不同水稻基因型氮效率差异的生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国的氮肥施用量占到全世界使用量的1/4强。由于过量施肥导致我国的氮肥利用率一直低于世界水平。南方部分经济相对发达地区稻田的氮肥利用率低于20%。氮肥利用效率低不仅导致氮素的损失,而且还对环境产生严重的影响。氮肥利用率低下在全世界范围内是一个难以解决的问题。有丰富可利用耕地和较少人口的一些发达国家可以通过降低目标产量和减少氮肥投入量来实现。而在中国由于可利用耕地非常有限并且拥有世界上最多的人口,所以需要采取其它方式既要保证作物单产不降低又要对环境不会造成负面影响。因此,应该优化施肥量以达到最佳产量又不会产生环境压力。大量研究结果表明水稻的氮肥利用率存在着基因型差异;通过基因型筛选来提高我国稻田氮肥利用率是可行的。因此,本试验研究了不同水稻基因型的氮素吸收和利用的基因型差异,为筛选氮高效基因型提供试验依据。
     考察苗期氮素吸收特征是筛选氮高效水稻基因型的重要途径。水培试验研究了3个基因型水稻(4007、南光、ELIO)苗期氮素吸收利用以及生长特征的差异。测定了3个氮水平下(4,10,40 mg N L~(-1))水稻的生物积累量,氮素积累量,总根长,根系表面积,氮素吸收速率和吸收动力学参数。结果表明,低氮处理显著减小了水稻的干物质积累量;ELIO在3个氮水平下的干物质积累量均显著高于4007和南光。氮胁迫(4,10 mg N L~(-1))条件下植株的干物质积累量与对照处理(40 mg N L~(-1))相比,减小幅度顺序为:南光>4007>ELIO。说明南光对低氮条件最为敏感。3个品种间的氮素利用效率没有差异,而ELIO的氮素吸收效率显著高于4007和南光。氮胁迫条件下植株的氮素积累量与对照处理相比,减小幅度顺序为:南光>4007>ELIO。说明ELIO的干物质积累量多主要因为它具有较高的氮素吸收效率。ELIO的总根长、根表面积、根尖数均显著大于4007和南光。各个氮水平下ELIO的氮素吸收速率均高于4007和南光。ELIO吸收NH_4~+和NO_3~-动力学参数V_(max)大于4007和南光;它们之间的K_m没有差异。因此,ELIO品种苗期高效吸收氮素是根系形态和吸收速率综合作用的结果。
     在3个氮水平(4、10、40 mg N L~(-1))下,研究了氮素吸收效率不同的3个水稻品种(高吸氮品种ELIO;低吸氮品种4007、南光)的叶片光合特性的差异以及与氮素营养的关系。结果表明,4007和南光的光合速率和气孔导度在各个氮水平下显著低于ELIO。品种间的叶片胞间CO_2浓度没有差异。水稻的光合速率与气孔导度显著正相关,相关系数为0.85~*。低氮处理显著减小了水稻叶面积。4、10 mg N L~(-1)与40 mg N L~(-1)水平相比,3个品种叶面积下降幅度顺序为:南光>4007>ELIO。4007和南光叶片中
China accounts for more than one quarter of the total nitrogen (N) fertilizer used in the world. However, the recovery of N fertilizer by crops has been generally low because of excessive N application. The problems resulting from excessive mineral N fertilizer application in Chinese intensive agricultural regions can be exemplified by the rice production in Eastern China. The century-old double-cropping (irrigated summer rice / upland winter wheat) systems have been transformed from a N -limited to a N -saturated state, with mean N application reaching up to 335 kg N hm~(-2) year~(-1). The alternating water regime causes high N losses during the N transformations and low crop N uptake efficiencies of 28%-41%. This is leading to large-scale, non-point source pollution of aquifers. Low N use efficiency with high environmental impact is a worldwide problem. It may be resolved by reducing target yield and N input in developed countries with surplus arable land and small population. This is, however, impossible in China since the country is still facing the food unsecurity. Different approachs should be made in order to reduce the environmental impact while the crop yield and productivity can be maintained or even increased at the same time. Therefore, the N input should be optimized to reach the harmonious point between high yield and sound environment. Field experiments have shown that genetic variability for N use efficiency exists in rice plants. There is a possibility of improving N utilization efficiency in rice through genotype selection. Therefore, this study was conducted to select rice cultivars that could exploit N more efficiently in order to minimize loss of N from the soil and make more economic use of the absorbed N.
    1. Identification of the traits of N uptake and utilization at the seedling stage is considered to be an effective approach for selecting N -efficient rice genotypes. Different levels of N concentration (4, 10, 40 mg N L~(-1)) were supplied to three rice genotypes (4007, Nanguang and ELIO) that had shown different N use efficiencies. Biomass, N uptake, total root length, root surface, N influx rate and uptake kinetics were determined in all the plants. N deficiency reduced the dry matter accumulation in all the genotypes. ELIO accumulated more dry matter than other two rice genotypes, and the rate of reduction of dry
引文
[1] 汤圣祥,闺绍楷.品质育种.中国稻米,1998,(1):30-32.
    [2] 胡培松,翟虎渠,万建民.中国水稻生产新特点与稻米品质改良.中国农业科技导报,2002,4(4):33-39.
    [3] 凌启鸿,杨建昌.水稻群体“粒叶比”与高产栽培途径的研究.中国农业科学,1986,20:1-7.
    [4] 袁隆平.杂交水稻超高产育种.杂交水稻,1997,12(6):1-6.
    [5] 杨从党,周能,袁平荣.高产水稻品种的物质生长特性.西南农业学报,1996,11:89-94.
    [6] 郭光荣.以生物产量和收获指数作为水稻育种指标的初步研究.湖南农业科学,1990(5):20-22.
    [7] 李仕贵,马玉清,周开达,等.杂交水稻收获指数与源库性状的遗传和相关分析.西南农业学报.1998.11:144-149.
    [8] 张福锁.养分资源利用的问题及其研究重点.李春剑主编:土壤与植物营养研究新动态(第四卷)北京:中国农业大学出版社,2001:12-23.
    [9] 谢建昌.世界肥料使用的现状与前景.植物营养与肥料学报,1998,4(4):321-330.
    [10] 武志杰.我国化肥生产应用中的问题及对策.科技导报,1997,9:37-39.
    [11] 曾宪坤.我国化肥市场探析.化肥工业,1999,25(5):3-7.
    [12] 张福锁.养分资源综合管理.中国农业大学出版社,2003.
    [13] 张夫道.氮素营养研究中几个热点问题.植物营养与肥料学报,1998,4(4):331-338.
    [14] 同延安.氮肥与环境.冯锋,张福锁,杨新泉编:植物营养研究进展与展望.北京:中国农业出版2000:207-215.
    [15] 朱兆良,文启孝.中国土壤氮素.南京,江苏科学技术出版社,1992.
