon dioxide and temperature. J Environ Qua.2003,32:1978~ 1991
    Ames RN, Reid CPP, Porter LK, Cambardella C.Hyphal uptake and transport of nitrogen from two 15N-labelled sources by G. mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol.1983, 95:381~396
    Andersen MK, Hauggaard-Nielsen H, H(?)gh-Jensen H, Jensen ES.Competition for and utilisation of sulfur in sole and intercrops of pea and barley. Nutr Cycl Agroecosys.2007,77:143~153
    Aufe RM, Stodola AJW, Brown RN et al. Stimulate response of mycorrhizal cowpea and soybean to short-term osmotic stress.New Phytol.,1992, (120):117~125
    Auge RM. Water relation, drought and vesicular-abuscular mycorrhizal symbiosis. Mycorrhizal.2001, 11(1):3-42
    Ayisi KK, Putman DH, Vance CP. Strip intercropping and nitrogen effects on seed oil, and protein yields of canola and soybean. Agron. J.1997,89:23~29
    Bago B, Azcon-aguilar C, Piche Y. Architecture and developmental dynamics of the external mycelium of the arbuscular mycohrrizal fungus G. intraradices grown under monoxenic conditions. Mycologia.1998b.90:52~62
    Bagyaraj DJ. Biological interactions with VA mycorrihzal fungi.In:VA Mycorrhiza(Powell CL1, Bagyaraj DJ, eds), CRC Press, Boca Raton, FL,1984, pp 131~153
    Barea JM, Tobar RM, Azcon-Aguilar C. Effects of a genetically modified Rhizobium meliloti inoculant on the development of arbuscular mycorrhizas, root morphology, nutrient uptake and biomass accumulation in Medicago sativa. New Phytol,1996,134:361~369
    Barker SJ, Tagu D, Delp G. Regulation of root and fungal morphogenesis in mycorrhizal symbioses. Plant Physiol.1998,116:1201~1207
    Batjes NH, Sombroek WG. Possibilities for carbon sequestration in tropical and subtropical soils.Glob Change Biol,1997.3:161~173
    Beek-Nielsen D, Madsen TV. Occurrence of vesicular-arbuscular mycorrhiza in aquatic macorphytes from lakes and streams. Aquatic Botany,2001,71:141~148
    Begon, M, Harper, JL, Townsend CR. Ecology:Individuals, Populations and Communities. Blackwell Scientific Publications, Oxford.1990.
    Benbrahim KF, Ismaili M. Interactions in the symbiosis of Acacia saligna with G. mosseae and Rhizobium in a fumigated and unfumigated soil. Arid Land Res Manage.2002.16:365~376.
    Bethlenfalvay GJ, Franson RL. Manganese toxicity alleviated by mycorrhizae in soybean.J Plant Nutri, 1989,12:953-970
    Bethlenfalvay GJ, Reyes-Solis MG, Camel SB, Ferrera-Cerrato R. Nutrient transfer between the root zones of soybean and maize plants connected by a common mycorrhizal mycelium. Physiol Plant.1991,82:423~432
    Black R, Tinker PB.The development of endomycorrihzal root systems.II.Eeffet of agronomic factors and soil conditions on the development of vesicular-arbuscular mycorrhizal infection in barley on endophyte spore density. New Phytol.1979,83:401~413
    Boddington CL,.Dodd JC. A comparison of the development and metabolic activity of mycorrhizas formed by arbuscular mycorrhizal fungi from different genera on two tropical forage legmues.Mycorrhiza.1998,8:149~157
    Boerner REJ. Role of mycorrhizal fungus origin in growth and nutrient uptake by geranium. American J Botany.1990,77:483~489
    Bolan NS. A critical review on the role of mycorrhizal fungi on the uptake of phosphorus by plants. Plant Soil.1991.134:189~207
    Bouman BAM, Humphreys E, Tuong TP. Rice and water. Adv Agron.2007,92:187~237
    Bracker CE, Littlefield LJ. Structure of host-pathogen interfaces[A].In:Byrde RJW, ed. Fungal Pathogenicity and the Plant Response[C],London, Academic Press.1973,151~317
    Braunberger PG, Miller MH, Peterson RL. Effect of Phosphorus nutrition on morphological characteristics of vescular-arbuscular mycorrhizal colonization of maize. New Phytol.1991, 119:107~113
    Bulson HAJ, Snaydon RW, Stopes CE. Effects of plant density on intercropped wheat and field beans in an organic farming system. J Agri Sci,1997,128:59~71
    Burleigh SH, Harrison MJ. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition. Plant Molec Biol,1997, (34):199~208.
    Campo JA. Effect of corp rotations involving host and nonhost plants on vesicular-arbuscular mycorrhizal infection of host plants. Plant soil,1980,56:283~291
    Chakraborty N, Sarkar GM, Lahiri SC. Methane emission from rice paddy soils, aerotolerance of methanogens and global thermal warming. Environmentalist 2000,20:343~350
    Chalk PM. Dynamics of biologically fixed N in legume-cereal rotations:A review. Aust J Agric Res 1998,49:303~316
    Clark RB, Zeto SK. Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr.2000,23:867~ 902
    Crush, JR. Plant growth responses to vesicular arbuscular mycorrhizae VII:Growth and nodulation of some legumes. New Phytol,1974,73:743-749
    Das PK, Shaioo PN, Jena MK. Effect of VA-mycorrhiaz and rhizobium inoculation on nutrient uptake, growth attributes and yield of greengram (vigna radiate L.).Envior Ecol,1997,15(4):830~833
    Davis JHC, Wolley JH. Genotypic requirement for intercropping. Field Crop Res,1993,34:407~430
    Dessougi EIH, Dreeele zu A, Claassen N. J Plant Nutri Soil Sci 2003,166:254-261.
