旱作水稻水氮利用特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探索旱作水稻氮素养分和水分高效利用机理,在大田和严格控制土壤水分的盆栽试验条件下,对水稻的某些特性做了一系列的研究。田间试验采用裂区设计,主处理为栽培方式:常规水作、覆膜旱作和裸地旱作。副处理为施氮量:0kg N·hm~(-2)(N1)、124kg N·hm~(-2)(N2)和150kg N·hm~(-2)(N3)。三次重复。以常规水作和裸地旱作为对照,对全程旱管情况下覆膜旱作稻生长发育和产量性状、氮营养生理特征、植株氮、磷、钾养分利用特征以及稻米某些品质特性变化作了阐述。盆栽试验采用随机区组试验,设七个处理:常规淹水(TF)、覆膜淹水(MF)、覆膜饱和土壤含水量(MS)、覆膜100%土壤持水量(M100)、覆膜90%土壤持水量(M90)、覆膜80%土壤持水量(M80)和覆膜70%土壤持水量(M70)。5次重复。以常规淹水为对照,对不同土壤水分处理下水稻生长发育和产量性状、水分利用特征、抗逆生理特征、植株氮、磷、钾养分利用特征以及土壤肥力特性作了系统分析。主要结果如下:
     1.覆膜旱作稻比裸地旱作分蘖早且快,分蘖数量、有效穗数、生物量和产量显著提高;与常规水作相比,分蘖数、有效穗数差异不大,株高和生物量有所降低,成穗率和产量显著降低。三种栽培处理水稻生物学和产量等性状均有随施氮量增加而提高趋势,但施氮量对其影响程度小于栽培处理方式。
     2.三种栽培处理水稻分蘖期、孕穗期、抽穗期及开花期叶片中氨基酸态氮和硝态氮含量,硝酸还原酶、谷氨酰胺合酶、谷草转氨酶和谷丙转氨酶活性均表现生长前期较高后期较低趋势。与裸地旱作相比,生育期间覆膜旱作能够提高这两种形态氮含量和四种氮代谢酶活性;与常规水作相比,覆膜旱作能够提高生育中期以前叶片氨基酸态氮含量、硝态氮含量、硝酸还原酶和谷氨酰胺合酶活性,后期影响不大;生育期间谷草转氨酶和谷丙转氨酶活性分别有降低和升高趋势。随着氮肥用量增加,三种栽培处理水稻叶片中两种形态氮含量和四种酶活性稍有提高。
     3.所有处理收获期籽粒和上三叶片中氮浓度及氮吸收量最高;常规水作和旱作稻分别为下位叶鞘和籽粒中磷浓度最高,磷吸收量籽粒中最高;钾浓度及其
Field experiment and exact water-controlled pot experiment were conducted to learn about the characteristics water of and nitrogen utilization in dry-land rice. The field experiment was a split design with three replications. The main treatments included: traditional flooding cultivation (TF), non-flooded plastic film mulching cultivation (PM) and non-flooded and non-mulching cultivation (NM). The split plots was nitrogen rate: 0 kg N·hm~(-2) (N1)、 124kgN·hn~(-2) (N2) and 150 kgN·hm~(-2)(N3). With TF and NM as control, PM were carried out to learn about its biological traits, N nutritional physiology, N, P and K use characteristics , some rice grain quality traits, under almost no irrigation condition during growth stage;The pot experiment was a randomized block design with five replications. The treatments included: traditional flooding (TF), plastic film mulching and flooding (MF), plastic film mulching and saturated water content (MS), plastic film mulching and 100% field water capacity (FWC) (M100), plastic film mulching and 90% FWC (M90), plastic film mulching and 80% FWC (M80), plastic film mulching and 70% FWC (M70). With TF as control, some studies were done about rice biological and yield traits, water utilization, anti-stress physiology, N, P, K utilization in rice, and soil fertility traits. The results showed as follows.Compared to NM, initiatory tillering was happened earlier and high-speed under PM, and the tillers, fertile ears, biomass and yield were significantly increased. Compared to TF, tillers and fertile ears under PM were almost no changed, and rice plant height and biomass decreased to some degree, available tiller rate and yield declined markedly. More N fertilizer, the biology and yield traits were improved, but the effect was less than cultivations, especially the water management.During growth stage, amino acid-N (AA-N) and nitrate-N(NO_3~--N) contents, nitrate reductase (NR), glutamine synthetase (GS), glutamic oxalacetic transferase (GOT), glutamic pyruvic transferase (GPT) activities in rice leaves of all treatments showed high at earlier stage. PM could increase the AA-N and NO_3~--N contents and the four enzymes activities over NM. As compared with TF, PM promoted the two forms N contents, NR and GS activities during earlier stage, and almost no change during later growth stage. During whole growth stage, GOT and GPT under PM had a declining and elevatory trend over TF respectively. With more N utilization, the two form N contents and four N- metabolizing enzymes were lightly higher.At mature stage, N concentrations and uptakes in rice grain and top three leaves blade (TTLB) were higher than other organs. P concentrations in leaves sheath on lower position (LSLP) under TF and in rice grain under dryland treatments (PM and NM) were highest of the rice organs, and P uptakes in grain under all treatments was higher than other organs. K concentration and uptakes in rice stem was highest, and that in grain was least of the rice organs. Compared with TF, total N, P and K uptakes of rice under PM significantly decreased by 19.5%、 30.4% and 20.8%, which was mainly due to the different biomass. Moreover, relative more N, P and K were stored in root and leaves on lower position (LLP). N, P concentration and uptakes in stem and top three leaves (TTL) were less for the more was transported to grain, so that of grain was increased relatively than TF. In that case, PM could promote N and P absorbed and transported to grain to some degree. However, K concentration and uptake, the percentage of K. uptake in grain were declined compared to TF. PM increased N, P and K uptakes markedly by 77.8%, 69.7% and 72.7% over NM, but the more was stored in root and source organs, the less was transported to grain, so K
    concentration and ratio were decreased slightly. In addition, fertilizer-N-recovery efficiency (REN), agronomic-N- use efficiency (AEN), physiological-N-use efficiency (PEN) and partial factor productivity of applied N (PFPN) under PM were slightly, significantly, significantly increased and markedly decreased compared to TF respectively. In comparison with NM, PM clearly increased REN, AEN and PFPN, but decreased PEN clearly.Gelatinization temperature (GT) and gelatinization enthalpy (GE) were no changed between different treatments. Cultivation and N level had large effect on rapid viscosity analyzer (RVA) profile of rice grain. Peak viscosity (PV), hot viscosity (HV), final viscosity (FV), breakdown (BV) and consistency (CV) of rice grain under NM increased over PM and TF. Compared to TF, PM significantly decreased the PV, markedly increased SV. Low and high N rate (N2 and N3") promoted HV in RVA profile of rice grain than zero N rate (Nl). Nl, N2 significantly increased and decreased BV and SV compared to N3 respectively. Generally, texture of dyland rice grain seemed to become hard and eating and flavor quality to inferior, and so did N fertilizer. In all, N rates have more effect on eating and flavor