    [16] 中国科学院生物学部.我国化肥面临的突出问题及建议.科技导报,1997,9:35-36.
    [17] 范仲学,王璞等.谷类作物的氮肥利用效率及其提高途径研究进展.山东农业科学.2001,10(4):425-427.
    [18] 马立珊等.苏南太湖水系农业面源污染及其控制对策研究.环境科学学报.1997,17(1):39-47.
    [19] 朱兆良.农田中氮素的损失与对策.土壤与环境.土壤.2000,9(1):1-6.
    [20] 朱兆良.稻田节氮的水肥综合管理的研究.土壤,1991,23(5):241-245.
    [21] 李世娟,李建民.氮肥损失研究进展.农业环境保护.2001,20(5):377-379.
    [22] 张国梁,章申.农田氮素淋失研究进展.土壤.1998,30(6):291-297.
    [23] 张炎,史军辉,李磐等.农田土壤氮素损失与环境污染.新疆农业科学.2004,1:57-60.
    [24] 朱兆良.我国土壤供氮和化肥氮去向研究的进展.土壤,1985 17(1):2-9.
    [25] 李庆逵.中国农业持续发展中的肥料问题.江西:江西科学技术出版社,1997.
    [26] 王光火,张奇春,黄昌勇等.提高水稻氮肥利用率、控制氮肥污染的新途径—SSNM.浙江大学 学报(农业与生命科学版),2003 29(1):67-70.
    [27] 江立庚.戴廷波.韦善清等.南方水稻氮素吸收与利用效率的基因型差异及评价.植物生态学报,2003,27(4):466-471.
    [28] 孙传范,曹卫星,戴廷波.土壤—作物系统中氮肥利用率的研究进展.土壤,2001,(2):67-69.
    [29] 马立珊.太湖流域水环境硝态氮和亚硝态氮污染的研究.环境科学.1985,(6):54-59.
    [30] 蒋永忠,吴金贵,娄德仁.氮素化肥对农业生态环境的污染及其控制措施.江苏农业科学.1998,(6):48-50.
    [31] McDonald A T, Kay D. Water resources: Issues and strategies Longman Scientific and Technical Harlow UK. 1988.
    [32] 朱兆良.中国土壤的氮素肥力与农业中的氮素管理.见:沈菩敏主编.中国土壤肥力.农业出版社.1998.160-211.
    [33] Bowman J. The greenhouse effect. In: Bennett R M (ed), The greenhouse effect and UK agriculture, Center for Agricultural Strategy, University of Reading, 1989, 17-26.
    [34] Byrnes BH. Environmental effects of N fertilizer use-An overview. Fertilizer Research, 1990, 26:209-215.
    [35] Crutzen PJ, Ehhalt DH. Effects of nitrogen fertilizers and combustion on the stratospheric ozone layer. Ambio.1977, 6:112-117.
    [36] Galbally IE, Freney JR, Muirhead WA, Simpson JR, Trecvitt ACF, Chalk PM. Emission of nitrogen oxides (NO_X) from a flooded soil fertilizes with urea relation to other nitrogen loss processes. J.Atmos.Chem., 1987, 5:343-365.
    [37] Ko M K W Sze N D, Weinstein D K. Use of satellite data to constrain the model-calculated atmosphere lifetime for N_2O: implications for other trace gases. J. Geophys. Res., 1991, 96:7547-7552.
    [38] Mosier A R,Chapman S L, Freney J R. Determination of dinitrogen emission and retention in floodwater and porewater of a lowland rice field fertilized with ~(15)N urea. Fert. Res., 199, 19:127-136.
    [39] Williams E J, Hutchinson G L, Fehsenfeld F C. NO_x and N_2O emissions from soil. Global Biogeochem. Cycles, 1992, 6:351-388.
    [40] 江立庚,水稻品种氮素吸收利用效率的生理生态特征及调控研究.博士论文,南京农业大学出版社,2003.5.9-10.
    [41] Barber S A. Soil nutrient bioavailability (2nd edition). New York: John Wiley & Son Inc, 1995.
    [42] 樊小林,廖新.控释肥料与平衡施肥和提高肥料利用率,植物营养与肥料学报,1998,4(3):219-213.
    [43] 候翠红.控制释放肥料养分释放特性的研究,磷肥与复肥,1998 13(4):6-8.
    [44] 何绪生、李素霞.控效肥料的研究进展,植物营养与肥料学报,1998 4(2):97-106.
    [45] 郑圣先,聂军,熊金英.控释肥料提高氮素利用率的作用及其对水稻效应的研究.植物营养与肥料学报,2001,7(1):11-16.
    [46] 郑圣先,罗尊长,刘海军等.除草型水稻专用追肥氮释放特性的研究.湖南农业科学.1998,6:28-30.
    [47] 聂军,郑圣先,熊金英等.控释肥料氮释放特性及其提高氮素利用效率的研究.土壤科学与农业可持续发展(M).湖南省土壤肥料学会编,2002.
    [48] De Datta S K. Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia. Fertilizer Res.1986. (9): 171-186.
    [49] 朱兆良.中国土壤氮素,江苏科技出版社,1992,220-282.
    [50] 中国农业科学院土壤肥料研究所土编.中国肥料,上海科学技术出版社,1994.
    [51] Cassm an K G, Peng S, OIK D C, et al. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Res., 1998, 56: 7-39.
    [52] 朱兆良.氮肥分次施用对肥料效果影响的研究.土壤肥料,1984(3):29-32.
    [53] 苏祖芳,张亚洁,张娟等.基蘖肥与穗粒肥配比对水稻产量形成和群体质量的影响.江苏农业研究,江苏农学院学报,1995,16(3):21-30.
    [54] 王玉武,赵文华,马杰.水稻养分诊断与平衡施肥.辽宁农业科学,1998,2:21-24.
    [55] 黄志毅.水稻应用平衡施肥效应分析.耕作与栽培,,2001,4:39-40.
    [56] 刘如清,谢良伍.湖南省水稻平衡施肥.植物营养与肥料学报,1999,5(2):189-192.
    [57] 何国样,黄寿煦.晚稻平衡施肥的增产效果试验.浙江农业科学,1999,6:270-271.
    [58] 叶全宝,不同水稻基因型对氮肥反应的差异及氮素利用效率的研究.博士论文,扬州大学出版社,2005.5.
    [59] 范丙全,胡春芳,严建立.灌溉施肥对壤质潮土硝态氮淋溶的影响.植物营养与肥料学报,1998,4(1):16-21.
    [60] 张亚丽.水稻氮效率基因型差异评价与氮高效机理研究.博士论文,南京农业大学出版社,2006.4.
    [61] 张云桥,吴荣生,蒋宁,等.水稻的氮素利用效率与品种类型的关系.植物生理学通讯,1989,(2):45-47.
    [62] 单玉华,王余龙,山本由德,等.常规籼稻与杂交籼稻氮素利用效率的差异.江苏农业研究,2001.1:12-15.
    [63] De Datta S K and Broadbent F E. Nitrogen-use efficiency of 24 rice genotypes on an N-deficient soil. Field Crops Research, 1990, 23:81-92.
    [64] Broadbent F E, De Datta S K and Laureles E. Measurement of nitrogen utilization efficiency in rice genotypes. Agronomy J. 1987, 79:786-791.
    [65] Ladha J K, Kirk G J D, Bennett J, et al. Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm. Field Crops Research, 1998,56:41-71.
    [66] 李共福.水稻品种对N,K的反应及其与肥料效益的关系.土壤肥料,1987,2:25-27.
    [67] 单玉华.不同类型水稻品种氮素吸收利用的差异及控制.博士学位论文.扬州大学出版社,2002.
    [68] Jifeng Y, Shaobing Peng, Gaoqun Yang, et al. Comparison of high-yield rice in tropical and subtropical environments. Ⅱ Nitrogen accumulation and utilization efficiency. Field Crops Research, 1998,57:95-93.