    Dhillion SS. Dual inoculation of pretransplant stage Oryza sativa L. plants with indigenous vesicular-arbuscular mycorrhizal fungi and fluorescent Pseudomonas spp. Biol Fertil Soils,1992, 13:147-151
    Dhillion SS, Ampornpan La. The influence of inorganic nutrient fertilization on the growth, nutrient composition and vesicular-arbuscular mycorrhizal colonization of pretransplant rice(Oryza sativa L.) plants. Biol Fertil Soils 1992,13:85~91
    Dodds DD, Galvez L, Becard G, Kapulnik Y. Regulation of arbuscular mycorrhizal development by plant host and fungus species in alfalfa. New Phytol,1998,138,27~35
    Dunas E, Gianinazzi-Pearson V, Gianinazzi S. Production of new soluble proteins during VA endomycorrhizae formation, Agriculture[J].Ecosys Environ,1989,29:111~114
    Elias KS, Safir GR. Hyphal elongation of G. fasciculatus in response to root exudates. Appl Environ Micorbio.1987,3:1928~1933
    Elisabeth W, M GA, Van der Heijden, Kuyper TW. Does origin of mycorrhizal fungus or mycorrhizal plant influence effectiveness of the mycorrhizal symbiosis? Plant soil,2001,230:161~174
    Ellis TH, Dubois LH, Kevan SD, Cardillo MJ. Time-Resolved Electron Energy Loss Spectroscopy. Science.1985.230:256~261
    Ezawa T, Smith SE, Smith FA. P metabolism and transport in AM fungi. Plant soil,2002,244:221~250
    Faurie O, Soussana JF, Sinoquet H. Radiation Interception, Partitioning and Use in Grass-Clover Mixtures. Annals Botany 1996.77:35~46
    Fitter AH, Gardaye J. Interaction between mycorrhizal fungi and other organisms. Plant Soil.1994,159: 123-132
    Francis CA. Multiple cropping system. New York. Macmillan Publishing Company. Inc.1986
    Fujita K, Ofoso-Budu KG, Ogata S. Biological nitrogen fixation in mixed legume-cereal cropping system. Plant Soil,1992,141:155~175.
    Fujita K, Ogata S, Matsumoto K, Masuda T, Ofosu-Budu G K, Kuwata K. Nitrogen transfer and dry matter production in soybean and sorghum mixed cropping system at different population densities. Soil Sic. Plant Nutri.,1990,36:233~241
    Fumoto T, Kobayashi K, Li C, Yagi K, Hasegawa T. Revising a process-based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes. Global Change Biol 2008,14:382~402
    Galleugillos C, Augirre C, Baera JM, Azcon R. Growth promoting effect of two Sinorhizobium meliloti strains(a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two aburscular mycorrhizal fungi. Plant sci.2000,159(1):57~63.
    Gao X, Kuyper TW, Zou C, Zhang FS, Hoffland E. Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal. Plant Soil 2007, 290:283-291
    George E, Marschner H, Jakobsen I. Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Criti Rev Biotech,1995,15:257~270
    Ghosh PK, Bandyopadhyay KK, Wanjari RH, Manna MC, Misra AK, Mohanty M, Rao AS. Legume effect for enhancing productivity and nutrient use-efficiency in major cropping systems- An Indian perspective:A review J Sustain Agri.2007,30:61~86
    Giles ED, Oldroyd J, Allan Downie. Calcium, kinases and nodulation sigalling in legumes. Nature.2004, 5:566~576
    Giller KE, Wilson KF. Nitrogen fixation in tropical cropping systems. C·.A·B International Wallingford, Oxon OX108 DE. UK.1991.67~178
    Giller KE, Ormesher J, Awah FM. Nitrogen transfer from Phaseolus bean to intercropped maize measured using 15N-enrichment and 15N-isotope dilution methods. Soil Biol Biochem,1991,23: 339~346
    Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bueking H, Lmmaers PJ, Shachar-Hill Y. Nirtogen transfer in the arbuscular mycohrrizal symbiosis. Nature,2005,435: 819-23
    Graham JH, Linderman RG, Menge JA. Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vescular-arbuscular mycorrhiza formation. Plant Physiol.1981,68:549~ 552
    Green NE, Hadwiger LA, Graham SO. Phenylalanine ammonia-lyase, tyro sineammonia-lyase, and lignin in wheat inoculated with Brysiphe graminisf.sp. tritici. Phytopathol,1975,65:1071~1074
    Griffin DM. Effect of moisture on survival and spread of pathogens. In:Kozlovaki. T.ed. Water Deficits and Plant Growth, Vol. V. New York. Acad.1978,175~197
    Guillemin JP, Gianinazzi S, Gianinazzi-Pearson V, Marchal J. Influence des endomycorhizes a arbuscules sur la croissance et la nutrition minerale de vitroplants d'ananas dans un sol a forte salinite. Fruits (1995),50:333~341
    Guimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Nati Acad Sci USA.2005,102:8066~8070
    Hameeda B, Srijana M, Rupela OP, Gopal Reddy. Effect of bacteria isolated from composts and macrofauna on sorghum growth and mycorrhizal colonization. World J Microbiol Biotech. 2007.723:883~887.