quality of rice than cultivation. Protein content of rice under PM clearly increased over NM, which significantly higher than TF. N rates had a positive effect on protein content of rice grain across all treatments.In pot experiment, MF could promote the tillers and rice plant height. With soil water content (SWC) declining, they were decreased, flag leaf chlorophyll and area were increased and decreased respectively. Proper SWC was helpful to increase available tillers. Biomass and yield in MF were significantly higher than other treatments, and biomass and yield decreased as FWC declined. Compared to MS, Ml00 and M90, the traits in TF almost no changed, but markedly increased over M70 and M80. As the FWC decreased, biomass of organs was declined too, and grain had most nearly correlation to flag leaf. Harvest index had little shift across the different FWC treatments, and film mulching treatments increased it over TF to different degree.Film mulching could promote soil temperature in pot (ST), which differed with weather and FWC. ST raised as FWC declined. Evaporation and transpiration (ET) of rice was least before middle tillering stage (MTS), much more from booting stage (BS) to flowering stage (FS), most during middle filling stage (MFS), and declined during two weeks to mature than MFS. ET of rice was decreased as FWC declined, and ET in MF slightly increased over TF. hi addition, ET had marked plus correlation with yield and biomass. Water use efficiency (WUE) for grain and biomass in M90 was higher than other treatments, significantly higher than TF and M70.Besides, SOD activity of leaf increased at filling stage (FS) than at BS, but POD and CAT activities decreased. As FWC declined, SOD activity increased at begain, then decreased from MS and M100 at BS and FS respectively. At BS, POD activity had higher sensitivity than at FS. It increased alone with FWC at BS, at FS it was contrary. POD activity under MF was markedly increased at BS and no change at FS compared to TF. At BS and FS, CAT activity was declined in company with FWC. Moreover, together with FWC, MDA, Pro and soluble protein contents of rice leaves were improved, but SS no regular dynamics.N concentration and uptake, P uptake in grain were clearly higher than other organs across all pot treatments. P concentration in root under flooded treatments (TF and MF) and in grain under the other treatments was highest. K concentration and uptake in stem was the highest of the organs among the treatments. N concentrations in all rice organs under M70 were significantly higher than other treatments. In company with FWC declining, N concentration of rice grain was increased, and that under TF was apt to least. Proper SWC promoted P concentrations in all rice organs. And P concentration in grain under MS was highest. K concentration in grain declined with FWC falling, and stem etc was in the contrary. As FWC dropping, N uptakes of rice plant decreased and then increased, P and K decreased, respectively. N, P and K uptakes of plant under MF were most, and N, P uptakes under Ml00 but K uptakes under M70 was least. N, P and K
    uptakes in grain under MF and MS were more than other treatments. N uptake of grain under Ml00 was least, and so did P, K uptakes in grain under M70. Alone with FWC declining, the percentages of N, P uptakes in grain improved, and percentage K uptake in grain decreased. The PFP of applied N, P and K under MF treatments were highest than the other.At mature stage, different pot FWC had little effect on soil nutrient traits;Compared to transplanting stage, available K, P and N had some decline to a degree, and pH significantly increased at harvest stage. Film mulching treatments markedly increased the urease and alkaline phosphatase activities of soil, and those under M80 and M90 was highest across all treatments, respectively. Film mulching and flooded treatment increased catalse avtivity of soil, but other non-flooded treatments have little effect on it. At harvest stage, urease and catalase activities of soils were higher than transplanting stage, alkaline phosphatase activity under TF decreased clearly and that under the other treatments was increased to different degree. Bacteria and fungi quantities under TF were evidently increased over those under higher FWC for film mulching treatments. Actinomyete quantity of soil hadn't regular trend across all treatments. Moreover, Bacteria, fungi and actinomyete quantities weren't evident correlation with soil nutrient traits.In general, soil water content, weather and so on had much influence on the benefit of rice under plastic film mulching cultivaton. PM could promoted the N-metabolizing capacity and N absorbtion in rice plant and accumulation in grain. Moreover, under proper soil water content condition, the anti-stress protecting system should work effectively to defend the damage from oxidation. So, the rice under PM improved the rice growth to get sound yiled in company with high nutrient and water use efficiency. Therefore, in practical rice production, if only water and fertilizer management were proper according to local condition, rice yield was apt to increase with water and nutrient high-availability, which was very important to sustaining development of rice cultivation.
引文
1.艾应伟,刘学军,张福锁,毛达如,曾祥忠,吕世华,潘家荣.不同覆盖方式对旱作水稻氮肥肥效的影响[J].植物营养与肥料学报,2003,9(4):416-419.
    2.蔡永萍,杨其光,黄义德.水稻水作与早作对抽穗后剑叶光合特性、衰老与根系活性的影响[J].中国水稻科学,2000,14(4):219-224.
    3.陈锡时,郭树凡,汪景宽,张键.地膜覆盖栽培对土壤微生物种群和生物活性的影响[J].应用生态学报,1998,9(4):435-439.
    4.陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84-90
    5.陈一珠等.应用同位素~(15)N研究淹水与旱地条件下作物对铵态氮和硝态氮的吸收利用.见:温贤芳,王宝忠编.同位素示踪技术农业应用研究进展.北京:科学出版社,1989:67-72.
    6.陈永祥,刘孝义,刘明国.地膜覆盖栽培的土壤结构与空气状况研究[J].沈阳农业大学学报,1995,26(2):146-151.
    7.程旺大,赵国平,张国平,姚海根.水稻和陆稻籽粒灌浆特性的比较[J].中国水稻科学,2002,16(4):335-340.
    8.崔德杰,张继宏.长期施肥及覆膜栽培对土壤锌、铜、锰的形态及有效性的影响的研究[J].土壤学报,1998,35(2):260-265.
    9.崔国贤,沈其荣,范晓荣.全生育期模拟覆盖旱作水稻的生理反应[J].湖南农业大学学报(自然科学版),2003,29(1)1-6,44.