    [69] Sahu R K, Tirol-Padre A, Ladha J K, et al. Screening genotypes for nitrogen-use efficiency on a nitrogen deficient soil. Oryza, 1997, 34:350-357.
    [70] Borrell A K, Garside A L, Fukai S. Season, nitrogen rate and plant type affect nitrogen uptake and nitrogen use efficiency in rice. Autralian Journal of Agricultural Research, 1998,49(5):829-843.
    [71] 陆景陵.植物营养学(第2版).中国农业大学出版社,2003.2.
    [72] 范仲学,王璞,梁振兴.谷物作物氮肥利用效率及提高涂径研究讲展.山东农业科学.2001.4:47-49.
    [73] Epstein E, Hagen C E.. A kinetic study of absorption of alkali cations by barley roots. Plant Physiol, 1952, 27: 457-474.
    [74] Claassen N, Barber S A.. A method for characterizing the relation between nutrient concentration and flux into roots of intact plants. Plant Physiol, 1974, 54:564-568.
    [75] Growly P H. Natural selection and the M ichaelis constant. J Theor Biol, 1975, 50: 471-475.
    [76] Fageria N K. Kinetics of phosphate absorption by intact rice plants. Aust J Agr Res, 1974, 25: 395-400.
    [77] Makino, A., Mae, T., Ohira, K. Relation between nitrogen and 1,5-bisphosphate carboxylase in rice leaves from emergence through senescence. Plant Cell Physiol. 1984a, 25:429-437.
    [78] Hidema, J., Makino, A., Mae, T., Ojima, K. Photosynthetic characteristics of rice leaves aged under different irradiances from full expansion through senescence. Plant Physiol. 1991, 97:1287-1293.
    [79] Mae, T., Makino, A., Ohira, K. Changes in the amounts of ribulose bisphosphate carboxylase synthesized and degraded during the life span of rice leaf (Oryza sativa L.). Plant Cell Physiol. 1983, 24(6):1079-1086.
    [80] Yoshida, S. Fundamentals of rice crop science. The International Rice Research Institute, P.O. Box, Manila, Philippines.1981.
    [81] Mae, T., Ohira, K. The remobilization of nitrogen related to leaf growth and senescence in rice plants (Oryza sativa L.). Plant Cell Physiol. 1981, 22 (6):1067-1074.
    [82] Wada, G., Shoji, S., Mae, T. Relationship between nitrogen absorption and growth and yield of rice plants. Jpn. Agric. Res. Q. 1986, 20:135-145.
    [83] Makino, A., Mac, T., Ohira, K. Changes in photosynthetic capacity in rice leaves from emergence through senescence. Analysis from ribulose-1,5-biphosphate carboxylase and leaf conductance. Plant Cell Physiol. 1984b, 25:511-521.
    [84] Penning de Vries, F.W.T., van Keulen, H., Alagos, J.C. Nitrogen redistribution and potential production in rice. In: Sinha, S.K. et al. (Eds.), Proceedings of the Second International Congress of Plant Physiology, Society for Plant Physiology and Biochemistry, New Delhi, pp. 515-520.1990.
    [85] 单玉华,王余龙,山本由德等常规釉稻与杂抖山稻氮素利用效率德差异.江苏农业研究2000,22(1):12-15.
    [89] 李祖章,陶其嚷,刘光荣等.双季两系杂交稻高产营养特性和施肥技术.江苏农业学报,1998,10(4):29-37.
    [90] 杨肖娥,孙羲.不同水稻品种对低氮反应的差异及其机理研究.土壤学报,1992,1:73-79.
    [91] Wang S H, Ji Z J, Liu S Het al. Relationships between balance of nitrogen supply demand and nitrogen translocation and senescence of different position leaves on rice. Agricu. Sci. in China. 2003, 2(7): 747-751.
    [92] Peng S, Laza R. C, Garcia F Vet al. Chlorophyll meter estimates leaf area2based nitrogen concentration of rice. Commun. soil Sci. Plant Anal. 1995, 26(5-6):927-935.
    [93] 吴良,陶勤南.水稻叶绿素计诊断追氮法研究.浙江大学学报(农业与生命科学版),1999,25(2):135-138.
    [94] Zhou Q F, Wang J H. Comparison of upper leaf and lower leaf of dee plants in response to supplemental nitrogen levels. J. Plant Nutr., 2003, 26(3): 607-617.
    [95] 王绍华.水稻氮素营养的生理指标及诊断技术.南京农业大学,博士学位论文,2003.
    [96] Cassman K G, Gines H C, Dizon Ma et al. Nitrogen use efficiency in tropical lowland rice systems: relative contributions of indigenous soil resources and applied nitrogen inputs. Field Crops Res., 1996, 47:1-12.
    [97] Huang J L, Peng S B. Comparison and standardization among chlorophyll meters in their readings on rice leaves. Plant Prod. Sci., 2004,7(1): 97-100.
    [98] Peng S, Garcia F V, Laza R C et al. Increased N use efficiency using a chlorophyll meter on high yielding irrigated rice. Field Crops Res., 1996, 47:243-252.
    [99] Bijay S, Yadvinder Singh, Jagdish K et al. Chlorophyll meter and leaf color chart based nitrogen management for rice and wheat in northwestern India. Agron. J, 2002, 94:821-829.
    [100] Hussain F, Bronson K F, Yadvinder Singh et al. Use of chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia. Agron. J., 2000, 92:875-879.
    [101] 李刚华,丁艳锋,薛利红,王绍华.利用叶绿素计(SPAD-502)诊断水稻氮素营养和推荐追肥的研究进展.植物营养与肥料学报,2005,11(3):412-416.