    Hamel C, Smith DL. Interspecific N-transfer and plant development in a mycorrhizal field-grown mixture. Soil Biol Biochem.,1991,23:661~665
    Hamel C, Furlan V, Smith DL. N2-fixation and transfer in a field grown mycorrhizal corn and soybean intercrop. Plant Soil,1991,133:177~185
    Hamel C, Furlan V, Smith DL. Mycorrhizal Effects on Interspecific Plant Competition and Nitrogen Transfer in Legume-Grass Mixtures. Crop Sci 1992,32:991~996
    Hardarson G, Danso SK A, Zapata F. Di-nitrogen fixation measurements in alfalfa-ryegrass swards using nitrogen-15 and influence of the reference crop. Crop Sci,1988,28:101~105
    Hardarson G, Danso SK A, Zapata F, Reichardt K. Measurements of nitrogen fixation in fababean at different N fertilizer rates using 15N isotope dilution and A-values methods. Plant Soil,1991,131: 161~168
    Harrison MJ. Molecular and cellular aspect of the arbuscular mycorrhizal symbiosis. Anlla Rev Plant Physio Plant Mol Biol,1999,50:364~389
    Hart CL, van Gorp W, Haney M, Foltin RW, Fischman MW. Effects of acute smoked marijuana on complex cognitive performance. Neuropsychopharmacology2001,25:757~765
    Hart MM, RJ Reader. Taxonomoic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi.New Phytol.2002,153:335~344
    Hauggaard-Nielsen H, Ambus P, Jensen ES. Interspecific competition, N use and interference with weeds in pea-barley intercropping. Field Crop Res,2001,70:101~109
    Haugen LM, Smith SE. The effect of high temperature and fallow period on infection of mung bean and cashew roots by the vesicular-arbuscular mycorrhizal fungus G. intraradices. Plant Soil 1992,145: 71~80
    Hauggaard-Nielsen H, Jensen ES. Facilitative root interactions in intercrops. Plant Soil 2005,274: 237~250
    Hause B, Fester T. Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta.2005,221: 184~196
    Hayman DS, Johnson AM, Duddlesdin I.The influence of Phosphate and corp species on endogone spores and vesicular arbuscular mycorrhiza under field conditions. Plant Soil,1975,43:489-495
    He XH, Critchley C, Bledsoe C. Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci 2003,22:531~567
    Herdler S, Kreuzer K, Scheu S, Bonkowski M. Interactions between arbuscular mycorrhizal fungi (G. intraradices, Glomeromycota) and amoebae (Acanthamoeba castellanii, Protozoa) in the rhizosphere of rice (Oryza sativa). Soil Biol Bioch 2008,40:660~668
    Hirrel MC, Gerdemann JW. Enhanced carbon transfer between onions infected with a vesicular-arbuscular mycorrhizal fungus. New Phytol.1979.83:731~738
    Hirrel MC, Gedremann JW. Imporved growth of onion and dell pepper in saline soil by two Vesicular-arbuscular mycorrhizal fungi. Soil Sci Sec Amer J,1980,44:654~655
    Ianson DC. Variation in VA mycorrhizal enhancement of N fixation and induction of drought tolerance in pigeon pea.Proceedings of 7th NACOM,1988,149
    Ikram A, Jensen ESI, Jakobsen. No significant transfer of N and P from Pueraria Phaseoloides to Hevea Brasiliensis via Hyphal links of Arbuscular Mycorrhiza. Soil Bio Bioch.1994,26:1541~1547
    Israel DW. Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol,1987, 84:835~840
    Israel DW. Symbiotic dinitrogen fixation and host-plant growth during development of and recovery from phosphorus deficiency. Physiol Plant 1993,88:294~300
    Izaurralde RC, McGill WB, Juma NG. Nitrogen fixation efficiency, interspecies N transfer, and root growth in barley-field pea intercrop on a Black Chemozemic soil Biol Fertil Soils,1992,13:11~ 16
    Jakobsen L, Abbott LK, Robson AD. External hpyhale of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum.L.I.Spread of hyphae and phosphours inflow into roots. New Phytol,1992a,120:371~380
    Jensen ES. Grain yield, Symbiotic N2 fixation and interspecific competitive for inorganic N. in pea-barley intercrops. Plant Soil,1996a,182:25~38
    Jeranyama P, Hesterman OB, Waddington SR, Harwood RR. Relay-intercropping of sunnhemp and cowpea into a smallholder maize system in Zimbabwe. Agron J,2000,92:239~244
    Jin H, Pfeffer PE, Douds DD, Piotorwske E, Lammers PJ, Shachar-Hill Y. The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symblosis. New Phytol,2005,168(3): 687~696
    Johansen A, Jakobsen I, Jensen ES. Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate. Biol Fertil Soils,1993,16:66~70
    Johansen A, Jensen ES., Transfer of N and P from intact or decomposion roots of pea to barley interconnected by an Arbuscular Mycorrhizal fungus, Soil Biol Biochem.1996,28:73~81
    Johnson D, Leake JR, Ostle N, Ineson P, Read DJ. In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol.2002,153:327~334
    Johnson D, Leake JR, Read DJ. Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland:Short-term respiratory losses and accumulation of 14C. Soil Biol Biochem 2002, 34:1521~1524
    Johnson NC, Graham JH, Smith FA. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol.1997,135:575~585
    Karasawa T, Atihara J, Kasahara Y. Eeffcts of previous crops on arbuscular mycorrhizal formation and growth of maize under various soil moisture conditions. Soil Sci Plant Nutri,2000,46(1):53~60
    Kasiamdari RS, Smith SE, Smith FA, Scott ES. Influence of the mycorrhizal fungus, G. coronatum, and soil phosphorus on infection and disease caused by binucleate Rhizoctonia and Rhizoctonia solani on mung bean (Vigna radiata). Plant Soil 2002,238:235~244
    Kawai Y, Yamamoto Y. Increase in the formation and nitrogen fixation of soybean nodules by vesicular-arbuscular mycorrhiza. Plant Cell Physiol 1986,27:399~405
    Khan MK, Sakarmoto K, Yoshida T. Dual inoculation of peanut(Arachis hypogae) with G. sp.and Bradyrhizobimu sp.enhanced the symbiotic nitrogen fixation as assessed by 15N-techniques. Soil Sci Plant nutri(Japan),1995,41(4):769~779.
    Khasa P, Furlan V, Fortin JA. Response of some tropical plant species to endomycorrhizal fungi under field conditions. Trop Agri 1992,69:279-283
    Klironomos JN. Feedback with soil biota contributes to Plant rarity and invasiveness in communities. Nauter,2002,417:67~70
    Koide RT, Li M. On host regulation Of the vesicular-arbuscular mycorrhizal symbiosis. New Phytol. 1990,114:59~96
    Kothari SK, Marschner H, Romheld V. Contribution of the VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in calcareous soil, Plant Soil.1991.131:177~185
    Kwabiah AB. Biological efficiency and economic benefits of pea-barley and pea-oat intercrops. J Sustain Agri 2005,25:117~128
    Lambais MR, Rios-Ruiz WE, Andrade RM. Antioxidant response in bean (Phaseolus valgaris) roots colonized by arbuscular mycorrhizal fungi. New Phytol,2003.160:421~428
    Lambers H, Poorter H, Van Vuuren MMI. Research on variation in plant growth rate-Introduction. In: Inherent Variation in Plant Growth. Physiological Mechanisms and Ecological Consequences. H. Lambers, H. Poorter & M.M.I. Van Vuuren (eds). Backhuys, Leiden,1998. pp.1~4.
    Lauk R, Lauk E. Pea-oat intercrops are superior to pea-wheat and pea-barley intercrops. Acta Agriculturae Scandinavica Section B:Soil Plant Sci.2008,58:139~144
    Laxminarayana K, Munda GC. Performance of rice (Oryza sativa) and maize (Zea mays)-based cropping systems under mid-hills of Mizoram. Indian J Agro.2004,49:230~232
    Ledgard SF, Sprosen MS, Penno JW, Rajendram GS. Nitrogen fixation by white clover in pastures grazed by dairy cow:Temporal variation and effects of nitrogen fertilization. Plant Soil,2001,229: 117~187
    Levy Y, Syvertsen JP, Nemec S. Effect of drought stress and vesicular-arbuscular mycorrhiza on Citrus transpiration and hydraulic conductivity of roots.New Phytol,1983,93:61~66.