    10.邓文胜,我国水资源开发利用的问题及对策[J].武汉教育学院学报,1999,18(6):50-54.
    11.邓志瑞,陆巍,张荣铣,许晓明.水稻叶片光台功能衰退过程中内肽酶活力的变化[J].中国水稻科学,2003,17(1):47—5
    12.丁友苗,黄文江。王纪华等.水稻旱作对产量和产量构成因素的影响[J].干旱地区农业研究,2002,20(4):50-54.
    13.樊润威,崔志祥,董进亚,张三粉,郜翻身.内蒙古河套灌区盐碱土覆膜对土壤生态环境及作物生长的影响[J].土壤肥料,1996,(3):10-12.
    14.冯佰利,张保军,高小利,小麦地膜覆盖栽培技术研究现状及前景展望[J].麦类作物,1998,18(4):51-54.
    15.付立东,王宇,徐久升,展广军.水稻覆膜插秧节水栽培技术研究[J].垦殖与稻作,2000,5:9-11.
    16.高真伟,王冬梅,展广军,徐文升水田覆膜对稻作生长的影响[J].垦殖与稻作,2001,2:11-13.
    17.关松荫,德生,张志明.土壤酶及其研究法[M].北京:农业出版社,1986.
    18.郭树凡,陈锡时,汪景宽.覆膜土壤微生物区系的研究[J].土壤通报,1995,26(1):36-39.
    19.郭咏梅,平,刘家富,卢义宣,李自超.水、旱栽培条件下稻米主要品质性状的比较研究[J].作物学报,2005,31(11):1443-1448.
    20.郭勋斌,夏广洪,谭长乐,刘晓斌,孔祥斗.旱作稻的生育特性及产量表现[J].安徽农业科学,2001,29(2):155-156,15
    21.郭振飞,等.不同耐旱性水稻幼苗对氧化胁迫的反应[J].植物学报,1997,39(8):748-752.
    22.韩永翔,万信.地膜棉花农业气象效应的初步分析[J].甘肃农业科技,1995,8:14-16.
    23.何代元.水稻地膜覆盖增产原因及主要栽培技术[J].中国稻米,1997,(3):21.
    24.胡锋,杨茂成,梁永超,刘满强,陈小云.地膜覆盖旱作稻田土壤肥力特征研究[J].中国土壤学会编,迈向21世纪的土壤科学(江苏卷),河海大学出版社,1999.
    25.胡景江,顾振瑜,文建雷等.水分胁迫对元宝枫膜脂过氧化作用的影响[J].西北林学院学 报,1999,14(2):7-11
    26.黄文江,黄义德,陶汉之.水稻旱作条件下的生理特性和经济性状的研究[J].安徽农学通报,1999,5(4):22-25.
    27.黄文江,黄义德,王纪华,李金才.水稻早作对其生长量和经济产量的影响[J].干旱地区农业研究,2003,21(4):15-19.
    28.黄新宇,徐阳春,沈其荣,周春霖,K Dittert.水作与地表覆盖旱作水稻的生长和水分利用效率[J].南京农业大学学报,2004,27(1):32-35.
    29.黄修桥,高峰,王宪杰.节水灌溉与21世纪水资源的持续利用[J].灌溉排水,2001,20(3):1-5.
    30.黄义德,魏凤珍,李金才.浅谈水稻覆膜旱作技术和间作技术[J].耕作与栽培,1998,(3):16-18.
    31.黄义德,张自立,魏凤珍,李金才.水稻覆膜旱作的生态生理效应[J].应用生态学报,1999,10(3):305-308.
    32.金千瑜,欧阳由男,张国平.覆膜旱栽水稻的产量与生育表现研究[J].浙江大学学报(农业与生命科学版),2002,28(4):362-368.
    33.金正勋,秋太权,孙艳丽,金学泳.稻米蒸煮食味品质特性间的相关性研究[J].东北农业大学学报,2001,32(1):1-7
    34.金正勋,秋太权,孙艳丽.氮肥对稻米垩白及蒸煮食味品质特性的影响[J].植物营养与肥料学报,2001,7(1):31-35
    35.蒋明义,郭绍川.水分亏缺诱导的氢化胁迫和植物的抗氢化作用[J].植物生理学通讯,1996,32(2):144-150
    36.景蕊莲.作物抗旱研究的现状于思考[J].干旱地区农业研究,1999,17(2):79-85.
    37.康绍忠.新的农业科技革命与21世纪我国节水农业的发展.干旱地区农业研究,1998,16(1):11-17.
    38.李长明,等.水稻抗旱机理研究[J].西南农业大学学报,1993,15(5):409-413.
    39.李德福,李全才,魏凤珍.拔节长穗期水分胁迫对旱作水稻若干生理特性和经济产量的影响[J].安徽农业科学,2005,33(7):1166-1167,1169.
    40.李合生,植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    41.李金才,黄义德,魏凤珍,张玉屏,黄文江.旱作对水稻干物质积累、分配及产量的影响[J].安徽农业科学,2001,29(1):56-57
    42.李克武 易杰忠 董全才.覆膜旱作稻米品质的初步研究[J].中国农学通报,2000,16(5):4-6.
    43.李曼莉等:旱作及水作条件下稻田CH4和N2O排放的观察研究[J].土壤学报,2003,40(6):864-869
    44.李向东,张高英,万勇善,徐守国,王洪征.花生不同叶位叶片衰老差异的研究[J].中国粮油作物学报,2003,25(3):46-50
    45.李容超,彭世彰,王永乐,张玉民,俞建河.覆膜旱作水稻需水规律试验研究fJ].灌溉排水,2000,19(3):24-28
    46.李永和.试论水稻灌溉节水的途径[J].灌溉排水,1997,16(3):45-47.
    47.梁永超,胡锋,沈其荣,吕世华,吴良,张福锁.水稻覆膜旱作研究现状与展望.冯锋,张福锁,杨新良编著.植物营养研究——进展与展望.北京:中国农业大学出版社,2000,114-127.
    48.梁永超,胡锋,朱遐亮,王广平,王永乐.水稻覆膜旱作高产节水机理研究[J].中国农业科学,1999,32(1):26-32.
    49.廖敏,谢晓梅,吴良.水稻覆膜旱作对稻田土壤微生物生态质量的影响[J].中国水稻科学,2002,16(3):243-246.
    50.凌祖铭,李自超,余荣,穆平.水旱栽培条件下水、陆稻品种产量和生理性状比较[J].中国农业大学学报,2002,7(3):13-18.
