陆地棉早熟性的遗传与QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早熟种质资源是决定早熟相关性状的遗传资源。开展早熟种质资源研究是早熟棉育种工作的基础。在我国,随着金字棉的(king's)引进和广泛利用,早熟陆地棉育种取得了突破性的进展;但同时也导致了早熟棉遗传基础的狭窄性,使得早熟陆地棉综合性状的改良效果不理想。目前,在美国、中国、澳大利亚、印度等棉花生产大国,遗传基础狭窄已成为棉花品种改良的主要障碍。因此,陆地棉的遗传多样性的改善和特异资源的创新,已成为今后棉花种质资源工作的重点。目前,应用常规育种手段提高早熟陆地棉产量难度愈来愈大;利用现代分子生物技术,对棉花熟性性状的遗传、QTL定位及品种遗传多样性进行研究显得极为重要。迄今为止,国内外学者对陆地棉早熟及其相关性状的QTL定位研究仍然很少。本文以早熟棉花品种为材料,研究了早熟性、产量、品质等性状的遗传、QTL定位、早熟性相关性状的关联分析以及不同生态棉区育成的早熟棉花品种的遗传多样性,为早熟陆地棉育种提供理论依据。
     针对43份早熟陆地棉品种来源、育成地区以及衍生系进行了分类,并对表型性状进行了综合比较。结果发现在长江流域环境中,新疆棉区育成品种的生育期延长,表现偏晚。伏前桃、秋桃数少于其它棉区品种;而伏桃数、总果枝数则相反。新疆棉区品种在品质上显著优于其它棉区品种。在西北内陆环境中,同其它棉区品种相比,新疆棉区品种表现早熟,伏前桃和伏桃数,总果枝、总铃、有效铃、霜前铃数增加,霜前籽、皮棉产量、霜前花率高。纤维强度和纺纱均匀性指数高。衍生系间相比,C42、611波表现早熟,其伏前桃、伏桃多于其它衍生系;岱字棉、乌干达衍生系的有效果枝数、总铃数高于其它衍生系;金字棉衍生系的霜前籽、皮棉产量、衣分高于其它衍生系;金字棉、塔什干、乌干达衍生系的铃重大于其它衍生系;岱字棉和乌干达衍生系的品质好于其它衍生系。经SSR标记检测,174对多态性引物把43份材料以品种的选育地区、亲本系谱或遗传基础划分为8类,聚类结果和系谱来源基本吻合。其中共检测到486个等位变异位点,平均每个标记检测到了2.75个多态位点,多态信息含量为0.331。虽然等位变异数目和基因多样性跨度较大,但平均值较低,反映了陆地棉遗传基础的狭窄性。
     在遗传多样性分析的基础上,利用TASSEL软件对棉花基因组内的连锁不平衡水平进行了分析。结果表明,棉花基因组内的连锁不平衡位点数目多,分布很不均匀。LD集中的区域主要在A11、D5、D12等染色体的个别标记上。所选的陆地棉中包含3个亚群体。在多个环境中共检测到了与12个性状相关联的位点数近390个,其中极显著关联的位点90个。多年多点综合分析中检测到了与12个性状极显著相关的关联位点30个。位于D9、A2、D2、D6染色体上的5个标记在多个环境及综合分析中检测到,分别与花铃期、生育期、果枝始节、霜前铃等性状相关联,说明这些标记位点存在相关性状的QTL。利用表型和基因型之间特定的等位变异关系,发掘了一批优异关联位点及其典型材料。含有标记NAU5467-1、NAU3519-2、NAU4048-1、NAU2687-2、BNL1317-2的等位变异明显缩短蕾期、花铃期、生育期;NAU5467-1、NAU3519-2降低果枝始节和果枝始节高度;NAU437-1、NAU1366-2、NAU3052-2、JESPR291-2、NAU5379-2及NAU462-1增加霜前铃、霜前籽、皮棉产量,这些等位变异的典型材料是新陆早10号和晋棉14号等,分别来自前苏联及金字棉衍生系。
     利用6个早、中、晚熟陆地棉品种(系)新陆早8、10号、宁早1号、苏棉12号、荆8891、TM-1,配制了6×(6-1)/2个杂交组合,利用两年三点的亲本和F1试验数据,应用作物数量性状QTL检测体系的主位点组加-显性及环境(ADE)遗传模型估计了亲本遗传组分、杂种Fl熟性以及霜前皮棉产量杂种优势的有利、不利位点。结果表明,苗期、蕾期、花铃期、生育期等熟性性状的主位点组的表型解释率为9.3-39.4(%),霜前皮棉产量主位点组解释率为36.7%。现蕾、吐絮、生育期阶段J=16位点加性效应值大于其它位点组,说明此位点在陆地棉早熟性状中起主要作用。早熟和中熟亲本现蕾期、花铃期、生育期基因型值和表型值普遍短于晚熟亲本,且具有较多的促早熟有利基因位点。在亲本间杂交组合霜前皮棉主位点组中,组合新陆早8号×荆8891聚合了所有有利位点;此外,多数组合杂合位点对霜前皮棉产量的贡献率大于纯合位点,杂种产量优势主要以杂合位点来表现,同时纯合位点也有贡献。本实验结果也说明了在早熟陆地棉区域开展育种时,以当地优良材料作为核心亲本,以加性效应较大、遗传率高的性状作为选择指标时,能够达到较理想的选择目的。
     用新陆早8、10号分别与TM-1杂交,构建F2群体(Pop1和pop2)以及F2:3家系。用SSR标记数据以复合区间作图法(CIM)构建了两张早熟陆地棉品种间的遗传图谱。总长分别为1284.88cM和598.14cM,各含有127和54个标记,分别覆盖棉花基因组的11.97%和25.7%,平均标记间距10.12cM和10.68cM。各由18和12条连锁群组成,其中pop1图谱中有3个连锁群未被定位到染色体上,而pop2图谱中所有连锁群均定到相应了的染色体上。利用两张遗传图谱分别对34个熟性、产量、品质等性状进行了QTL定位。经1000次测验,共检测到了61个显著性QTL。在D7染色体上发现了多个性状的QTL富集区,其中产量性状的4个QTL可在两个群体中检测到;分别位于A2和D7染色体上的生育期和霜前皮棉产量的QTL,在关联分析中同一条染色体的相近位置也能检测到,均有较好的稳定性。利用共有的桥梁标记整合了一张陆地棉品种间的遗传图谱。该图谱包含154个多态位点,总长1519.31cM、覆盖率为30.38%,两多态位点间的平均遗传距离为9.86cM。该图谱由3个连锁群和18条染色体组成。在染色体A2、A5、A6、A6/D6、A7/D、D1、D2、D7、D9上定到了熟性、产量、品质及农艺性状QTL。多数性状的富集区主要集中在D7、A6和A6/D6上。分别具有611波和金字棉遗传背景的两个新疆自育品种中早熟性由不同基因控制,且早熟性相关性状的基因以加性遗传为主。
Early-maturing germplasms are important genetic resources in Upland cotton breeding. In China, with the introduction and utilization of King's cotton, a breakthrough progress has been made in early-maturing breeding, yet it also narrowed the genetic diversity, leading to the bad efficiency in the improvement of overall traits. Today, the narrow genetic bases has been the bottleneck for cotton breeding in cotton growing countries including USA, China, Australia, India, etc, so it is important to create and diversify the cotton germplasms. Currently, It is more and more difficult to improve yield of early-maturing upland cotton by conventional breeding, therefore, studies on the inheritance, quantitative trait loci (QTL) mapping, and genetic diversity for maturity are needed based on modern molecular biotechnology. Few studies have been reported previously on QTL mapping for earliness and its related traits in upland cotton. In this study, on the base of the genetic diversity analysis of different early-maturing upland cottons, QTL for earliness, yield and fiber quality traits were identified, and the heredity of these traits as well as their association analysis were carried out in order to serve the early-maturing upland cotton breeding.