    Li H, Smith SE, Holloway RE, Zhu Y, Smith FA. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol 2006,172:536~543
    Li L, Zhang FS, Li XL, Christie P, Yang SC, Tang C. Nutr Cycl Agroecosyst.2003,65:61~71.
    Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils.PNAS,2007,104: 11192~11196
    Li XL, Cao YP. Study on method for investigating nutrient changes in the hypae-soil interface [J]. Beijing Agric univ,1992,18 (1):59~63.
    Li XL, George E, Marschner H. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 1991a,136:41-48
    Lin XG, Shuguang W, Yaqin S. Tolerance of va mycorrhizal fungi to soil acidity. Pedosphere 2001,11: 105-113
    Liu RJ, Li M, Meng XX, Liu X. Effects of AM fungi on endogenous hormones in corp and cotton plants[J]. Mycosystem,2000,19 (1):91-96
    Lithourgidis AS, Dhima KV, Vasilakoglou IB, Dordas CA, Yiakoulaki MD. Sustainable production of barley and wheat by intercropping common vetch. Agron Sustain Dev 2007,27:95-99
    Marschner H, Dell B. Nutrient uptake in mycorrhizal symbiosis. Plant Soil 1994,159:89~102
    Martensson AM, Rydberg I, Vestberg M. Potential to improve transfer of N in intercropped systems by optimising host-endophyte combinations. Plant Soil.1998,205:57~66
    Martin RC, Astatkie T, Cooper JM. The effect of soybean variety on corn-soybean intercrop biomass and protein yields. Can J Plant Sci.1998,78:289~294
    Martins MA, Cruz AF. The role of the external mycelial network of arbuscular mycorrhizal fungi:III. A study of nitrogen transfer between plants interconnected by a common mycelium. Rev Microbiol. 1998,29:289-294
    Michemi S et al. Relationships between environmental factors and level of mycorrhizal in infection of citrus on four islands in the Eastern Caribbean. Tropi Agri,1993,70(2):135~140
    Midmore DJ. Agronomic modification of resource use and intercrop production. Field Crop Res,1993, 34:357~380
    Mikkelsen DS, DeDatta SK. Rice culture. In rice production. Ed. B S Luh. Van Nostrand Reinhold, New York,1991, pp103~186
    Miller RM, Jastrow JD. Mycorrhiza fungi influence soil structure. In:Arbuscular Mycorrhizas: Physiology and Function. Eds. Y. Kapulnik and D.D Douds.2000, pp.3~18.Klwue.rDodrrecht
    Mille RSP. Arbuscular mycorrhizal colonization of semi-aquatic garsses along a Wide hydrologic gradient. New Phytol.1999,145(1):145~155.
    Mohammad MJ, Pan WL, Kennedy AC. Chemical alteration of the rhizosphere of the mycorrhizal colonized wheat root. Mycorrhiza,2005,15:259~266
    Molina, Massicotte RH, Trappe JM. Specificity phenomena mycorrhizal symbiosis: community_ecological conse-quences and practical implications. In:Allen, M. F. ed. Mycor-rhizal functioning:an integrative plant_fungal process. New York:Chapman and Hall.1992.357~423
    Monzon A, Azcon R. Relvanace of mycorrhizal fungal origin and host plant Genotype to inducing growth and nutrient Uptake in Medicago species. Agri Ecosys Environ,1996.60:9~15
    Mosse B. Plant growth responses to vescular-arbuscular mycorrhiza IV In soil given additional phosphate. New Phytol.1975,72:127~136
    Mosse B. Mycorrhiza in sustainable agriculture. Biol Agrie Hort.1986,3:191~209
    Moyer-henry KA, Burton JW, Israel DW, Rufty. Nitogen transfer between plants:A 15N natural abundance study with crop and weed species.2006,282:7~20
    Nelson CE, Safir GR. Increased drought tolerance of mycorrhizal onion plants caused by improved phosphorus nutrition. Planta.1982.154:407~413
    Newbould P, Rangeley A. Effect of lime, phosphorus and mycorrhizal fungi on growth, nodulation and nitrogen fixation by white clover (Trifolium repens) grown in UK hill soils. Plant Soil 1984,76: 105~114
    Newshma KK, Fitter AH, Watkinson AR. Umltifunctionality and biodiversity in arbuscular mycorrhizas.Trends Ecol Evol,1995,10:407-411
    Ning J, Cumming JR. Arbuscular mycorrhizal fungi alter phosphorus relations of broomsedge (Andropogon virginicus L.) plants. J Experi Botany.2001.52:1883-1891
    Noctor G. Ascorbate and glutathione:Keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molec Biol,1998.49:249~279
    Ofori F, Stern WR. Cereal-Legume intercropping systems. Adv Agron.1987.41:41~90.
    Ofosu-Budu KG, Noumura K, Fujita K. N2 fixation, N transfer and biomass production of soybean cv. Bragg or its supernodulating nts1007 and sorghum mixture-cropping at two rates of N fertilizer. Soil Biol Biochem.,1995,27:311~317.
    Olivera M, Tejera N, Iribarne C, Ocana A, Lluch C. Growth, nitrogen fixation and ammonium assimilation in common bean(Phaseolus vulgaris):effect of phosphorus. Physiol Plant 2004,121: 498~505
    Oroka FO, Omoregie AU. Competition in a rice-Cowpea intercrop as affected by nitrogen fertilizer and plant population. Scientia Agricola 2007,64:621~629
    Paszkowski U, Kroken S, Roux C et al. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscule mycorrhizal symbiosis.Proc Natl Acad Sci USA,2002,99: 13324~13329
    Peoples MB, Gault RR, Lean B, Sykes JD, Brockwell J. Nitrogen fixation by soybean in commercial irrigated crop of central and southern new south wales. Soil Biol Biochem.1995,27:553~561
    Peoples MB, Herridge DF, Ladha JK. Biological nitrogen fixation:An efficient source of nitrogen for sustainable agricultural production? Plant Soil,1995,174:3~28
    Phillip JM, Hayman DS. Improved p roduceures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc.1970,55: 158~160.