    51.刘芳,樊小林,李天安,汪强.覆盖旱种水稻稻田土壤剖面硝态氮和铵态氮的动态变化.西南农业学报,2004,17(增刊):262-267.
    52.刘芳,樊小林.覆盖旱种水稻的农学性状及产量变化[J].西北农林科技大学学报(自然科学版),2005,33(2):63-68.
    53.刘丽华,郭德金.早稻旱种与水稻旱栽产量构成因素分析[J].种子,2005,24(6):68-70.
    54.刘铭,吴良,路兴花,张福锁.覆膜旱作对稻田土壤有效Fe、Mn、Zn、Cu含量的影响[J].浙江大学学报(农业与生命科学版) 2004,30(6):646-649.
    55.刘铭,吴良.覆膜旱作稻田土壤有效N、P、K及盐分分层变化研究[J].土壤通报,2004,5(5):570-573.
    56.刘铭,吴良.覆膜旱作稻田土壤肥力变化的研究[J].浙江农业学报,2003,15(1):8-12.
    57.陆建飞,丁艳锋,黄丕生.持续土壤水分胁迫对水稻生育和产量构成的影响[J].江苏农学院学报,1998,19(2):43-48.
    58.路兴花,吴良,刘铭,杨联丰.覆膜旱作对水稻生长发育及某些生理特性的影响[J].浙江大学学报(农业与生命科学版) 2002,28(6):609-614,
    59.路兴花,吴良,郑寨生,孔向军,等.不同生态稻区覆膜旱作稻氮营养生理及抗逆生理特性探讨[J].应用生态学报,2005,16(2):273-278.
    60.路兴花,吴良.覆膜旱作稻N、P、K养分利用特征[J].土壤通报,2002,33(6):421-424.
    61.吕世华,张福锁.水稻旱育秧苗铁锰缺乏症状及其防治[J].中国农业大学学报,1997,2(3):90,100.
    62.吕金印,山仑,高俊风,罩风云,杨淑慎.干旱对小麦灌浆期旗叶光台等生理特性的影响[J].干旱地区农业研究,2003,21(2):77-81
    63.罗利军,张启发.栽培水稻抗旱性研究的现状与策略[J].中国水稻科学,2001,15(3):209-214.
    64.潘腊青,吴良,水稻覆膜旱作栽培方式对稻田地下水水质的影响[J].农业环境保护 2000,19(5):260-262.
    65.彭世彰,郝树荣,刘庆等.节水灌溉水稻需水新特点[J].农田水利与小水电.1992,11:7-11.
    66.彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,张福锁,朱庆森,RolandBuresh,Christian WiG.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103
    67.彭志红,彭克勤,胡家金,萧浪涛.渗透胁迫下植物脯氨酸积累的研究进展[J].中国农学通报,2002,118:(14):80-83
    68.钱晓晴,沈其荣,王娟娟,柏颜超等.模拟水分胁迫条件下水稻的氮素营养特征[J].南京农业大学学报,2003,26(4):9-12.
    69.钱晓晴,沈其荣,王娟娟等.不同水分供应及氮素形态对旱作水稻铁素营养特征的影响[J].中国农业科学,2003,36(10):1184-1190.
    70.钱晓晴,沈其荣,徐勇等.不同水分管理方式下水稻的水分利用效率与产量[J].应用生态学报,2003,14(3)399-304.
    71.邱福林,郑伟平.水分胁迫对水稻生长影响的研究进展[J].垦殖与稻作,2000,2:7-8,13.
    72.邱莉萍,刘军,王益权,孙慧敏,何文祥.土壤酶活性与土壤肥力的关系研究[J].植物营养与肥料学报,2004,10(3):277-280.
    73.任文涛,辛明金,林静等.稻纸膜覆盖种植技术节水控草效果的试验研究[J].农业工程学报,2003,19(6):60-63.
    74.沈康荣,罗显树.水稻全程地膜覆盖湿润栽培法增产因子及关键栽培技术的研究[J].华中农业大学学报,1997,16(6):547-551.
    75.盛海君,沈其荣,周春霖,旱作水稻产量和品质的研究[J].南京农业大学学报,2003,6(4):13-16
    76.盛海君,沈其荣,封克.覆盖旱作水稻群体发育特征分析[J].应用生态学报,2004,15(1):59-62.
    77.石英,沈其荣,茆泽圣,李伟,等.旱作条件下水稻的生物效应及表层覆盖的影响[J].植物营养与肥料学报,2001,7(3):271-277.
    78.石英,沈其荣,茆泽圣,徐国华.旱作水稻根际土壤铵态氮和硝态氮的时空变异[J].中国农业科学,2002,5(5):520-524.
    79.石英,松进,沈其荣,徐国华,李伟.覆膜旱作水稻的生物效应及吸氮特征[J].农村生态环境,2001,17(2):22-25.
    80.史延丽,王坚,刘炜,马洪文.水、陆稻品种在旱作时主要农艺性状与其抗旱性[J].宁夏农林科技,2005,(3):22-24.
    81.时忠杰,胡哲森,李荣生,水分胁迫与活性氧代谢[J].贵州大学学报(农业与生物科学版),2002,21(2):140-145
    82.舒庆尧,徐光华,夏英武,高明尉.稻米表观直链淀粉含量研究进展[J].浙江农业学报,1998,10(1):47-54
    83.舒庆尧,吴殿星,夏英武.稻米淀粉RVA谱特征与食用品质的关系[J].中国农业科学,1998,31(3):25-29
    84.宋秋华 李凤民— 刘洪升 王俊 李世清.黄土区地膜覆盖对麦田土壤微生物体碳的影响.应用生态学报,2003,14(9):1512-1516.
    85.苏胜齐,王正银,董燕,叶学见.缓释复合肥条件下覆盖旱作对水稻氮素利用和稻米品质的影响[J].农业工程学报,2005,21(3):47-50.
    86.孙瑞莲,赵秉强,朱鲁生,徐晶,张夫道.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J].植物营养与肥料学报,2003,9(4):406-410.
    87.孙瑞莲,朱鲁生,赵秉强,周启星,徐晶,张夫道.长期施肥对土壤微生物的影响及其在养分调控中的作用[J].应用生态学报,2004,15(10):1907-1910.
    88.谈建康,张亚丽,沈其荣,张晓晓等.不同形态氮素对水稻水分利用效率及其生物效应的影响[J].南京农业大学学报,2002,25(3):56-62.