     Forty-three early-maturing upland cotton cultivars were classified and compared according to their parental origins, breeding sites and trait performance. The results showed that in Yangtze River Valley, compared to varieties developed in other cotton growing areas, Xinjiang cultivars matured late with growth stage elongated, better fiber quality, more hot-season bolls and fruit branches, but with less pre-hot season as well as autumn bolls. Whereas in Northwest Inland, Xinjiang cultivars matured early with more pre-hot season, hot season, effective, pre-frost and total bolls, increased fruit branches, pre-frost seed cotton and lint yield, higher rate of pre-frost cotton, and better fiber strength and spinning consistency index. Among varieties derived from different ancestors, C42 and 611Bo performed early-maturity and had more pre-hot season and hot-season bolls; Deltapine and Uganda derived lines had more effective fruit branches and total bolls, and better fiber quality; Kings derived lines had a higher pre-frost seed cotton yield, lint yield and lint percentage; furthermore, the Kings, Tashkan as well as Uganda derived lines showed greater boll weight than others. One hundred and seventy-four polymorphic primer pairs were used to divide the 43 cultivars into 8 clusters, consistent with the breeding region, pedigree and genetic bases of these cultivars. Four hundred and eighty-six allelic variations were detected with 2.75 polymorphic loci per primer pairs and the polymorphic information content (PIC) 0.331. Though the number of alleles revealed by SSR primers had a huge range, the average number per chromosome was at a low level, indicating the genetic basis of upland cotton was narrow.
     Based on analysis of genetic diversity among 43 varieties, the level of linkage disequilibrium (LD) within the whole cotton genome was analyzed using TASSEL software. Results showed that though the LD sites had a huge number, their distribution was not uniform within the cotton genome. LD sites were concentrated on individual markers at chromosome All, D5 and D12. Three hundred and ninety loci associated with 12 traits were detected across multiple environments, of which 90 were highly associated. In combined analysis, thirty highly associated loci were identified. Five markers on D9, A2, D2 and D6, which were associated with flowering, growth stage, first fruit branch node and pre-frost bolls, were detected in multiple environments and in combined analysis respectively, suggesting the existence of QTL in these regions. Based on the allelic variation relationship between genotypes and phenotypes, several trait-associated loci as well as elite materials were identified. Positive alleles adjacent to NAU5467-1, NAU3519-2, NAU4048-1, NAU2687-2 and BNL1317-2 obviously shortened budding, flowering and growth stages; positive alleles near NAU5467-1 and NAU3519-2 dropped the first fruit branch node and its height; while positive alleles close to NAU437-1, NAU1366-2, NAU3052-2, JESPR291-2, NAU5379-2 and NAU462-1 increased pre-frost bolls, pre-frost seed cotton yield and lint yield. These positive alleles were from elite materials XinluzaolO and Jinmian14, which were derived from the former Soviet Union and King's cotton respectively.
     6×(6-1)/2 crosses were made with six early-, mid-and late-maturing upland varieties (Xinluzao8,10, Ningzaol, Sumian12, Jing8891, TM-1). Based on data of parents and F1 in three environments, the gentic components of parents, favorable and unfavorable loci for F1 maturity and pre-frost lint yield heterosis were estimated by QTL detection system (ADE genetic model). The results showed that the phenotypic variations explained by major loci groups for maturity and pre-frost lint yield were 9.3~39.4(%) and 36.7% respectively. The additive effects of J=16 locus at budding, boll opening, and growth period were greater than other loci groups, suggesting that this locus had a key role in the early-maturity of upland cotton. Compared to late-maturing parents, early- and mid- maturing parents had less genotype and phenotype values at budding, boll opening, and growth period, and more favorable earliness related loci. In the major loci groups for pre-frost lint, Xinluzao8×Jing8891 F1 pyramided all favorable loci among the crosses. Besides, heterozygous loci contributed more to pre-frost lint yield than homozygous loci in most crosses. The yield heterosis of hybrids was mainly determined by heterozygous loci, though homozygous loci also made a contribution. These results also suggested the necessity to use local elite earliness cotton cultivars as core parents and traits with both high additive effects and high heritability as selection criteria in a cotton breeding program.