    Porcel R, Azcon R, Ruiz-Lozano JM. Evaluation of the role of genes encoding for Delta (1)-pyrroline-5·carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal Glycine max and Lactaca sativa plants. Physiol Mole Plant Pathology,2004.65:211~221
    Purakayastha TJ, Chhonkar PK. Influence of vesicular-arbuscular mycorrhizal fungi (G. etunicatum L.) on mobilization of zinc in wetland rice (Oryza sativa L.). Biol Fertil Soils.2001,33:323~327
    Raimam MP, Albino U, Cruz MF, Lovato GM, Spago F, Ferracin TP, Lima DS, Goulart T, Bernardi CM, Miyauchi M, Nogueira MA, Andrade G. Interaction among free-living N-fixing bacteria isolated from Drosera villosa var. villosa and AM fungi (G. clarum) in rice(Oryza sativa). Appl Soil Ecol 2007,35:25~34
    Reeves M. The role of VAM fungi in nitrogen dynamics in maize-bean intercrops. Plant Soil.1992,144: 85~92
    Remy W, Taylor TN, Hass H, et al. Four hundred-million-year-old mycorrhizae. Proc Natl Acad Sci USA.1994,91:11841~11843
    Roldan-Fajardo B E. Effects of indigenous arbuscular mycohrrizal endophytes on the development of six wild Plants colonization a semi-arid area in South-east Spain. New Phytol.1994,127:115~121
    Ruiz-Lozano JM, Azcon R, Palma JM. Superoxide dismutase activity in arbuscular mycorrhizal Lactaca sativa L. plants subjected to drought stress. New Phytol,1996.134:327~333
    Ryan MH, McCully ME, Huang CX. Relative amounts of soluble and insoluble forms of phosphorus and other elements in intraradical hyphae and arbuscules of arbuscular mycorrhizas. Funct Plant Biol. 2007,34:457~464
    Sanders IR, Calpp JP, Wiemken A. The genetie diversity of arbuscular mycorrhizal fungi in natural ecosystems a key to understanding the ecology and functioning of the mycohrrizal sysbiosis. New Phytol,1996,133:123~134
    Sarkar RK, Sanyal SR. Production potential and economic feasibility of sesame(Sesamum indicum)-based intercropping system with pulse and oilseed crops on rice fallow land. Indian J Agro 2000,45:545~550
    Sarr PS, Khouma M, Sene M, Guisse A, Badiane AN, Yamakawa T. Effect of pearl millet-cowpea cropping systems on nitrogen recovery, nitrogen use efficiency and biological fixation using the 15N tracer technique. Soil Sci Plant Nutr 2008,54:142~147
    Schwab SM, Menge JA, Lconard RT.Comparison of stages of vescular-arbuscular mycorrhiza formation insudangrass grown at two levels of phosphorus nutrition. Amer J Bot.1983a,70 (8):1225~1232
    Schwab SM, Menge JA, Lconard RT. Quantitative and qualitative effects of phosphorus on extracts and exudates of sudangrass roots in relation to vesicular-arbuscular mycorrhiza formation. Plant Physiol. 1983b,73:761~765
    Sharma AK, Johri BN. Arbuscular Mycorrhizae:Interactions in plants, rhizosphere and soils, Science Publishers, Inc., Enfield(NH), USA,2002,48
    Shen QR, Chu GX. Bi-directional nitrogen transfer in an intercropping system of peanut with rice cultivated in aerobic soil. Biol Fertil Soils 2004,40:81~87
    Sieverding E, Leihner DE. Influence of crop rotation and intercropping of cassava with legumes on VA mycorrhizal symbiosis of cassava. Plant Soil 1984,80:143~146
    Singh S. Interaction of arbuscular mycorrhizal fungi with nodule forming nitrogen fixing ogrnaisms:I Effect of dual inoculation on Plant, VAM and/or nitrogen fixers. Mycorrhiza news,1997,9(3):1~ 13
    Smith SE, Dickson S, Smith FA. Nutrient transfer in arbuscular mycorrhizas:How are fungal and plant processes integrated? Funct Plant Biol.2001,28:683~694
    Smith SE, Read DJ.The symbionts forming VA mycorrhizas. In Mycorrhizal Symbiosis (Second Edition). Academic Press, London,1997, pp 11~32
    Smith SE, Smith FA, Jakobsen I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol.2003,133:16~20
    Smith SE, Smith FA, Jakobsen I. Functional diversity in arbuscular mycorrhizal (AM) symbioses:The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 2004,162:511~524
    Solaiman MZ, Hirata H. Responses of directly seeded wetland rice to arbuscular mycorrhizal fungi inoculation. J Plant Nutr 1997,20:1479~1487
    Sprent JI, James EK. Legume evolution:Where do nodules and mycorrhizas fit in? Plant Physiol 2007, 144:575~581
    Stern WR. Nitrogen fixation and transfer in intercrop systems. Field Crop Research,1993,34:335~356
    Takacs T, Voros I. Effect of metal non- adapted arbuscular mycorrhizal fungi on Cd, Ni and Zn uptake by ryegrass. Acta Agron Hungarica,2003,51(3):347~354.
    Ta TC, Faris MA. Effects of environment conditions on the fixation and transfer of nitrogen from alfalfa to associated timothy. Plant Soil,1988,107:25~30,
    Ta TC, Faris MA, MacDowall FDH. Evaluation of 15N methods to measure nitrogen transfer from alfalfa to companion timothy. Plant and Soil,1989,114:243~247
    Tilman D, Cassman KG, Matson PA. Agricultural sustainability and intensive production practices. Nature,2002,418:671~677
    Tisserant B, Gianinazzi-Pearson V, Gianinazzi S. In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infection, Mycl Res.1993, (97): 245~250
    Toomsan B, Cadisch G, Srichantawong M, Thongsodsaeng C, Giller KE, Limpinuntana V. Biological N2 fixation and residual N benefit of pre-rice leguminous crops and green manures. Neth J Agr Sci 2000.48:19~29
    Tran VD. An overview of upland rice in the world. In Progress in Upland rice Research. Proceedings of the Jakarta conference.IRRI, Manila, Philippines 1985,51~62
    Trappe JM. Phylogenetic and ecological aspects of mycotrophy in the angiosperms from an evolutionary standpoint, in:Ecophysiology of VA Mycorrhizal Plants, Safir G R, Boca Raton eds,1987,2~25
    Trouvelot A, Kough JL, Gianinazzi-Pearson V. Mesure de taux de mycorhization VA d'un systeme radiculaire. Recherche de methodes d'estimation ayant une signification fonctionnelle. In:V. Gianinazzi-Pe arson and S Gianinazzi, Editors. Physiological and Genetical Aspects of Mycorrhizae, INRA Press, Paris,1986, pp217~221
    Yoram K, David DDJ. Arbuscular Mycorrhizas:Physiology and Functions. Dordrecht, The Netherlands:Kluwer Academic Publishers,2000,245~246
    Vance CP, Uhde-Stone C, Allan DL. Phosphorus acquisition and use:Critical adaptations by plants for securing a nonrenewable resource.New Phytol,2003.157:423~447
    Van der Krift TAJ, Gioacchini P, Kuikman PJ, Berendse F. Effects of high and low fertility plant species on dead root decomposition and nitrogen mineralisation. Soil Biol Biochem.2001,33:2115~2124.