    [102] Novoa R and Loomis R S. Nitrogen and plant production. Plant and Soil, 1981,58:177-204.
    [103] Ericsson T. Growth and shoot: root allocation of seedlings in relation to nutrient availability. Plant and Soil, 1995,168:205-214.
    [104] Cacco G, Ferrari C, Saccom ani M, et al. Pattern of sulfate uptake during root elongation in maize: its correlation. Physiol Plant, 1980, 48:375-378.
    [105] Anthony D.M. Glass, Dev T.Britto, Brent N.Kaiser, Herbert J.Kronzuker. The regulation of nitrate and ammonium transport systems in plants. Journal of Experimental Botany, 2002, 53:855-864.
    [106]. Howitt SM, Udardi MK. Structure, function and regulation of ammonium transporters in plants. Biochimica et Biophysica Acta 2000, 1465:152-171.
    [107] 张传胜,王余龙,龙银成,董桂春,杨连新,黄建晔.作物学报影响籼稻品种产量水平的主要根系性状.2005,31(2):137-143.
    [108] 凌启鸿,陆卫平,蔡建中.水稻根系分布与叶角关系的研究初报.作物学报,1989,15(2):123-131.
    [109] Morita K. Release of nitrogen from chloroplasts during leaf senescence in rice. Ann. Bot. 1980, 46: 297-302.
    [110] Brown R H. A difference in the nitrogen use efficiency of C3 and C4 plants and its implications in adaptation and evolution. Crop Sci. 1978,18:19-38.
    [111] Makino A, Osmond B. Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol. 1991,96:355-362.
    [112] Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO_2 assimilation in leaves of C3 species. Planta. 1980,149:78-90.
    [113] Sinclair T R and Horie. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review Crop Sci, 1989,29:90-98.
    [114] Wu P, Tao Q N. Genotypic response and selection pressure on nitrogen-use efficiency in rice under different nitrogen regimes. J Plant Nutrition, 1995, 18(3): 487-500.
    [115] 陈同斌,陈世庆,徐鸿涛.中国农用化肥氮磷钾需求比例的研究.地理学报,1998,53(1):32-41.
    [116] 李荣刚.高产农田氮素肥效与调控途径-以江苏太湖地区稻麦两熟农区为例推及全省.中国农业大学博士学位论文,2000.
    [117] 洪庆文,黄不凡.农业生产中的若干土壤学与植物营养学问题.北京:科学出版社,1994.
    [118] Odum E P. Input management of production systems. Science, 1989, 243:177-243.
    [119] Keeney D R. Nitrogen availability indices. In: Page A. L(ed.). Methods of Soil Analysis, part 2. Medison, Wis : AmSoc. Agron.,1982:712-734.
    [120] 马立珊.农田氮素管理与环境质量和作物品质.朱兆良,文启孝.中国土壤氮素.南京:江苏科技出版社,1992:267-287.
    [121] 张维理,田哲旭,张宁.我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报,1995,1(2):80-87.
    [122] 杨新泉,冯锋,宋长青,冷疏影.主要农田生态系统氮素行为与氮肥高效利用研究.植物营养与肥料学报,2003,9(3):373-376.
    [1] Li, R. G. Efficiency and regulation of fertilizer nitrogen in high-yield farmland: A case study on rice and wheat double maturing system agriculture area of Tai Lake for deducing to Jiangsu province. Ph. D. Dissertation, China Agric. Univ., Beijing, China, 2000.
    [2] Peng, S. B.; Huang, J. L.; Zhong, X. H.; Yang, J. C.; Wang, G. H.; Zou, Y. B.; Zhang, F.S.; Zhu, Q. S. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Sci. Agric. Sin. 2002, 35, 1095-1103.
    [3] Mae,T. Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis, and yield potential. Plant Soil 1997, 196, 201-210.
    [4] Koutroubasa, S. D.; Ntanos, D. A. 2003. Genotypic differences for grain yield and nitrogen utilization in Indica and Japonica rice under Mediterranean conditions. Field Crops Res. 2003, 83, 251-260.
    [5] De Datta, S.K.; Broadbent, F.E. Development changes related to nitrogen-use efficiency in rice. Field Crops Res. 1993, 34, 47-56.
    [6] Inthapanya, P.; Sipaseuth; Sihavong, P.; Sihathep, V.; Chanphengsay, M.; Fukai, S.; Basnayake, J. Genotype differences in nutrient uptake and utilization for grain yield production of rainfed lowland rice under fertilized and non-fertilized conditions. Field Crops Res. 2000, 65, 57-68.
    [7] Singha, U.; Ladha, J.K.; Castillo, E.G. Genotypic variation in nitrogen use efficiency in medium- and long-duration rice. Field Crops Res. 1998, 58, 35-53.
    [8] Mi, G.; Liu, J.; Zhang, F. Analysis on agronomic nitrogen efficiency and its components of maize hybrids. J. China Agric. Univ. 1998, 3 (suppl.), 97-104.
    [9] Robinson, D.; Rorison, I.H. Relationship between root morphology and nitrogen availability in a recent theoretical model describing nitrogen uptake from soil. Plant Cell Environ. 1983, 6, 641-647.
    [10] Bhadoria, P.S.; Dessougi, H.E.; Liebersbach, H.; Claassen, N. Phosphorus uptake kinetics, size of root system and groundnut in solution culture. Plant Soil. 2004, 262,327-336.
    [11] Bell, D.L.; Sultan, S.E. Dynamic phenotypic plasticity for root growth in Polygonum: a comparative study. Am. J. Bot. 1999, 86, 807-819.
    