     Both F2 and F2.3 populations were made from the two crosses of TM-1 with Xinluzao8, Xinluzao10, respectively. Two earliness upland cotton genetic maps were constructed by JoinMap V3.0 based on SSR marker data, with a total length of 1284.88 cM and 598.14 cM, and 127 and 54 polymorphic loci, respectively, covering 11.97% and 25.7% of the cotton genomes. The average distance between two loci was 10.12 cM and 10.68 cM respectively. The first map included eighteen chromosomes, with three linkage groups unassigned; while the second map included 12 chromosomes. QTL tagging was performed using composite interval mapping (CIM) method of Winqtlcart 2.5. Totally 61 significant QTL with LOD scores greater than threshold value were detected for 34 traits including maturity, yield and fiber quality in the two populations. QTL clusters were found on D7, including 4 yield QTL simultaneously detected in the two populations. The QTL on A2 and D7 controlling growth period and pre-frost lint yield respectively were concurrently identified in association analysis, showing great stability. An integrated map was constructed through bridge markers, with 154 polymorphic loci distributed on 18 chromosomes and 3 unassigned linkage groups. The length was 1519.31 cM, covering 30.38%of the genome, with average interval between two loci 9.86 cM. QTLs for maturity, yield, fiber quality and other agronomic traits were detected on A2, A5, A6, A6/D6, A7/D, D1, D2, D7 and D9 respectively. QTL clusters were concentrated on D7, A6 and A6/D6. Favorable alleles were mainly from the two earliness varieties Xinluzao8 and Xinluzao10, which had genetic background of 611 bo and King's cotton respectively. Earliness as well as its related traits was controlled by different genes, and additive inheritance is the major genetic base.
引文
1. 别墅,孔繁玲,周有耀.中国3大主产棉区棉花品种遗传多样性的RAPD及其与农艺性状关系的研究[J].中国农业科学,2001,34(6):597-603
    2. 别墅,周有耀.棉花早熟性和纤维品质的遗传研究关系[J].棉花学报,1990,2(2):31-37
    3. 车永和.几种代表性分子标记技术[J].江苏农业科学,2003,2:3-4
    4. 陈光,杜雄明,卢东柏,等.利用分子标记进行海岛棉遗传多样性研究[J].植物遗传资源学报20056(2):135-139
    5. 陈新民,何中虎,史建荣,等.利用SSR标记进行优质冬小麦品种(系)的遗传多样性研究[J].作物学报,2003,29(1):13-19
    6. 刁明,褚贵新,李少昆,等.北疆50年来主栽棉花品种亲缘关系的研究[J].中国农业科学,2002,35(12):1456-1460
    7. 董玉琛,曹永生,张学勇.中国普通小麦初选核心种质的产生[J].植物遗传资源学报,2003,4(1):1-8
    8. 杜金友,黎裕,王天宇.SSR和AFLP分析玉米遗传多样性的研究[J].华北农学报,2003,18(1):59-63
    9. 范术丽,喻树迅,宋美珍,等.短季棉早熟性的分子标记及QTL定位[J].棉花学报,2006,18(3):135-139
    10.范术丽,喻树迅,原日红,等.短季棉早熟性的遗传效应及其与环境互作研究[J].西北植物学报,2006,26(11):2270-2275
    11.冯纯大,张金发,刘金兰,等.我国抗枯萎病棉花品种(系)的系谱分析[J].棉花学报,1996,8(2):65-70
    12.盖钧镒,管荣展,王建康.植物数量性状QTL体系检测的遗传试验方法[J].世界科技研究与发展,1999,21(1):34-40
    13.耿川东,黄骏麒.用RAPD鉴定棉花品种间差异[J].江苏农业学报,1995,11(4):21-24
    14.管荣展.双列杂交设计及其在亲本间位点组检测及杂种优势改良中的应用[D].博士学位论文,南京农业大学,1997
    15.郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆与分子育种[J].科学通报,2003,48(5):410-417
    16.郭旺珍,张天真,潘家驹,等.棉花胞质雄性不育育性恢复基因的RAPD-PCR标记的筛选[J].科学通报,1997,42(24):2645-2647
    17.郭旺珍,张天真,潘家驹,等.我国陆地棉品种的遗传多样性研究初报[J].棉花学报,1997,9(5):242-247
    18.郭旺珍,周兆华,张天真,等RAPD鉴定棉花抗(耐)黄萎病品种(系)的遗传变异研究[J].江苏农业学报,1999,15(1):1-6
    19.海林,王克晶,杨凯.半野生大豆种质资源SSR位点遗传多样性分析[J].西北植物学报,2002,22(4):751-757
    20.韩祥铭,刘英欣.陆地棉产量性状的遗传分析[J].作物学报,2002,28(4):533-536
    21.胡文静,张晓阳,张天真,等.陆地棉优质纤维QTL的分子标记筛选及优质来源分析[J].作物学报,2008,34(4):578-586.