    Van der Heijden MGA, Kliornomos JN, Ursic M, Moutogolis P, Sertitwolf-Engel R, Boiler T, Wiemken A, Sandesr IR. Myconrrhizal fungal diversity determines Plant biodivesriyt, ecosystem varibailyt and Porudetiviyt. Nature.1998b,396:69~72
    Van der Heijden MLGA, Boller T, Wiemken A, Sanders IR. Dieffrent arbuscular mycorrhizal fungi species are potential determinnats of Plant community structure. Ecology,1998a,79:2082~2091
    Vandermeer JH. The ecology of intercropping. Cambridge. Cambridge University Press.1989 pp277~ 328
    Vanotti MB, Bundy LG. Soybean effects on soil nitrogen availability in crop rotation. Agron J.1995.87: 676~680
    Willey R W. Intercropping— Its importance and research needs. Part 1. Competition and yield advantages. Field Crop Abstract,1979b,32:1~10
    Zabran HH. Rhizobium-legume symbiosis and nitrogen fixation under severe condition and in arid climate. Microbiol Mol Biol Rev.1999.63:968~989
    Zhang XH, Zhu YG, Chen BD, Lin AJ, Smith SE, Smith FA. Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil. J Plant Nutr,2005,28:2065~ 2077
    Zuo YM, Zhang FS, Li XL, Cao YP. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant and Soil,2000,220:13~25
    毕银丽,李晓林,丁保健.水分胁迫条件下接种茵根对玉米抗旱性的影响.干旱地区农业研究.2003,21(2):21-25
    迟凤琴.大豆肥田机制的研究Ⅲ.大豆对耕层土壤含氮物质的影响.大豆科学,2001,20:35-40
    陈国安.重视生物固氮在我国农业持续发展中的地位。科技导报,1998,2:58-60
    陈明,姚允寅,张希忠.不同形态氮素对15N同位素稀释法测定苜楷固氮的影响.核农学通报,1997,18:30-33,40
    程东升主编.资源微生物,东北林业大学出版社,1995
    程桂荪.根瘤菌和内生菌根混合接种对三叶草增产的效应.土壤,1986,18(3):132-136
    陈书强,李金峰,郑桂萍.水分胁迫对水稻生长发育影响的研究进展.垦殖与稻作.2004(5)13-16
    程旺大,姚海根,赵国平,张国平.水稻节水栽培的生态和环境效应.农业工程学报,2002,18(1):191-195
    崔国贤,沈其荣,崔国清,李良勇.旱作水稻及对旱作环境的适应性研究进展.作物研究,2001,3:70-76
    丁友苗,黄文江.水稻旱作对产量和产量构成因素的影响.干旱地区农业研究.2002,4:50-54
    董昌金.根瘤菌与AM真菌双接种对大豆植物生长的影响.湖北农业科学,2004,5:41-43
    董昌金,赵斌.丛枝菌根真菌与根瘤菌互作及类黄酮对互作效果的影响.应用生态学报,2004,15(9):1585-1588
    冯固,李晓林.盐胁迫对VA菌根形成及接种VAM真菌对植物耐盐的效应.应用生态学报,1999,10(1)7-82
    冯固,李晓林.VA菌根提高植物耐盐性研究进展.西北农业大学学报,1999,27(3):94-100
    高秀兰.旱作水稻施肥技术研究.辽宁农业科学,1994,3:24-27
    弓明钦,陈应龙,仲崇禄.菌根研究及应用[M].北京:中国林业出版社,1997
    胡飞,孔垂华.花生对作物的化感作用.华南农业大学学报,2002,23:9-12
    胡锋,杨茂成,梁永超,刘满强,陈小云.地膜覆盖旱作稻田土壤肥力特征的研究.迈向21世纪的土壤科学(江苏卷),河海大学出版社,1999b,132
    胡锋,梁永超,李辉信.覆膜旱稻田土壤肥力演变与土壤管理问题.迈向21世纪的土壤科学(综合卷),中国土壤学会编,1999a,265
    胡学博,朱文达,宋凤鸣.VA菌根共生的分子生物学.西北农林科技大学学报(自然科学版)2001,29:114-119
    华秀英,陈锡时,沈音.沈阳地区几种土壤和作物对VA菌根影响的研究.土壤通报,1990,21(3):137-139.
    华珞,韦东普,白玲玉.氮锌硒肥配合施用对白三叶草的固氮作用与氮素转移的影响.生态学报,2001,21:588-592.
    黄文江,王纪华,赵春江,黄义德,陶汉之,陶庆会.旱作水稻条件下渗透调节物质和激素含量的研究.干旱地区研究,2002,20:76-80
    贺忠群,贺超兴,张志斌,邹志荣,王怀松.不同丛枝菌根真菌对番茄生长及相关生理因素的影响沈阳农业大学学报,2006.37(3):308-312
    贺忠群,贺超兴,张志斌,邹志荣.不同基质接种丛枝菌根真菌对番茄生长及PAL、PPO酶活的影响.农业工程学报.2005.21:169-172
    贺学礼,李斌.VA菌根真菌与植物相互选择性的研究.西北植物学报,1999,19(3):471-475
    贺学礼,李生秀.不同VA菌根真菌对玉米生长及抗早性的影响.西北农业大学学报,1999,27(6):49-53.
    金千瑜,欧阳由南.我国发展节水型稻的若干问题探讨.中国稻米,1999.(1):9-12.