    [12] Lynch, J.P. Root architecture and plant productivity. Plant Physiol. 1995,109, 7-13.
    [13] Samejima, H.; Kondo, M.; Ito, O.; Nozoe, T.; Shinano, T.; Osaki, M. Characterization of root systems with respect to morphological traits and nitrogen-absorbing ability in the new plant type of tropical rice lines. J. Plant Nutr. 2005, 28, 835-850.
    [14] Hayes, J.E.; Zhu, Y.G.; Mimura, T.; Reid, R.J. An assessment of the usefulness of solution culture in screening for phosphorus efficiency in wheat. Plant Soil. 2004, 261, 91-97.
    [15] Leon, J.; Schwang, K.U. Description and application of a screening method to determine root morphology traits of cereals cultivars. Z. Acker. Pflanzenbau. 1992,169,128-134.
    [16] Barraclough, P.B. The growth and activity of winter wheat roots in the field-root growth of high yielding crops in relation to shoot growth. J. Agric. Sci. 1984,103,439-442.
    [17] Forde, B.G; Clarkson, D.T. Nitrate and ammonium nutrition pf plants: physiological and molecular perspectives. Adv. Bot. Res. 1999, 30,1-9.
    [18] Bhat, K.K.S.; Nye, P.H.; Brereton, A.J. The possibility of predicting solute uptake and plant growth response from independently measured soil and plant characteristics. VI. The growth and uptake of rape in solution of a constant nitrate concentration. Plant Soil. 1979, 53,137-167.
    [19] Rufty, J.T.W.; Huber, S.C.; Volk, R.J. Alterations in leaf carbohydrate metabolism in response to nitrogen stress. Plant Physiol. 1988, 88, 725-730.
    [20] Linkohr, B.I.; Willamson, L.C.; Fitter, A.H.; Leyser, H.M.O. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J. 2002, 29, 751-760.
    [21] Barber, S.A.; Mackay, A.D. Root growth and phosphorus and potassium uptake by two corn genotypes in the field. Fert. Res. 1986,10, 217-230.
    [22] Weisler, F.; Horst, W.J. Root growth and nitrate utilization of maize cultivars under field conditions. Plant Soil 1994,163, 267-277.
    [23] Barber, S.A. Soil nutrient bioavailability-a mechanistic approach. Academic Press, New York, 1984.
    