    89.汤广民.水稻旱作的需水规律与土壤水分调控[J].中国农村水利水电,2001,(9):18-20,23.
    90.汤美玲,程旺大,姚海根,徐民.早稻直播覆膜旱作对灌浆成熟期根叶生理特性及产量的影响[J].中国水稻科学,2005,19(5):475-478.
    91.陶汉之,黄文江,张玉屏,胡焱,黄义德,方一平,蔡永萍.水稻对旱作环境的响应和适应性研究[J].干旱地区农业研究,2002,20(2):42-48.
    92.万忠梅,吴景贵.土壤酶活性影响因子研究进展[J].西北农林科技大学学报,2005,33(6):87-92
    93.王光火,张奇春,黄昌勇.提高水稻氮肥利用率、控制氮肥污染的新途径—SSNM[J].浙江大学学报(农业与生命科学版),2003,29(1):67~70
    94.汪景宽,彭涛,张旭东,朱冬梅,陈新芝.地膜覆盖对土壤酶活性的影响[J].沈阳农业大学学报,1997,28(3):210-213.
    95.汪景宽,须湘成,张旭东,张继宏,谷俊武.长期地膜覆盖对土壤磷素状况的影响[J].沈阳农业大学报,1994,25(3):311-315.
    96.汪景宽,张继宏,须湘成,张旭东,祝风春.地膜覆盖对土壤肥力影响的研究[J].沈阳农业大学学报,1992,23(专辑):32-37.
    97.汪晓春,刘军.水稻地膜覆盖栽培的抗旱节水效应[J].湖北农业科学,2001,1:8-11
    98.王加成,赵新华,高德友,段祥茂,于松溪,徐宗进,王绍华,黄丕生.覆膜旱管对水稻群体特征的影响[J].作物研究,2001,2:16-17.
    99.王甲辰,刘学军,张福锁,吕世华,曾祥忠,曹一平.不同土壤覆盖物对旱作水稻生长和产量影响[J].生态学报,2002,22(6):922-929.
    100.王寅初,宋巨明,张计柱.地膜早作水稻初步研究[J].山西农业科学,1985,(3):14-15.
    101.王友贞,袁先江,许浒,曹秀清.水稻旱作覆膜的增温保墒效果及其对生育性状影响研究[J].农业工程学报,2002,18(2):29-31.
    102.王友贞,袁先江,汤广民等.水稻旱作覆膜土壤水分控制指标的试验研究[J].灌溉排水,2001,20(3):62-64.
    103.王友贞,许浒,曹秀清,袁先江.水稻旱作覆膜节水效果与提高降雨利用率的研究[J].中国农村水利水电,2001,4-5.
    104.王致远,熊正英,薛晓龙,郗风琴,朱惠珍.水分胁迫对水、早稻幼苗POD活性的影响[J].陕西师大学报(自然科学版).1991,19(4):50-54
    105.魏成熙,赵品仁,孙贵恒,蒲通达,杨宏敏.玉米覆盖栽培对土壤物理性质和干物质积累与分配的影响[J].耕作与栽培,1998,(1):32-34.
    106.巫伯舜,谢秀先编.水稻的旱种技术[M].农业出版社,1985,1-79.
    107.吴良,祝增荣,梁永超,石伟勇,张立民.水稻覆膜旱作节水节肥高产栽培技术[J].浙江农业大学学报,1999,25(1):41-42.
    108.吴宪章,张矢.陆稻地膜覆盖栽培的技术效应[J].黑龙江农业科学,1983,(5):1-5.
    109.吴一才,宋嵩山,邹积斌.水稻覆膜旱作展望[J].辽宁农业科学,1987(1):13-15.
    110.吴一才,宋嵩山.地膜覆盖旱种水稻试验情况简报[J].辽宁农业科学,1982,(4):28-30
    111.夏自强,蒋洪庚,李琼芳等.地膜覆盖对土壤温度、水分的影响及节水效益[J].河海大学学报,1997,25(2):39.
    112.肖玉江.水稻旱作技术[M].长春:吉林科技出版社,1985.
    113.徐国郎,王寿岷,张少康等.节水型农业灌溉技术[M].北京:气象出版社,1990,80-147.
    114.许光辉,郑洪元主编.土壤微生物分析方法手册[M].北京:农业出版社,1986.
    115.熊正英,薛晓龙,洪尼宁,王致远.水分胁迫对水、早稻幼苗SOD活性的影响[J].陕西师大学报(自然科学版),1990,18(3):61-64
    116.闫成仕.水分胁迫下植物叶片抗氢化系统的响应研究进展[J].烟台师范学院学报(自然科学版),2002,18(3):220-225
    117.杨安中,牟筱玲,李孟良,余海兵.喷施细胞分裂素类物质对地膜旱作水稻防衰及增产效应[J].水土保持学报,2005,19(2):199-200.
    118.杨建昌,王志琴,陈义芳等.旱种水稻产量与米质的初步研究[J].江苏农业研究,2000,21(3):1-5.
    119.杨建昌,王国忠,王志琴,刘立军,朱庆森.旱种水稻灌浆特性与灌浆期籽粒中激素含量的变化[J].作物学报,2002,28(5):615-621.
    120.杨建昌,王志琴,刘立军,郎有忠,朱庆森.旱种水稻生育特性与产量形成的研究[J].作物学报.2002,28(1):11-17.
    121.杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J].中国农业科学,1996,29(4):58-66.
    122.杨青华,韩锦峰,贺德先.液体地膜覆盖对棉田土壤微生物和酶活性的影响[J].生态学报,2005,25(6):1312-1317.
    123.杨艳敏,刘小京,孙宏勇,李伟强.旱稻夏季地膜栽培的生态学效应[J].干旱地区农业研究,2000,18(3):50-53.
    124.殷晓燕,徐阳春,沈其荣,周春霖,黄新宇,李曼莉,尹金来,K Dittert.直播旱作水稻和水作水稻的氮素吸收利用特征研究[J].土壤学报,2004,41(6):983-986.
    125.余叔文,陈景治,龚烂霞.不同生长时期土壤干旱对水稻的影响[J].作物学报,1962,1(4):399-410.
    126.张成娥,梁银丽.不同氮磷施肥量对玉米生育期土壤微生物量的影响[J].中国生态农业学报,2001,9(2),72-74.
    127.张继宏,郭学成,张伯泉.覆膜与裸地条件下不同施肥处理土壤有效锌含量的变化[J].沈阳农业大学学报,1994,25(3):308-310.