    康绍忠.新的农业科技革命与21世纪我国节水农业发展.干旱地区农业研究,1998,16:11-17
    李芳,徐冰,冯固,潘家荣,李晓林.菌丝桥在日本落叶松幼苗间磷传递和植株生长中的作用植物生态学报,2004,28:218-224
    李海燕.VAM真菌诱导植物产生防御反应的生物化学及分子生物学基础,山东农业大学学报,2002,33(1):107-111
    李洪连.根际微生物性与棉花品种对黄萎病抗性的关系,植物病理学报,1998,28(4):341-345
    李隆,杨思存,孙建好,李晓林,张福锁.小麦/大豆间作中作物种间的竞争作用和促进作用.应用生态学报,1999a,10:197-200
    李隆,杨思存,孙建好,李晓林,张福锁.春小麦大豆间作条件下作物养分吸收积累动态的研究.植物营养与肥料学报,1999b,5:163-171
    李隆,张福锁,李晓林.间作充分利用土壤资源的机制.见李春俭主编,土壤与植物营养研究新动态(第四卷),中国农业大学出版社.北京,2001,181-194
    李荣刚,夏源陵,吴安之.太湖地区水稻节水灌溉与氮素淋失.河海大学学报.2001.29:21-25
    李淑敏,李隆,张福锁.丛枝菌根真菌和根瘤菌对蚕豆吸收磷和氮的促进作用.中国农业大学学报,2004,9(1):11-15
    李淑敏,孟令波,张晶.丛枝菌根真菌和根瘤菌对蚕豆吸收有机磷的促进作用.北方园艺,2004,(4):54-55
    李树林,赵士杰.VA菌根对茄子、黄瓜促生防病效应的研究,植物保护学报,1997,24(2):117-120
    李晓林,曹一平.VA菌根吸收矿质养分的机制.土壤.1993,25(5):274-277
    李晓林,冯固.丛枝菌根生态生理.北京:华文出版社,2001
    廖红,严小龙.高级植物营养学.北京:科学出版社,2003.114-156
    梁永超,胡峰,杨茂成.水稻腹膜旱作下的节水机理.中国农业科学,1999,32:26-32
    梁永超,胡锋,沈其荣,吕世华,吴良欢,张福锁.水稻腹膜旱作研究展望.见:植物营养研究进展与展望.冯丰,张福锁,杨新泉编著.中国农业大学出版社,北京.2000,114-125
    梁森,韩莉,李娴慧,连伟.早作水稻栽培方式及调亏灌溉指标试验研究.干旱地区研究,2002,20:12-19
    林秩兰,黄秀梨.现代微生物学实验技术.北京:科学出版社,2000
    宁堂原,苏琳,焦念元,曹铭忠,赵春,李增嘉.不同施氮水平下春夏玉米套作对全株饲用营养价值的影响中国农业科学.2006,39(10):2042-2047
    宁堂原,李增嘉,焦念元,赵春,韩宾.春夏玉米套作高产优质高效特性研究.玉米科学,2005,13(4):99-101.
    宁堂原,李增嘉,焦念元,赵春,申加祥,王浩.不同熟期玉米品种春夏套作对全株饲用营养价值的影响.作物学报,2004,30:443-448.
    林先贵,郝文英,施亚琴.VA菌根对植物耐早、涝能力的影响.土壤,1992,24(3):142-145
    林先贵,郝文英.不同植物对VA菌根的依赖性.植物学报,1989,31(9):72-725
    刘润进,高秋莲,韩殷一.梨树VA菌根形态结构观察.莱阳农学院学报,1989,6(3):34-38
    刘润进,刘鹏起,徐坤.中国盐碱土壤中AM菌的生态分布.应用生态学报,1999,10(6):721-724
    刘润进,罗新书.VA菌根对中国樱桃实生苗生长和养分的影响,莱阳农学院学报,1988a,5(2):6-13
    刘润进.VA菌根对湖北海棠实生苗水分状况的影响,莱阳农学院学报,1989,6(1):34-39
    刘延荣,黄镇.生态条件对VA菌根真菌侵染烟草的影响.中国烟草科学,1998,(1):18-21
    刘延荣,黄镇,刘成新.生态条件对VA菌根真菌侵染烟草的影响.中国烟草科学,1998,(1):173-175
    刘永军,郭守华,杨晓玲.植物生理生化实验技术[M].北京:中国农业出版社,2000.146-147.
    刘永秀,左元梅,张福锁,毛达如.玉米-花生混作对改善花生铁营养及固氮的影响.土壤通报,1999,30:55-56
    刘巽浩主编.耕作学.中国农业出版社.北京.1996
    刘仕平,张玲琪,李成云.VA菌根营养生理研究概况及其应用前景.西南农业学报,2003,16(2):93-97
    鹿金颖,毛永民,中连英.VA菌根真菌对酸枣实生苗抗旱性的影响,园艺学报,2003,30(1):29-33
    卢良恕.挖掘资源潜力,发展主体农业.耕作与栽培.1990,5:1-5
    骆世明,彭少麟编著.农业生态系统分析.种群系统的动态模拟.广东科技出版社.1996.259-269
    马骥,马淑云,程寅生,毛建昌,白世斌.玉米大豆间作效应分析.西北农业大学学报,1994,22:80-84
    马旭俊,朱大海.植物超氧化物歧化酶的功能作用.遗传,2003.25(2):225-231
    齐国辉,吴素军.VA菌根真菌与植物共生的生理效应研究现状及进展.河北林果研究,1999,14(2):180-183.
    齐国辉,张林平,杨文利.丛枝菌根真菌对重茬银杏生长及抗病性的影响,河北林业研究,2002,17(1):65-70
    钱晓晴,沈其荣,徐勇,王娟娟,沈辉.不同水分管理方式下水稻的水分利用效率与产量.应用生态学报,2003,399-404
    宋福强,王众,田兴军.丛枝菌根(AM)与桃树根癌病关系初探.植物病理学报,2005,35(6)(ZK):192-195
    山仑.我国节水农业发展中的科技问题.干旱地区研究,2003,21:1-5
    石英,沈其荣,峁泽圣,李伟.旱作条件下水稻的生物效应及表层覆盖的影响.植物营养与肥料学报,200,17:271-277
    司徒淞,王和洲,张薇.中国水稻节水栽培若干问题的探讨和建议.灌溉排水,2000,19:30-33
    宋亚娜,王贺,李春俭,张福锁.小麦大豆间作对大豆根系质外体铁库积累与利用的影响.作物学报,2000,26:462-466
    宿庆瑞.东北玉米主产区玉米/草木樨间种轮作农牧结合综合效益的研究.中国草地,1998,4:17-20
    陶汉之,黄文江,张玉屏,胡焱.水稻对旱作环境的响应和适应性研究.干旱地区研究,2002,20:42-48
    唐明.AV菌根提高植物抗盐碱和抗重金属能力的研究进展.土壤,1998,30(5):251-254.