    22.黄滋康,季道藩,潘家驹,等.中国棉花遗传育种学[C].山东科学技术出版社,2003
    23.黄滋康.中国棉花品种及其系谱[M].北京:中国农业出版社,2007
    24.季道藩,汪若海,潘家驹.棉花知识百科[M].中国农业出版社,2001
    25.姜长鉴,莫惠栋.质量-数量性状的遗传分析Ⅳ极大似然法的应用.作物学报,1995,21(6):641-648
    26.李轲,李志博,魏亦农.棉花早熟性状的相关性分析和QTL定位[J].新疆农业科学,2010,47(1):78-81
    27.李卫华,胡新燕,申温文,等.陆地棉主要经济性状的遗传分析[J].棉花学报,2000,12(2):81-84
    28.李永山,唐秉海,王晓璐,等.不同年代棉花品种产量构成、纤维品质及其系谱分析[J].棉花学报,2001,13(1):16-19
    29.刘三才,曹永生,郑殿升,等.普通小麦核心种质抽样方法的比较[J].麦类作物学报,2001,21(2):42-45
    30.刘文欣,孔繁玲,郭志丽,等.建国以来我国棉花品种遗传基础的分子标记分析[J].遗传学报,2003,30(6):560-570
    31.马育华.植物育种的数量遗传学基础.南京:江苏科学技术出版社,1982
    32.莫惠栋.质量-数量性状的遗传分析1遗传组成和主基因鉴别[J].作物学报,1993,19(1):1-6
    33.潘家驹,闵留芳,吴振衡.陆地棉若干性状之间的遗传相关及遗传力的初步研究[J].江苏农业科学,1979,14(4):204-206
    34.庞朝友,杜雄明.棉花种间杂交渐渗系创新效果评价及特异种质筛选[J].科学通报,2006,51:155-162
    35.戚存扣,盖钧镒.不同遗传来源甘蓝型油菜开花期的基因型差异和遗传效应分析作物学报,2002,28(4):455-460
    36.石玉真,刘爱英,李俊文,等.与棉花纤维强度连锁的主效QTL应用于棉花分子标记辅助育种[J].分子植物育种,2007,5(4):521-527
    37.宋国立,崔荣霞,王坤波.澳洲棉种遗传多样性的RAPD分析[J].棉花学报,1999,11(2):65-69
    38.孙君灵,周忠丽,潘兆娥,等.转基因抗虫棉sGK9708与不同类型品种杂种的遗传及优势分析[J].棉花学报,2003,15(6):323-327
    39.田纪春,邓志英,牟林辉.作物分子设计育种与超级小麦新品种选育[J].山东农业科学,2006,(5):30-32
    40.万建民.作物分子设计育种[J].作物学报,2006,32(4):455-462
    41.汪保华,武耀廷,黄乃泰,等.陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J].作物学报,2007,33(11):1755-1762
    42.王建康.数量性状主基因-多基因混合遗传模型的鉴别和遗传参数估计的研究[D].博士学位论文,南京农业大学,1996
    43.王建康,盖钧镒.利用回交或F2:3世代鉴定主基因和多基因的混合遗传模型[J].作物学报,1998,24(4):540-548
    44.王建康,盖钧镒.利用杂种F2世代鉴定数量性状主基因-多基因的混合遗传模型并估计其遗传效应[J].遗传学报,1997,24(5):432-440
    45.王建康,盖钧镒.数量性状主-多基因混合遗传的P1 P2 F1 F2和F2:3联合分析方法[J].作物学报,24(6):651-659
    46.王建康,盖钧镒.主基因-多基因混合遗传分析中的EM算法[J].生物学学报,1997,12(5):540-548
    47.魏新奇,张建,刘大军,等.陆地棉开花期QTL定位[J].西南大学学报,2008 30(12):61-64
    48.武耀廷,殷剑美,张天真.利用分子标记和形态学性状检测的陆地棉栽培品种遗传多样性[J]遗传学报,2001,28(11):1040-1050.
    49.谢军,才卓,刘向辉.生物技术在种质资源遗传多样性鉴定的应用[J].作物杂志,1998(增刊)71-76
    50.徐秋华,张献龙,聂以春.长江、黄河流域两棉区陆地棉品种的遗传多样性比较研究[J].遗传学报,2001,28(7):683-690
    51.杨昶 郭旺珍 张天真.陆地棉抗黄萎病、纤维品质和产量等农艺性状的QTL定位[J].分子植物育种,2007,5(6):797-805.
    52.杨庆利,王建飞,丁俊杰,等.7个水稻品种苗期耐盐性的遗传分析[J].南京农业大学学报,2001,28(11):1040-1050
    53.喻树讯,黄祯茂.短季棉品种早熟性构成因素的遗传分析[J].中国农业科学,1990,23(6):48-54
    54.喻树迅.我国短季棉遗传改良成效评价及其早熟不早衰的生化遗传研究[D].西北农业科技大学,2003
    55.袁有禄.棉花优质纤维特性的遗传及分子标记研究[D].南京农业大学,1999
    56.张天真.棉花纤维品质分子育种的现状及展望[J].棉花学报,2000,12(6):321-326
    57.张先亮,高俊山,宋国立,等.陆地棉中G6主要性状主效和上位性QTL分析[J].分子植物育种,2009,7(2):312-320
    58.赵伦一,陈舜文,徐世安.陆地棉早熟指示性状的遗传力估计[J].遗传学报,1974,1(1):107-116
    59.周有耀.陆地棉主要经济状遗传及相关的研究[J].中国农业大学学报,1986,12(3):314-352
    60.周有耀.棉花早熟性及纤维品质性状关系的研究[J].中国棉花,1990,17(5):13-15
    61.朱军.广义遗传模型与数量遗传分析新方法[J].浙江农业大学学报,1994,20(6):551-559
    62.朱青竹,赵国忠,赵丽芬.不同来源棉花种质资源基于RAPD的遗传变异[J].河北农业大学学报,2002,25(4):17-19
    63.朱四元,陈金湘,刘爱玉,等.利用SSR标记对不同类型抗虫棉品种的遗传多样性分析[J].湖南农业大学学报,2006,32(5):469-472
    64.朱振东,贾继增.小麦SSR标记的发展及应用[J].遗传学报,2003,25(3):355-360
    65.邹喻苹,葛颂.新一代分子标记SNPs及其应用[J].生物多样性,2003,11(5):370-382
    66.左开井,孙济中,张献龙,等.利用RFLP.SSR和RAPD标记构建陆地棉分子标记连锁图[J].华中农业大学学报,2000,19:190-193
    67. Abdurakhmonov IY, Abdukarimov A. Application of association mapping to understanding the genetic diversity of plant germplasm resources[J]. Plant Genomics,2008:1-18
    68. Abdurakhmonov IY, Saha S, Jenkins JN, et al. Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm[J]. Genetica,2009,136:401-417
    69. Adam- Blondon AF, Sevignac M, Bannerot H, et al. SCAR, RAPD and RFLP markers linked to a dominant gene conferring resistance to anthracnose in common bean[J]. Theor Appl Genet,1994, 88:865-870
    70. Akaike H. On entropy maximum principle. In:Krishnaiah PR ed. Applications of Statistics. Amesterdam:North-Holland Publishing,1977,27-41, Baker RJ. Issues in diallel analysis[J]. Crop Sci,1978,18:5335-5336
    71. Althoff DM, Gitzendanner MA, Segraves KA. The utility of amplified fragment length polymorphisms in phylogenetics a comparison of homology within and between genomes[J]. Syst Bio,2007,156:477-484
    72. Alwala S, Suman A, Arro JA, et al. Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collection[J]. Crop Sci,2006,46:448-455
    73. Andersen JR, Zein I, Wenzel G, et al. High levels of linkage disequilibrium and associations with forage quality at Phenylalanine Ammonia- Lyase locus in European maize (Zea mays L.) inbreds[J]. Theor Appl Gent,2007,114:307-319
    74. Aranzana M J, Kim S, Zhao K, et al. Genome- wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes[J]. PLoS Gener,2005, 1(5):e60
    75. Barker JL. The inheritance of several agronomic and fiber properties among selected lines of upland cotton (Cosspium hirsutum L.)[J]. Crop Sci,1973,13(2):444-450
    76. Bezawada C, Saha S, Jenkins JN. SSR markers associated with root knot nematode resistance genes in cotton[J]. Cot Sci,2003,7:179-184
    77. Bowmand T, Mayol, Calhound DC. Genetic base of upland cotton cultivars released between 1970 and 1990[J]. Crop Sci,1996,36:577-581.