    [24] Brouwer, R. Functional equilibrium: Sense or nonsense. Neth. J. Agric. Sci. 1983,31, 335-348.
    [25] Glass, A.D.M.; Britto, D.T.; Kaiser, B.N.; Kinghom, J.R.; Kronzucker, H.J.; Kumar, A.; Okamoto, M.; Rawat, S.; Siddiqi, M.Y.; Unkles, S.E.; Vidmar, J.J. The regulation of nitrate and ammonium transport systems in plants. J. Exp. Bot. 2002,53, 855-864.
    [26] Wang, M.Y.; Siddiqi, M.Y.; Ruth, T.J.; Glass, A.D.M. Ammonium uptake by rice roots. II. Kinetics of ~(13)NH_4~+ influx across the plasmalemma. Plant Physiol. 1993,103,1259-1267.
    [27] Kronzucker, H.J.; Siddiqi, M.Y.; Glass, A.D.M. Nitrate ammonium synergism in rice. A subcellular flux analysis. Plant Physiol. 1999,119,1041-1045.
    [1] Foyer C H., Parry M., Noctor G Markers and signals associated with nitrogen assimilation in higher plants. Journal of Experimental Botany, 2003,54. Regulation of Carbon Metabolism Special Issue, pp. 585-593.
    [2] Stitt M, Muller C, Matt P, GiGibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A. Steps towards an integrated view of nitrogen metabolism. Journal of Experimental Botany 2002,53, 959-970.
    [3] Hodges M Enzyme redundancy and the importance of 2-oxoglutarate in plant ammonium assimilation. Journal of Experimental Botany 2002,53. Inorganic Nitrogen Assimilation Special Issue, pp 905-916.
    [4] Mac Tadahiko. Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis, and yield potential. Plant and Soil 1997,196: 201-210.
    [5] Weerakoon W. M, Olszyk D. M, Moss D. N, 1999. Effects of nitrogen nutrition on responses of rice seedlings to carbon dioxide. Agriculture, Ecosystems and Environment.1999,72:1-8.
    [6] 王朝辉,李生秀,田霄鸿,等.不同氮肥用量对硝酸盐累积的影响.植物营养与肥料学报,1998,4(1):22-28.
    [7] 陈新平,邹春琴,刘亚萍,等.菠菜不同品种累积硝酸盐能力的差异及其原因.植物营养与肥料学报,2000,6(1):30-34.
    [8] 张云桥,吴荣生,蒋宁,等.水稻氮素利用效率与品种类型的关系.植物生理学通讯,1989,2:45-47.
    [9] Wu P., Tao, Q. N. Genotypic response and selection pressure on nitrogen-use efficiency in rice under different nitrogen regimes. J Plant Nutrition, 1995,3:487-500.
    [10] 江立庚,水稻品种氮素吸收利用效率的生理生态特征及调控研究.南京农业大学博士论文,南京,2003.
    [11] Jiang, L. G., Dong, D. F., Gan, X. Q., Wei, S. Q. Photosynthetic efficiency and nitrogen distribution under different nitrogen management and relationship with physiological N-use efficiency in three rice genotypes. Plant and Soil. 2005, 271: 321-328.
    [12] 张涛,不同施氮量和氮素形式对水稻光合特性的影响.扬州大学硕士论文,扬州,2004.
    [13] 刘贞琦,刘振业,马达鹏,等.水稻叶绿素含量及其与光合速率关系的研究.作物学,1984,10(1):57-64.
    [14] 户刈义次.作物的光合作用与物质生产.北京:科学出版社,1981.35-148.
    [1] 杨新泉,冯锋,宋长青,等.主要农田生态系统氮素行为与氮肥高效利用研究.植物营养与肥料学报,2003,9(3):373-376.
    [2] 李荣刚.高产农田氮素肥效与调控途径-以江苏太湖地区稻麦两熟农区为例推及全省.中国农业大学博士学位论文,2000.
    [3] 巨晓棠,刘学军,邹国元,等.冬小麦/夏玉米轮作体系中氮素的损失途径分析.中国农业科学,2002,35(12):1493-1499.
    [4] 洪庆文,黄不凡.农业生产中的若干土壤学与植物营养学问题.北京:科学出版社,1994.
    [5] Odum E P. Input management of production systems. Science, 1989,243: 177-143.
    [6] Keeney D R. Nitrogen availability indices. In: Page A. L. (ed.). Methods of Soil Analysis, part 2. Medison, Wis; Am Soc. Agron.,1982: 711-734.
    [7] 沈建辉,戴廷波,荆奇,等.施氮时期对专用小麦干物质和氮素积累、运转及产量和蛋白质含量的影响.麦类作物学报,2004,24(1):55-58.
    [8] 段英华,张亚丽,沈其荣,等.增硝营养对不同基因型水稻苗期氮素吸收同化的影响.植物营养与肥料学报,2005,11(2):160-165.
    [9] Park H, Mok S K, Seek S J. Efficiency of soil and fertilizer nitrogen in relation to rice variety and application time, using ~(15)N labeled fertilizer. V. ~(15)N point application in fields. J Korean Agric Chem, 1982,25(4): 30-34.
    