    128.张奇春,王光火,方斌.不同施肥处理对水稻养分吸收和稻田土壤微生物生态特性的影响[J].土壤学报,2005,42(1):116-120.
    129.张启舜,沈振荣.中国农业持续发展的水危机及其对策[J].作物杂志,1997(6):9-12
    130.张让康,刘本坤.旱种水稻不同品种类型产量及其性状的相关分折[J].湖南农学院学报,1989,15(2):7-11.
    131.张矢,吴宪章,蒋本福.水稻陆稻地膜覆盖栽培的技术效应[J].黑龙江农业科学,1983,(5):20-24.
    132.章秀福,王丹英,方福平,曾衍坤,廖西元.中国粮食安全和水稻生产[J].农业现代化研究,2005,26(2):85-88
    133.张亚丽,段英华,沈其荣.水稻对硝态氮响应的生理指标筛选[J].土壤学报,2004,41(4):571-576.
    134.张英,褚秋华,邱多生,等.11年连续肥料处理对水稻土碳、氮及微生物量的影响[J].南京农业大学学报,2004,24(4):112-114.
    135.张玉屏,朱德峰,林贤青,陈惠哲.不同时期水分胁迫对水稻生长特性和产量形成的影响[J].干旱地区农业研究,2005,23(2):48-53.
    136.张小明,石春海,富田桂.粳稻米淀粉特性与食味问相关性分析,中国水稻科学,2002,16(2):157-161
    137.张小明,王仪春,石春海,鲍根良,叶胜海.米蒸煮营养品质性状的遗传研究进展[J],植物遗传资源科学,2002,3(2):51-55
    138.张竹青,李义纯.水稻覆膜旱作抑制稻田甲烷排放效应的研究[J].湖北农学院学报,2003,23(5):321-323.
    139.赵静,陈晓飞,席联敏,刘刚,赵小明,杨利,丁良师.水稻覆膜灌溉对生态环境的影响研究[J].灌溉排水学报,2005,24(3):8-11.
    140.赵其良.日本东北地区水稻旱作地膜覆盖栽培技术[J].辽宁农业科学,1982(3):52-56.
    141.赵正宜,迟道才,刘宗琦等.水分胁迫对水稻生长发育影响的研究[J].沈阳农业大学学报,2000,31(2):214-217.
    142.郑超,谭中文,刘可星,廖宗文,刘月廉,廖愉朗.不同覆盖条件下甘蔗土壤微生物区系研究[J].华南农业大学学报(自然科学版),2004,25(2):5-9.
    143.郑寨生,吴良,孔向军,蒋梅巧,赵森荣,汤建忠,傅荣兴.水稻覆膜旱作高产栽培技术研究[J].上海农业学报,2000,16(3):55-60.
    144.中国农业年鉴编辑委员会.中国农业年鉴[M].北京:中国农业出版社,2004
    145.中国科学院上海植物生理研究所,上海市植物生理学会编.现代植物生理学实验指南[M].科学出版社,1999
    146.中华人民共和国农业部.米质测定方法[M].中华人民共和国农业部部颁标准(NY-147-88)
    147.中国土壤学会编.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    148.周礼恺.土壤酶学[M].北京:科学出版社,1987.116-133.
    149.周文.水稻地膜覆盖栽培技术[J].耕作与栽培,1998,(2):31-32.
    150.邹琦.植物生理生化实验指导[M].北京:中国农业出版社,1995
    151.朱满山,汤述翥,顾铭洪.RVA谱在稻米蒸煮食用品质评价及遗传育种方面的研究进展[J].中国农学通报,2005,21(8):59-64
    152.朱庆森,邱泽森等.水稻各生育期不同土壤水势对产量的影响[J].中国农业科学,1994,27(6):15-22.
    153.朱庭芸.水稻旱种、旱作的灌溉制度和灌溉技术[J].辽宁农业科学,1986,(6):21-25.
    154.祝增荣,吴良,吴国强,程家安,水稻覆膜旱作对病虫草害发生程度的影响[J].植物保护学报,2000,(4):295-301.
    155. Barlaan EA, Sato H and Ichli M. Nitrate reductase activities in rice genotypes in irrigated lowlands[J]. Crop Sci. 1998, 38, 728-734.
    156. Belder P, Bouman BAM, Cabangon R, Lu GA, Quilang EJP, Li YH, Spiertz JI-IJ and Tuong TP. Effects of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia[J]. Agric. Water Manage. 2004, 65, 193-210.
    157. Cataldo DS, Haroon M, Schrader LE and Youngs VL. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic.acid[J]. Commun. Soil Sci. Plant Anal 1975, 72, 248-253.
    158. Cheng FM, Zhong LJ, Wang F, Zhang GP. Differences in cooking and eating properties between chalky and translucent parts in rice grains[J]. Food Chem 2005, 90: 39-46
    159. Crawford. NM. Nitrate: nutrient and signal for plant growth[J]. Plant Cell. 1995, 7, 859-868
    160. Cruz RT, O'Toole JC. Dryland rice response to an irrigation gradient at flowering stage[J]. Agron. J. 1984, 76 (2): 178-182.
    161. Delauney AJ.Huca A, Kishor PBK, et al. Cloning of omithine-aminotransferanse cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis [J]. J Bio Chem. 1993, 268: 18673-18678
    162. Dlugokencky EJ, Steeele LP, Lang PM, et al. The growth rate and distribution of atmospheric methane [J]. Journal of Geophysical Research 1994, 99: 17021-17043
    163. Fan MS, Jiang RF, iu XJ, Zhang FS, et al. Interactions between non-flooded mulching cultivation and varying nitrogen inputs in rice-wheat rotation [J]. Field Crops Res. 2005, 91: 307-318.
    164. Fan Mingsheng, Liu Xuejun, Jiang Rongfeng, Zhang Fusuo, Lu Shihua, Zeng Xiangzhong, Christie Peter. Crop yield, internal nutrient efficiency and changes in soil properties in rice-wheat rotations under non-flooded mulching cultivation [J]. Plant and Soil 2005, 277: 265-276.
    165. Fan X, Zhang J, Wu P, 2002. Water and nitrogen use efficiency of lowland rice in ground covering rice production system in south China [J]. J. Plant Nutr. 25 (9): 1855-1862.
    166. FAO, IAEA. Measurement of methane and nitrous oxide emissions from agriculture. A Joint Undertaking by the Food and Agriculture Organization of the United Nations and International Atomic Energy Agency, International Atomic Energy Agency, Vienna, 1992, 5-6.