    78. Bowmand T, Mayol, Creech JB. Genetic uniformity of the US upland cotton crop since the introduction of transgenic cotton[J]. Crop Sci,2003,43:515-521.
    79. Brubaker CL, Wendel JF. Revaluting the origin of domesticated cotton (Gossypium hirsutum Malvaceae) using nuclear restriction fragment length polymorphisms RFLPs[J]. Am J Bot,1994, 81(10):1309-1326
    80. Buetow KH, Edmonson MN, Cassidy AB. Reliable identification of large numbers of candidate SNPs from public EST data[J]. Nat Genet,1999,21:323-332
    81. Carlborg O, Haley CS. Epistasis too often neglected in complex trait studies[J]. Nat Rev Genet, 2004,5:618-625
    82. Chang RY, O'Donoughue LS, Bureau TE. Inter- MITE polymorphisms (IMP):A high throughput transposon-based genome mapping and fingerprinting approach[J]. Theor Appl Genet, 102:773-7781
    83. Chelkowski J, Stepien L. Molecular markers for leaf rust resistance genes in wheat[J]. Theor Appl Genet,2001,42:117-126
    84. Chen ZJ, S cheffler, Dennis E, et al. Toward sequencing cotton(Gossypium) genomes[J]. Plant Physiol 2007,145:1303-1310
    85. Cheng HY, Yang WC, Hsiao JY. Genetic diversity and relationship among peach cultivars based on random amplified microsatellite polymorphism (RAMP). Bot Bull Acad Sin,2001,42:201-206
    86. Ching ADA, Caldwell KS, Jung M, et al. A SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines[J]. BMC Genet,2002,3:19
    87. Dermott JM, Brandle U, Dutly F, et al. Genetic variation in powdery mildew of barley: development of RAPD, SCAR and VNTR markers[J]. Phytopathology,1994,84:1316-1321
    88. Doerge RW. Mapping and analysis of quantitative trait loci in experimental populations[J]. Nat. Rev. Genet,2002,3:43-52
    89. Dooner HK, Weck E, Favreau MA. A molecular genetic analysis of insertion mutations in the bronze locus in maize[J]. Mol Gen Genet,1985,200:240-246
    90. Drouaud J, Camilleri C, Bourguignon P, et al. Variation in crossing- over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination "hot spots"[J]. Genome Res,2006,16:106-114
    91. Dudley JW. Evaluation of maize populations as sources of favorable alleles[J]. Crop Sci,1988, 28:486-491
    92. Elkind Y, and A. Cahaner. A mixed model for the effects of single gene polygenes and their interaction on quantitative traits.1 The models and experimental design[J]. Theor Appl Genet,1990, 72:377-383
    93. Elkind, Y and A. Cahaner.1 A mixed model for the effects of single gene polygenes and their interaction on quantitative traits.2 The effects of the major gene and polygene on tomato fruit softness[J]. Heridity,1990,64:205-213
    94. Elston RC, and J Steward. The analysis of quantitative trait for simple genetic models from parental, F1 and backcross data[J]. Genetics,1973,73:695-711
    95. Elston RC. The genetic analysis of quantitative trait difference between two homozygouse lines[J]. Genetics,1984,108:733-744
    96. Endrizzi JE, Turcotte EL, Kohel RJ. Quantitative genetics, cytology and cytogenetics. In:Kohel RJ, Lewis DF (eds) Agronomy, vol 24. Cotton. American Society of Agronomy, Madison, Wis,1984, 59-80
    97. Esbroeck Van GA, Bowmand T, Mayol, et al. Genetic similarity indices for ancestral cotton cultivars and their impact on genetic diversity estimates of modern cultivars[J]. Crop Sci,1999, 39:323-328
    98. Esbroeck Van GA, Bowmand T, Calhounds, et al. Changes in the genetic diversity of cotton in the USA from 1970 to 1995[J]. Crop Sci,1998,38:33-37
    99. Femando RL Stricker C and Elston RC. The finite polygenic mixed model an alternative formulation for the mixed model of inheritance [J]. Theor Appl Genet,1994,88:573-580
    100. Ferreira ME, Satagopan J, Yandel BS, et al. Mapping loci controlling vernalization requirement and flowering time in Brassica napus[J]. Theor Appl Genet,1995,90:727-732
    101. Flint-Garcia SA, Thornsberry JM, and Buckler ES. Structure of linkage disequilibrium in plants[J]. Annu Rev Plant Biol,2003,54:357-374
    102. Fryxell PA. The natural history of the cotton tribe[M]. Texas A&M University Press, College Station, TX,1979
    103. Goffinet B, P Loisel and B. Laurent. Statistical tests for identification of the genotype at a major locus of progeny tested sires[J]. Biomet rics,1990,46:583-594
    104. Gai J, J Wang. Identification and estimation of a QTL model and its effects. Theor Appl Genet, 1998,97:1162-1168
    105. Gebhardt C, Ballvora A, Walkemeier B, et al. Assessing genetic potential in germplasm collections of crop plants by marker- trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type[J]. Molecular Breeding,2004,13(1):93-102
    106. Godoy AS, Palomo GA. Genetic analysis of earliness in upland cotton(Cosspium hirsutum L) I Morphological and phonological variables[J]. Euphytica,1999,105:155-160
    107. Godoy AS, Palomo GA. Genetic analysis of earliness in upland cotton(Cosspium hirsutum L.) ⅡYield and lint percentage[J]. Euphytica,1999,105:161-166
    108. Griffing BA. Concept of general and specific combining ability in relation to diallel crossing systems[J]. Aust J Bio Sci,1956,9:463-493
    109. Gulsen O, Karagul S, Abak K. Diversity and relationships among Turkish okra germplasm by SRAP and phenotypic marker polymorphism[J]. Biologia,2006,62:41-45
    110. Guo WZ, Cai CP. Wang CB, et al. A Microsatellite- based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium[J]. Genetics,2007,176:527-554.