    [10] Broadbent F E, Detta S K, Laureles E V. Measurement of nitrogen utilization efficiency in rice genotypes. Agron J, 1987,79: 786-791.
    
    [11] Wu P, Tao Q N. Genotype response and selection pressure on nitro-genuse efficiency in rice under different nitrogen regimes. Plant Nutrition, 1995,18(3): 487-500.
    
    [12] Poll mer W G, Eberhard D, Mein D,Dhillon B S. Studies on maize hybrids involving inbrid lines with varying protein content. Z Pflanzengchf,1978,80:142-148.
    
    [13] Moll R H, Kamprath E J, Jackson W A. Development of nitrogen efficient prolific hybrids of maize. Crop Sci, 1987,27:181-186.
    
    [14]De Datta K S, Broadbent F E .Methodology for evaluating nitrogen utilization efficiency by rice genotypes. Agron J, 1988,80: 793-798.
    
    [15] Gravois K A, Helms R S. Path analysis of rice yield and yield components as affected by seeding rate. Agron. J. 1992, 84:1-4.
    
    [16. Miller B C, Hill J E, Roberts S R.. Plant population effects on growth and yield in water-seeded rice. Agron. J. 1991,83: 291-297.
    
    [17] Fageria N K, Baligar V C. Lowland rice response to nitrogen fertilization. Commun. Soil Sci. Plant Anal. 2001, 32:1405-1429.
    [1] Ladha, J. K., Kirk, G. J. D., Bennett, J., Peng, S., Reddy, C. K., Reddy, P. M. and Singh, U. 1998. Opportunities for increased nitrogen use-efficiency from improved lowland rice germplasm. Field Crops Res. 56: 41-71.
    [2] Gaunt, R. E. and Wright, A. C. 1992. Disease-yield relationship in barley. Ⅱ. Contribution of stored stem reserves to grain filling. Plant Pathol 41: 688-701.
    [3] Cox, M. C., Qualset, C. O. and Rains, D. W. 1985. Genetic variation for nitrogen assimilation and translocation in wheat. Ⅱ. Nitrogen assimilation in relation to grain yield and protein. Crop Sci. 25: 435-440.
    [4] Papakosta, D. K. and Gagianas, A. A. 1991. Nitrogen and dry matter accumulation, remobilization, and losses for Mediterranean wheat during grain filling. Agron. J. 83: 864-870.
    [5] Ntanos, D. A. and Koutroubas, S. D. 2002. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Res. 74: 93-101.
    [6] 杨新泉,冯锋,宋长青,冷疏影.主要农田生态系统氮素行为与氮肥高效利用研究.植物营养与肥料学报.2003,9(3):373-376
    [7] 李荣刚.高产农田氮素肥效与调控途径—以江苏太湖地区稻麦两熟农区为例推及全省.北京:中国农业大学博士学位论文.2000.
    [8] 彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,张福锁,朱庆森.提高中国稻田氮肥利用率的研究策略.中国农业科学.2002,35(9):1095-1103.
    [9] Roelcke, M., Han, Y., Schleef, K. H., Zhu, J. G., Liu, G., Cai, Z. C. and Richter, J. 2004. Recent trends and commendations for nitrogen fertilization in intensive agriculture in Eastern China. Pedosphere. 14: 449-460.
    [10] Cai, G. X., Yang, N. C., Lu, W. F., Chen, W., Xia, B. Q., Wang, X. Z. and Zhu, Z. L. 1992. Gaseous loss of nitrogen from fertilizers applied to a paddy soil southeastern China. Pedosphere. 2: 209-217.
    [11] Fan, X. H., Song, Y. S., Lin, D. X., Yang, L. Z. and Zhou, J. M. 2005. Ammonia volatilization losses from urea applied to wheat on a paddy soil in Taihu Region, China.Pedosphere. 15: 59-65.
    [12] Minami, K. 2005. N cycle, N flow trends in Japan, and strategies for reducing N_2O emission and NO_3~- pollution. Pedosphere. 15: 164-172.
    [13] 宋勇生,范晓晖,林德喜,杨林章,周健民.太湖地区稻田氨挥发及影响因素的研究.土壤学报.2004,2:265-269.
    [14] Schenk M K. 1996. Regulation of nitrogen uptake on the whole plant level. Plant and Soil, 181: 131-137.
    [15] Przulj N, Momcilovic V. 2001. Genetic variation for dry matter and nitrogen accumulation and translocation in two-rowed spring barley Ⅱ. Nitrogen translocation. European Journal of Agronomy, 15: 255-265.
    [16] Linda J K, Kirk G J D, Bennett J et al. 1998. Opportunities for increased nitrogen use-efficiency from improved lowland rice germplasm. Field Crops Research, 56: 41-71.
    [17] Mae T. 1997. Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis, and yield potential. Plant and Soil, 196: 201-210.
    [1] Cock, J. H., Yoshida, S., 1972. Accumulation of ~(14)C-labeled carbohydrate before flowering and its subsequent redistribution and respiration in the rice plant. Crop Sci. Jpn. 41,226-234.
    [2] Viniani, S. S., 1996. Hybrid rice. Adv. Agron. 57, 377-462.
    [3] Peng, S., Cassman, K. G., Virmani, S. S., Sheehy, J., Khush, G. S., 1999. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci. 39, 1552-1559.
    [4] Dingkuhn, M., Schnier, H. E, De Datta, S. K., Dol-ffling, K., Javellana, C., Pamplona, R., 1990. Nitrogen fertilization of direct-seeded flooded vs. transplanted rice. Ⅱ. Interactions among canopy properties. Crop Sci. 30, 1284-1292.
    [5] Hayakawa, T., Yamaya, M., Mae, T., Ojima, K., 1993, Changes in content of two glutamate synthase proteins in spikelets of rice plants during ripening. Plant Physiol. 101, 1257-1262.
    [6] Norman, R. T., Guindo, D., Wells, B. R., Wilson Jr., C. E., 1992. Seasonal accumulation and partitioning of nitrogen-15 in rice. Soil Soc. Am. J. 56, 1521-1527.
    [7] Ladha, J. K., Kirk, G. J. D., Bennett, J., Peng, S., Reddy, C. K., Reddy, R. M., Singh, U., 1998. Opportunities for increased nitrogen use-efficiency from improved lowland rice gemplasm. Field Crops Res. 56. 41-71.
    [8] Mae, T., 1997, Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis, and yield potential. Plant Soil 196, 201-210.
    [9] Chandraratna, M. F., 1964. Genetics and Breeding of Rice. Longman, London, 389 pp.
    [10] Cassman, K. G., Kropff, M. J., Gaunt, J. and Peng, S. 1993. Nitrogen use efficiency of rice reconsidered: What are the key constraints? Plant and Soil 156: 359-362.
    [11] Gebbing, T., Schnyder, H. and Kuhbauch, W. 1999. The utilization of pre-anthesis reserves in grain filling in wheat. Assessment by steady-state 13C2/12C2 labelling. Plant Cell. and Environ. 22:851-858.
    [12] Mae, T., Ohira, K. 1981. The remobilization of nitrogen related to leaf growth and senescence in rice plants (Oryza sativa L.). Plant Cell Physiol. 22(6):1067-1074.
    [13] 张云桥,吴荣生,蒋宁,等.1989.水稻的氮素利用效率与品种类型的关系.植物生理学通讯,(2):45-47.
    [14] Simpson, R. J., Lambers, H. and Dalling, M. J. 1983. Nitrogen redistribution during grain growth in wheat (triticum aestivum L.). Plant Physiol. 71: 7-14.
    