    唐明,商鸿生,李振岐.VA菌根真菌抗病性机理的研究进展[J],西北农业大学学报,1999,27(6):287-291
    汤广民.旱作水稻的需水规律与土壤水分调空.中国农村水利水电,2001,9:18-22
    佟屏亚.试论耕作栽培学科的发展趋势和研究重点.耕作与栽培.1993,64:1-7
    田慧梅,季尚宁.玉米草术犀间作效应分析.东北农业大学学报.1997,28:15-22.
    王甲辰,刘学军,张福锁,吕世华,曾翔忠,曹一平.不同土壤覆盖物对旱作水稻生长和产量的影响.生态学报,2002,22:929-929
    王维,杨建昌,朱庆森.控水条件下水稻早育秧苗的形态生理特征.江苏农业研究,2001.22:16-20.
    王启成.间作套种立体种植--村的”绿色工厂”.决策探索.2001,12:60-61
    王艳玲,胡正嘉.VA菌根真菌对番茄线虫病的影响[J],华中农业大学学报,2000,19(1):25-28
    王逸群,赵仁贵,王玉兰.豆科植物结瘤及其结瘤的分子基础.吉林农业科学,2001,26(5):20-25
    王幼珊,范雅兰,张美庆.土壤类型栽VA真菌与宿主相互选择中的作用.北京农业科学,1991,9(2):11-14
    王幼珊,张美庆.VA菌根真菌与宿主植物间的相互选择性.北京农业科学,1989,1(6):4-7
    吴良欢,祝增荣,梁永超.水稻覆膜旱作节水节肥高产栽培技术.浙江大学学报(农业与生命科学版),1999.25:41-42
    吴永常.中国主要粮食作物单产变化趋势分析及中长期预测.中国农业资源与区划.2002.23(1):20-25
    肖焱波,李隆,张福锁.豆科/禾本科间作系统中氮营养研究进展.中国农业科技导报,2003.5(6):44-49 31.
    肖焱波,李隆,张福锁.小麦/蚕豆间作中的种间氮营养差异比较研究.植物营养与肥料学报,2003.9(4):396-400
    邢晓科,郭顺星.AM真菌与寄主相互作用的生化研究进展.菌物系统,2002,21(1):141-146
    姚青,冯固,李晓林.不同作物对VA菌根真菌的依赖性差异.作物学报,2000,26(6):874-878
    杨建昌,王志琴,刘立军.早种水稻生育特性与产量形成的研究.作物学报,2002.28:11-17.
    吕飞杰.中国农业科学技术展望.中国农业科学.1997.30(1):1-6
    俞双恩,张展羽,陶长生,王菊.江苏省水稻节水灌溉技术推广模式.灌溉排水,2001,20:33-36
    张美庆,王幼姗,黄磊.我国北方VA菌根真菌某些属和种的生态分布[J1.真菌学报,1994,13(30):166-172
    张美庆,王幼珊,刑礼军.AM真菌在我国东南沿海地区各土壤气候带的分布.菌物系统,1999a,18(2):145-148
    张美庆,王幼珊,刑礼军.环境因子和AM真菌分布的关系.菌物系统,1999,18(2):145-148
    张美庆,王幼珊,邢礼军.我国东南沿海地区AM真菌群落生态分布研究.菌初系统,1998b,17(3):274-277
    张文珠,李加旺.VA菌根与园艺作物抗病性研究进展,北方园艺,2003,(1):10-11
    张训忠,李伯航.高肥力条件下夏玉米大豆间混作互补与竞争效应研究.中国农业科学,1987,20:34-42
    张玉屏,朱德峰,林贤青,陈惠哲.不同时期水分胁迫对水稻生长特性和产量形成的影响.干旱地区农业研究.2005,2:52-57
    章秀福,王丹英,方福平等.中国粮食安全和水稻生产.农业现代化研究.2005,26(2):85-88
    赵正宜,迟道才,刘宗琦.水分胁迫对水稻生长发育影响的研究.沈阳农业大学学报.2000,31(2): 214-217.
    赵士豪,王来福,陈文新.根瘤菌对紫花苜蓿接种效果的研究.安徽农业科学.2006,34(23):6258-6259
    张志良.植物生理学实验指导[M](第二版).北京:高等教育出版社,1990.65-68.
    赵之伟.四种蔽类植物根际土壤中VA菌根真菌抱子种群组成和季相变化.云南植物研究,1999,21(4):437-441
    曾松荣,方白玉.VA菌根真菌研究概况.韶关学院学报(自然科学版),2002,23(12):54-55
    郑义方,杨丽敏,赵凤民,张云江.水稻全程覆膜节水高产栽培技术研究.黑龙江农业科学,2001,4:1-4
    郑伟文,宋亚娜.VA菌根真菌和根瘤菌对翼豆生长、固氮的影响,福建农业学报,15(2):50-55
    左元梅,刘永秀,张福锁.N03态氮对花生结瘤与固氮作用的影响.生态学报,2003b,23:758-764
    左元梅,张福锁.不同间作组合和间作方式对花生铁营养状况的影响.中国农业科学,2003a,36:300-306
    左元梅,李晓林,王永歧,曹一平,张福锁.玉米花生间作对花生铁一个样的影响.植物营养与肥料学报,1997,3:153-159
    左元梅,李隆,张福锁,李晓林.根系分泌物促进间作作物营养效应研究进展.见李春俭主编,土壤与植物营养研究新动态(第四卷),中国农业大学出版社,北京,2001,198-20
    朱庆森,黄王生主编.水稻节水栽培研究论文集.北京:中国农业科技出版社.1995.
    朱忠秀,杨志忠.紫花苜蓿与老芒麦混播优势的研究.中国农业科学,1992,25:63-68.
    朱庭云.水稻旱种、旱作的灌溉制度和灌溉技术.辽宁农业科学,1986,6:21-25
    朱树秀,季良,阿米娜.玉米单作及与大豆混作中氮来源的研究.西北农业学报,1994,3:59-61
    周苏玫,马淑琴,李文,张石头.玉米花生间作系统优势分析.河南农业大学学报,1998,32:17-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700