    111. Guo WZ, Zhang TZ, Shen X, et al. Development of SCAR marker linked to a major QTL for high fiber strength and its usage in molecular- marker assisted selection in upland cotton[J]. Crop Sci, 2003,43:2252-2256
    112. Guo WZ, Cai C, Wang C, et al. A preliminary analysis of genome structure and composition in Gossypium hirsutum[J]. BMC Genomics,2008,9:314
    113. Gupta PK, Rustgi S, Kulwal PL. Linkage disequilibrium and association studies in higher plants: present status and future prospects[J]. Plant Mol Biol,2005,57:461-485.
    114. Haliassos A, Chomel JC, Tesson L, et al. A Modification of enzymatically amplified DNA or the detection of point mutation[J]. Nucleic Acids Res,1989,17:3606
    115. Hemmat M, Weeden NF, Manganaris AG, et al. Molecular marker linkage map for apple[J]. Heredity,1994,85:4-11
    116. Hoeschele I. Genetic evaluation with data presenting evidence of mixed major gene and polygenic inheritance[J]. Theor Appl Genet,1988,76:81-92
    117. Hu J, Vick BA. Target region amplification polymorphism:a novel marker technique for plant genotyping[J]. Plant Mol Biol Rep,2003,21:289-294
    118. Iqbal M, Aziz N, Saeed NA, et al. Genetic diversity evaluation of some elite cotton varieties by RAPD analysis[J]. Theor Appl Genet,1997,94:139-144
    119. Ivandic V, Hackett CA, Nevo E, et al. Analysis of simple sequence repeats(SSRs) in wild barley from the fertile crescent:associations with ecology, geography and flowering time[J]. Plant Molecular Biology,2002,48(5):511-527
    120. Jiang C, X Pan and M Gu. The use of mixture models to detec effects of major genes on quantitative characters in plant breeding experiment[J]. Genetics,1994,136:383-394
    121. Kalendar R, Grob T, Regina M, et al. IRAP and REMAP:two new retrotransposon- based DNA finger printing techniques[J]. Theor Appl Genet,1999,98:704-711
    122. Karaca M, Saha S, Jenkins JN, et al. Simple sequence repeat (SSR) markers linked to the Ligon Lintless (LiI) mutant in cotton[J]. Heredity,2002,93:221-224
    123. Kiss GB, Csanadi G, Kalman K, et al. Construction of a basic linkage map for alfalfa using RFLP, RAPD isozyme and morphological markers[J]. Mol Gen Genet,1993,238:129-137
    124. Knott SA, C S Hally, and R Thanpson. Methods of segregation analysis for animal breeding data parameter estimates[J]. Heridity,1991,68:313-320
    125.Komori T, Nitta N. Utlization of CAPS/dCAPS method to convert rice SNPs into PCR-based markers[J]. Breed Sci,2005,55:93-98
    126. Konieczny A, Ausubel FM. Procedure for mapping Arabidopsis mutations using co- dominant ecotype-specific PCR- based markers[J]. Plant,1993,4:403-410
    127. Kraakman ATW, Martinez F, Mussiraliev B, et al. Linkage disequilibrium mapping of morphological resistance and other agronomically relevant traits in modern spring barley cultivars[J]. Mol Breed,2006,17:41-58
    128. Kraakman ATW, Niks RE, Van den Berg PM, et al. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars[J]. Genetics,2004,168:435-446
    129. Kraft TM, Hansen, Nilsson NO. Linkage disequilibrium and fingerprinting in sugar beet[J]. Theor Appl Genet,2000,101:323-326
    130. Kutner MH, Nachtsheim CJ, Neter J. Applied Linear Regression Models,4th edn[M]. Beijing: Higher Education Press,2005,343-386
    131. Lacape JM, Nguyen TB, Thibivilliers S, et al. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum (?) Gossypium barbadense backcross population[J]. Genome, 2003,46:612-626
    132. Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica[J]. Theor Appl Genet,2001,103:455-546
    133. Lin ZX, Zhang XL, Nie YX, et al. Construction of a genetic linkage map for cotton based on SRAP[J]. Chin Sci Bull,2003,48:2063-2067
    134. Liu LW, Guo WZ, Zhu XF, et al. Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutumh[J]. Theor Appl Genet,2003,106:461-469
    135. Liu S, Cantrell RG, MaCarty JC, et al. Simple sequence repeat- based assessment of genetic diversity in cotton race stock accessions[J]. Crop Sci,2000a,40:1459-1469
    136. Liu WX, Kong FL, Guo ZL, et al. An analysis about genetic basis of cotton cultivars in China since 1949 with molecular markers[J]. Acta Genet Sin,2003,30:560-570 (in Chinese, English abstract)
    137. Liu Z, Anderson JA, Hu J, et al. A wheat inter- varietal linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci[J]. Theor Appl Genet,2005,111:782-794
    138. Loisel PB, Goffinet, H Monod, et al. Detecting a major gene in a F2 population[J]. Biometrics,1994, 50:512-516
    139. Ma XX, Zhou BL, Lii YH, et al. Simple sequence repeat genetic linkage maps of A- genome diploid cotton(Gossypium arboreum)[J]. Journal of Integrative Plant Biology,2008,50(4):491-502
    140. Maccaferri M, Sanguineti MC, Noli E, et al. Population structure and long- range linkage disequilibrium in a drum wheat elite collection[J]. Mol Breed,2005,15:271-289
    141. Martin GB, Williams JGK, Tanksley SD. Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near- isogenic lines[J]. Proc Natl Acad Sci, 1991,88:2336-2340
    142. Mei M, Syed NH, Gao S, et al. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium).[J]. Theor Appl Genet,2004,108:280-291