    167. Franzlubbers AJ. Soil organic matter stratification ratio as an indicator of soil quality [J]. Soil Till. Res. 2002,66: 95-106.
    168. Glendining MJ, Powlson DS, Poulton PR, et.al. The effects of long term application of inorganic nitrogen fertilizer on soil nitrogen in the Broadbalk Wheat Experiment [J]. J. Agri. Sci. (Camb.) 1996,27: 347-363.
    169. Hausler RE, Blackwell RD, Lea PJ and Leegood RC. Control of photosynthesis in barley leaves with reduced activities of glutamine synthetase or glutamate synthase. Planta [J]. 1994, 194,406-417.
    170. Hizukuri S. Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules [J].Carbohydr.Res.1985(141):295-299
    171. Hong ZL, Lakkinenik, Zhang ZH, et al. Removal of feedback inhibition of Δ~1-pyrroline-5-carboxylate synthetase results in increased praline accumulation and protection of plant from osmotic stress [J]. Plant Physiol 2000, 122: 1129-1136
    172. Hoque MM, Inubushi K, Miura S, Kobayashi K, Kim HY, Okada M and Yabashi S. Biological dinitrogen fixation and soil microbial biomass carbon as influenced by free-air carbon dioxide enrichment (FACE) at three levels of nitrogen fertilization in a paddy field [J]. Biol. Fertil. Soils 2001, 34: 453-459.
    173. IPCC. Climate Change: IPCC WGI third assessment report. Chapter 6. Assessment and Expect Review Draft. 2000.
    174. Jensen KD, Beier C, Michelsen A, Emmett BA. Effect of experimental drought on microbial processes in two temperate healthlands at contrasting water conditions. Appl. soil Ecol. 2003,24: 165-176.
    175. Kavikishor PBK Hong Z, Miao C, et al. Overexpression of Δ~1-pyrroline-5-carboxylate synthetase increases proline overproduction and confers osmotolerance in transgenic plants [J]. Plant Physiol, 1995, 108: 1387-1394
    176. Kennday AC. Microbial characteristics of soil quality [J]. J Soil Water Com. 1995, 50: 243-248.
    177. Kunio ITO. Development in paddy rice transplanting using recycling paper mulch [J]. Agricultural Mechanization 1993, (9): 47-49.
    178. Lea PJ, Blackwell RD, Chen FL and Hecht U. Enzymes of ammonia assimilation. In: Methods in plant biochemistry Ed. Lea PJ. 1990, VOL.3, pp.2-276, Academic Press, London.
    179. Lea PJ and Miflin BJ. Glutamate synthase and the synthesis of glutamine in plants [J]. Plant Physiol. Biochem. 2003,41, 555-564.
    180. Li FM, Song QH, Jjemba PK and Shi YC. Dynamic of microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem [J]. Soil Biol. Biochem. 2004,36: 1893-1902.
    181. Liang YC, Hu F, Yang MC,Yu JH. Antioxidative defenses and water deficit-induced oxidative damage in rice (Oryza sativa L.) growing on non-flooded paddy soils withgrond mulching [J]. Plant and Soil 2003, 257: 407-416.
    182. Liu XJ, Wang JC, Lu SH, Zhang FS, Zeng XZ, Ai YW, Peng BS, Christie P. Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice-wheat cropping systems[J]. Field Crops Res. 2003, 83: 297-311.
    183. Liu Xuejun, Ai Yingwei, Zhang Fusuo, Lu Shihua, Zeng Xiangzeng, Fan Mingsheng. Crop production, nitrogen recovery and water use efficiency in rice-wheat rotation as affected by non-flooded mulching cultivation(NFMC)[J]. Nutrient Cycling in Agroecosystem 2005, 71: 289-299.
    184. Lu Jun, Taiichiro Ookawa and Tadashi Hirasawa. The effects of irrigation regimes on the water use, dry matter production and physiological responses of paddy rice[J]. Plant and Soil 2000, 223: 207-216
    185. Lu YH, Watanabe A, Kimura M. Contribution of plant derived carbon to soil microbial biomass dynamics in a paddy rice microcosm[J]. Biol. Fert. Soils 2002, 36: 136-142.
    186. Luo AC, etal. Effect of nitrogen (NH_4NO_3) supply on absorption of ammonium and nitrate by conventional and hybrid rice during reproductive growth[J]. Plant and Soil 1993, 155/156: 395-398.
    187. Magalhaes JR, et al. Response of ammonium assimilation enzyme to nitrogen from treatment in different plant species[J]. J. Plant 1991, 14(2): 175-185.
    188. Martin M, Fitzgerald MA. Proteins in rice grains influence cooking properties[J]. Journal of Cereal Science 2002, 36: 285-294
    189. Mao DM, Lin YW, Yu L, Martens R and Insam H. Effect of afforestation on microbial biomass and activity in soils of tropical China[J]. Soil Biol. Biochem. 1992, 24: 865-872.
    190. McMarty GW, Meisinger JJ. Effect of N fertilizer treatments on biologically active N pools in soils under plow and no tillage[J]. Biol. Fertil. Soils 1997, 24: 406-412.
    191. Mizutani M, Kalita PK and Shinde D. Effect of rice varieties and midterm drainage practice on water requirement in dry season paddy-observational studies on water equioment of lowland in Thailand (Ⅰ)[J]. Irrigation Engineering and rural Planning 1989, (17): 6-20.
    192. Nagata M, Hiyoshi K, Umezaki T. Mulching cultivation system by using polyethylene film for early-season culture of rice (Oryza sativa) Measurement of paddy soil temperature in pot experiment[J]. Bulletin of the Faculty of Agriculture, Miyazaki University (Japan) 1994, 41(2): 57-64
    193. Nakamura A, Tun CC, Asakawa S, Kimura M. Microbial community responsible for the decomposition of rice straw in a paddy field: estimation by phospholipids fatty acid analysis[J]. Biol. Fertil. Soils 2003, 38: 288-295
    194. Nanda SK, Das PK, Behera B. Effects of continuous manuring on microbial population, ammonification and CO_2 evolution in a rice soil[J]. Oryza 1998, 25(4): 413-416.
    195. Ndayeyamiye A, Cote D. Effect of long-term pig slurry and solid cattle manure application on soil chemical and biological properties[J]. Canadian Journal of Soil Science 1989, 69 (1): 39-47.
    196. Osborone BA, Whittingin WJ. Variation in nitrate reductase activity between Agrosticspectes and ecotypes[J]. New Phytol. 1981, 890: 581-590.