    143. Mian MAR, Hopkins AA, Zwonitzer JC. Determination of genetic diversity in tall fescue with AFLP markers[J]. Crop Sci,2002,42:944-950
    144. Michaels SD, Amasino RMA. A robust method for detecting single nucleotide changes as polymorphic markers by PCR[J]. Plant,1998,14:381-385
    145. Multani DS, Lyon BR. Genetic fingerprinting of Australian cotton cultivars with RAPD markers[J]. Genome,1995,38:1005-1009
    146. Nguyen TB, Giband M, Brottier P, et al. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers[J]. Theor Appl Genet,2004,109:167-175
    147. Niles GA, et al. Genetic analysis of earliness in upland cotton Ⅱ. Yield and fiber properties Proceeding[C]. Beltwide Cotton Production Research Conferences,1985,61-63
    148. Nnadozie C, Oraguzie. Association Mapping in Plants[M]. The Horticulture and Food Research Institute of New Zealand Ltd (HortReserach) Havelock North, New Zealand. pp:57-67
    149. Orita M, Iwahana H, Kanazawa H, et al. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphism. Proc Natl Acad Sci USA,1989, 86:2766-2770
    150. Paran I, Kesseli R, Michelmore R. Identification of restriction fragment length polymorphism and random amplified polymorphic DNA markers linked to downy mildew resistance genes in lettuce using near isogenic lines[J]. Genome,1991,34:1021-1027
    151. Paran I, Michelmore RW. Development of reliable PCR- based markers linked to downy mildew resistance genes in lettuce[J]. Theor Appl Genet,1993,85:985-999
    152. Parisseaux B, and Bernardo R. Insilico mapping of quantitative trait loci in maize[J]. Theor Appl Genet,2004,109 (3):508-514
    153.Paterson AH, Smith RH. Future horizons:biotechnology of cotton improvement. In:Smith CW, Cothren JT (eds) Cotton origin, history, technology and production. Wiley, New York,1999, pp 415-432
    154. Percival AE, Wendel JF, Stewart JMD. Taxonomy and germplasm resources[A]. In Cotton. Edited[C] by C W Smith and J T Cothren. J. Wiley & Sons. New York,1999, pp.33-63
    155. Porceddu A, Albertini E, Barcaccia G, et al. Development of S-SAP markers based on an LTR-like sequence from Medicago sativa L[J]. Mol Genet Genomics,2002,267:107-114
    156. Preetha S, Raveendren TS. Molecular marker technology in cotton[J]. Biotechnol Mol Biol Rev, 2008,3:032-045
    157. Price AH. Believe or not QTL are accurate[J] Trends Plant Sci,2006,11(5):213-216
    158. Qin HD, Guo WZ, Zhang TZ, et al. QTL mapping of yield and fiber traits based on a four- way cross population in Gossypium hirsutum L[J]. Theor Appl Genet,2008,117:883-894
    159. Queen RA, Gribbon BM, James C, et al. Retrotransposon based molecular markers for linkage and genetic diversity analysis in wheat[J]. Mol Genet Genomics,2004,271:91-97
    160. Rahman M, Hussain D, Zafar Y. Estimation of genetic divergence among elite cotton cultivars-genotypes by DNA fingerprinting technology[J]. Crop Sci,2002,42:2137-2144
    161. Rana MK, Bhat KV. RAPD markers for genetic diversity study among Indian cotton cultivars[J]. Curr Sci,2005,88:1956-1961
    162. Ravel C, Praud S, Canaguier A, et al. DNA sequence polymorphisms and their application to bread wheat quality[J]. Euphytica,2007,158:331-336
    163. Reinisch AJ, Dong JM, Brubaker CL, et al. A detailed RFLP map of cotton, Gossypium hirsutum (?) Gossypium barbadense:chromosome organization and evolution in disomic polyploidy genome[J]. Genetics,1994,138:829-847
    164. Ren LH, Guo WZ, Zhang TZ. Identification of quantitative trait loci (QTL) affecting yield and fiber properties in chromosome 16 in cotton using substitution line[J]. Acta Botanica Sinica,2002, 44(7):815-820
    165. Risch N, Merikangas K. The Future of Genetic Studiers of Complex Human Diserses[J]. Science, 1996,273:1516-1517
    166. Rong J K, Abbey C, Bowers J E, et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium)[J]. Genetics,2004,166:389-417
    167. Sachidanandam R, Weissman D, Schmidt SC, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms[J]. Nature,2001,409:928-933
    168. Sanchez de la Hoz MP, Davila JP, Loarce Y, et al. Simple sequence repeat primers used in polymerase chain reaction amplifications to study genetic diversity in barley[J]. Genome,1996, 39:112-117
    169. Shappley ZW, Jenkins JN, Meredith WR, et al. An RFLP linkage map of upland cotton(Gossypium hirsutum L.)[J]. Theor Appl Genet,1998,97:756-761
    170. Shappley ZW, Jenkins JN, Zhu J, et al. Quantitative trait loci associated with agronomic and fiber traits of Upland cotton[J]. Cot Sci,1998,4:153-163
    171. Shappley ZW, Jenkins JN, Watson CE, et al. Establishment of molecular markers and linkage groups in two F2 populations of Upland cotton[J]. Theor Appl Genet,1996,92:915-919
    172. Shifman S, Kuypers J, Kokoris M, et al. Linkage disequilibrium patterns of the human genome across populations[J]. Hum Mol Gent,2003,12:771-776
    173. Sobrino B, Briona M, Carracedoa A. SNPs in forensic genetics:a review on SNP typing methodologies[J]. Forensic Sci,2005,154:181-194
    174. Soleimani VD, Baum BR, Johnson DA. Efficient validation of single nucleotide polymorphisms in plants by allele-specific PCR, with an example from barley[J]. Plant Mol Biol Rep,2003, 21:281-288
    175. Spaniolas S, May ST, Bennett MJ, et al. Authentication of coffee by means of PCR-RFLP analysis and lab-on-a chip capillary electrophoresis[J]. Agric Food Chem,2006,54:7466-7470
    176. Sprague GF, and Tatum LA. General vs specific combining ability in single cross of corn.[J]. Amer Soc Agron,1942,37:923-932
    177. Shen X L, Guo WZ, Zhu X F, et al. Molecular mapping of QTLs for qualities in three diverse lines in Upland cotton using SSR markers[J]. Mol Breed,2005,15:169-181
    178. Stanton MA, Stewart J McD, Percival AE, et al. Morphological diversity and relationships in the A genome cottons Gossypium arboreum and G. herbaceum[J]. Crop Sci,1994,34:519-527
    179. Stella K, Kantartzi, Mauricio U, et al. Assessing genetic diversity in Gossypium arboretum L. cultivars using genomic and EST- derived micro satellites[J]. Genetica,2009,136:141-147
    180. Stuber CW, Lincoln SE, Wolff DW, et al. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers[J]. Genetics,1992, 132:823-839
    181. Szalma SJ, Buckler ES, Snook ME, et al. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks[J]. Theor Appl Genet,2005,110:1324-1333
    182. Tatnen IV, Cantrell RG, David D. Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPDs[J]. Crop Sci,1996,36:186-192.
    183. Tenaillon MI, Sawkins MC, Anderson LK, et al. Patterns of diversity and recombination along chromosome 1 of maize (Zeamays ssp. mays L.) [J]. Genetics,2002,162:1401-1413
    184. Torress AM, Weeden NF, Martin A. Linkage among isozyme RFLP, and RAPD markers[J]. Plant Physiol,2001,101:394-452
    185. Ulloa M, Meredith WR, Shapply ZW, et al. RFLP genetic linkage maps from F2.3 populations and a joinmap of Gossypium hirsutum L[J]. Theor Appl Genet,2002,104:200-208
    186. Ulloa M, Meredith WR. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population[J]. Cotton Sci,2000,4:161-170
    187. Van Esbroeck GA, Bowman DT, Calhoun DS, et al. Changes in the genetic diversity of cotton in the USA from 1970 to 1995[J]. Crop Sci,1998,38:33-37
    188. Wang HM, Lin ZX, Zhang XL, et al. Mapping quantitative trait loci analysis of verticillium wilt resistance genes in cotton[J]. Journal of Intergrative Plant Biology,2008,50(2):174-182
    189. Wang K, Song XL, Han ZG, et al. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping[J]. Theor Appl Genet, 2006c,113:73-80
    190. Wang PZ, Su L, Qin L, et al. Identification and molecular mapping of a Fusarium wilt resistant gene in upland cotton[J]. Theor Appl Genet,2009,119(1):93-103
    191.Waugh R, McLean K, Flavell AJ, et al. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence- specific amplification polymorphisms[J]. Mol Gen Genet,1997,253:687-694
    192. Weiland JJ, Yu MH. A cleaved amplified polymorphic sequence (CAPS) marker associated with root- knot nematode resistance in sugar beet[J]. Crop Sci,2003,43:814-881
    193. Wendel JF, Brubaker CL, Percial E. Genetic diversity in Gossypium hirsutum and the origin of Upland cotton[J]. Am J Bot,1992,79:1291-1310
    194. Wendel J F. New world tetraploid cottons contain old world cytoplasm[J]. Proc Natl Acad Sci USA, 1989,86:4132-4136
    195. White TG. Diallel analysis f some quantitatively inherited characters in Cossypium hirsutum L[J]. Crop Sci,1996,4(2):253-255
    196. Wu KS, Jones R, Danneberger L, et al. Detection of microsatellite polymorphisms without cloning[J]. Nucleic Acids Res,1994,22:3257-3258
    197. Yin X, Stam P, Dourleijn CJ, et al. RFLP mapping of quantitative trait loci for yield- determining physiological characters in spring barley[J]. Theor Appl Genet,1999,99:244-253
    198. Yu J, Kohel RJ, Dong JM, et al. Toward positional cloning of a major glandless gene in cotton[C]. Belt wide cotton conf,2000,1:516-517
    199. Zhang JF, Lu Y, Cantrell RG, et al. Molecular Marker Diversity and Field Performance in Commercial Cotton Cultivars Evaluated in the Southwestern USA[J]. Crop Sci,2005, 45:1483-1490
    200. Zhang J, Guo WZ, Zhang TZ. Molecular linkage map of allotetraploid cotton(Gossypium hirsutum L.(?)Gossypium barbadense L.) with a haploid population[J]. Theor Appl Genet,2002, 105:1166-1174
    201. Zhang ZS, Xiao YH, Luo M, et al. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.)[J]. Euphytica,2005,144:91-99
    202. Zhang N, Xu Y, Akash M, et al. Identification of candidate markers associated with agronomic traits in rice using discriminant analysis[J]. Theor Appl Genet,2005,110(4):721-729
    203. Zhang TZ, Yuan YL, Yu JZ, et al. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker- assisted selection[J]. Theor Appl Genet,2003,106:262-268
    204. Zhang ZS, Xiao YH, Luo M, et al. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton(Gossypium hirsutum L.)[J]. Euphytica,2005,144:91-99
    205. Zietkiewicz E, Rafalski JA, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification[J]. Genomics,1994,20:176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700