    197. Pandey N, TRipathi RS, Mittra BN. Yield, nutrient uptake and water use efficiency office as influenced by nitrogen and irrigation[J]. Annnals of Agricultural Research 1992, 13(4): 377-382.
    198. Peng S, Shen K, Wang X, Liu J, Luo X and Wu L. A new rice cultivation technology: plastic film mulching[J]. Int. Rice Res. Notes 1999, 24: 9-10.
    199. Peng Z, Lu Q, Verma DPS. Reciprocal regulation of △~1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants[J]. Mol Gen Genet, 1996, 253: 334-341
    200. Powlson DS, Brookes PC, and Christiansen BT. Measurements of micriobial biomass provides and early indication of changes in total soil organic matter due to straw incorporation[J]. Soil Biol. Biochem. 1987, 19: 159-164.
    201. Pirmoradian N, Sepaskhah AR and Maftoun M. Deficit irrigation and nitrogen effects on nitrogen-use efficiency and grain protein office[J]. Agronomie. 2004, 24, 143-153.
    202. Raman DR, Spanswick RM, Walker LP. The kinetics of nitrate uptake from flowing nutrient solutions by flee: Influence ofpretreatment and light[J]. Bioresourse Technology 1995, 53: 125-132.
    203. Shen SM, Hart PBS, Pruden G, etal. The nitrogen cycle in the Broadbalk Wheat Experiment: ~(15)N labeled residues in the soil and in the soil microbial biomass[J]. Soil Boil Boichem. 1989, 21: 529-533.
    204. Shi CH, Zhu J, Yu YG. Genotype×environment interaction effects effect and genotypic correlation for nutrient quality traits of indica rice (Oryza sativa L.)[J]. Indian Journal of Agricultural Sciences 2000, 70(2): 85-89.
    205. Singh JS, Raghuvanshi AS, Singh RS and Srivastava SC. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna[J]. Nature 1989, 399: 499-500.
    206. Smith JL, Papendic RI, Bezdicek DF and Lynch JM. Soil organic matter dynamics and crop residue management. In: Blaine Metting, F (ed.) Soil Microbial Ecology—Application in Agricultural and Environmental Management. Marcel Dekker, New York, 1993. pp.65-94.
    207. Srivastava SC, Singh JS. Microbial C, N and in dry tropical forest soils: Effects of alternate landuse and nutrient flux[J]. SoilBiol. Biochern. 1991, 23 (2): 117-124.
    208. Stanford G, Frere MH, Schwaninger DH. Temperature coefficient of soil nitrogen mineralization[J]. Soil Sci. 1973, 115: 321-323.
    209. Suzuki M, Kamekawa K. Effect of continuous application of organic and inorganic fertilizer for sixty years on soil fertility and rice yield in paddy field. Translation of 14th Inter. Soil Sci., 1990, Ⅳ: 14-19
    210. Tao Hongbin, Breck Holger, Dittert Klaus, Kreye Christine, Lin Shan, Sattelmacher. Growth and yield formation office in the watwr-saving ground cover rice production system (GCRPS)[J]. Field Crops Res 2006, 95: 1-12.
    211. Thurston HD. Slash andmulch system. Westview Press, London, UK.
    212. Torutashiro, Morieebata. Studies on white-belly rice kernel-V. On the occurrence of white belly during the development of rice kernel, with special reference to the moisture content of kernel[J].日本作物学会纪事 1976, 45(4): 616-623
    213. Wang M X. Methane in the rice field, in: From Atmospheric General Circulation to Global Change. Beijing: China Meteorological Press, 1996. 647-659
    214. Wang Y, Shen QR, Yang ZM, and Yu L. Size of microbial biomass in soils of China[J]. Pedosphere 1996, 6 (3): 265-272.
    215. Warkentin BP, The concept of soil quality[J]. J Soil Water Conv. 1995, 50: 226-228.
    216. White DC, Pinkart HC, Ringelberg AB. Biomass measurements: biochemical approaches. In: Hurst C J, KnuDson GR, Mclnerney M J, Stetzenbach LD, Water MV (Eds). Manual of environmental microbiology. ASM Press, DC. 1997, pp 91-101.
    217. Wilkinson SG. Gram-negtive bacteria. In: Ratledge C, Wilkinson SG (eds). Microbial lipids, vol1. Academic Press, London, 1988, pp299-488.
    218. Wilson D J, Jefferies RL Nitrogen mineralization, plant growth and goose herbivory in an arctic coastal ecosystem[J]. J Ecol. 1996, 84: 841-851.
    219. Witt C, Biker U, Galicia CC and Ottow JCG. Dynamics of soil microbial biomass and nitrogen availability in a flooded rice soil amended with different C and N sources[J]. Biol. Fertil. Soils 2000, 30: 520-527.
    220. Woods LE and Schuman GE. Influence of soil organic matter concentration on carbon and nitrogen activity[J]. Soil Sci. Soc. Am. J. 1986, 50: 1241-1245.
    221. Wu J, Joegensen RG, Pommerening B, Chaussod R and Brookes PC. Measurement of soil microbial biomass C by fumigation: A automated procedure[J]. Soil Biol. Biochem. 1990, 22: 1167-1169.
    222. Xu HS, Roberts N, Singleton FL, Atwell RW, Grimes DJ, Colwell RR. Survival and viability of non-culturabl Escherichia coli and Vibrio cholerae in the estufine and marine environment[J]. Microb. Ecol. 1982, 32: 305-321.
    223. Xu YC, Sh QR, Li ML, Dittert K.Effect of soil water status and mulching on N20 and NH4 emission from lowland rice field in China. Biology and Fertility of Soils 2004, 39: 215-217.
    224. Yang C, Yang L, Ouyang Z. Organic carbon and its fraction in paddy soil as affected by different nutrient and water regimes[J]. Geoderma 2005, 124: 133-142.
    225. Yao H, He Z, Wilson M J, Campbell CD. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing landuse[J]. Microb. Ecol. 2000, 40: 223-237.
    226. Zhang CF, Peng SB, Peng XX, Chavez AQ and Bennett J. Response of glutamine synthetase isoforms to nitrogen sources in rice (Oryza sativa L) roots[J]. Plant Sci. 1997, 125, 163-170.
    227. Zelles L. Fatty acid patters of phospholids and lipopolysaccharides in the characteristation of microbial communities in soil: a review[J]. Biol. Fertil. Soils 1999, 29: 111-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700