    [15] Papakosta, D. K. and Gagianas, A. A. 1991. Nitrogen and dry matter accumulation, remobilization, and losses for Mediterranean wheat during grain filling. Agron. J. 83: 864-870.
    
    [16] Bell, C. J. and Incoll, L. D. 1990. The redistribution of assimilates in field grown winter wheat. J. Exp. Bot. 41: 949-960.
    
    [17] Kuhbauch, W. and Thome, U. 1989. Nonstructural carbohydrates of wheat stems as influenced by sink-source manipulations. J. Plant Physiol. 134: 243-250.
    
    [18] Ehdaie, B. and Waines, J. G. 2001. Sowing date and nitrogen rate effects on dry matter and nitrogen partitioning in dread and durum wheat. Field Crops Res. 73: 47-61.
    
    [19] Koutroubasa, S. D. and Ntanos, D. A. 2003. Genotypic differences for grain yield and nitrogen utilization in Indica and Japonica rice under Mediterranean conditions. Field Crops Res. 83: 251-260.
    [1] 陈防,鲁剑巍.SPAD-502叶绿素计在作物营养快速诊断上的应用初探.湖北农业科学,1996,(2):31-34.
    [2] Peng S., Garcia F. V., Laza R. C., Gassman K. G.. Adjustment for specific leaf weight improves chlorophyll meters estimate of rice leaf nitrogen concentration. Agronomy Journal, 1993, 85(5): 926-928.
    [3] 吴良,陶勤南.水稻叶绿素计诊断追氮法研究.浙江农业大学学报,1999,25(2):135-138.
    [4] 赵镛洛,鄂文顺,肖免.日本水稻氮素营养诊断简介.世界农业,1992,(11):27.
    [5] 王绍华,曹卫星,王强盛,丁艳锋,黄丕生,凌启鸿.水稻叶色分布特点与氮素营养诊断.中国农业科学,2002,35(12):1461-1466.
    [6] 李刚华,丁艳锋,薛利红,王绍华.利用叶绿素计(SPAD-502)诊断水稻氮素营养和推荐追肥的研究进展.植物营养与肥料学报,2005,11(3):412-416.
    [1] 张福锁主编.土壤与植物营养研究新动态(第一卷).北京:北京农业大学出版社,1992,73-82.
    [2] GRANA TO T C, RA PER C D. Proliferation of maize roots in response to localized supply of nitrate. Journal of Experimental Botany, 1989,40:263-275.
    [3] Growly P H. Natural selection and the Michaelis constant. J Theor Biol, 1975, 50: 471-475.
    [4] BROUW ERR. Nutritive influences on the distribution of dry matter. Plant and soil, 1962, 32: 424-438.
    [5] 史正军,樊小林.作物对氮素养分高效吸收的根系形态学研究进展.广西农业生物科学2001,22(3):225-229.
    [6] 杨惠杰,李义珍,黄育民,等.超高产水稻的产量构成和库源结构.福建农业学报,1999,140:1-5.
    [7] 姚立生.江苏省五十年代以来中釉稻品种产量及性状的演变.江苏农业学报,1990,6(3):38-44.
    [8] 徐正进,陈温福,张龙步,等.水稻高产品种物质分析水稻高产理论与实践,北京:中国农业出版社,1994.
    [9] 白良明 张凤鸣.水稻产量及构成因素的灰色关联度分析初探.农业系统科学与综合研究,2001,17(1):65-66.
    [10] Ntanos, D. A., Koutroubas, S. D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Res. 2001, 74: 93-101.
    [11] Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agronomy Journal, 1982, 7: 526-564.
    [12] 荣湘民,刘强,朱红梅.水稻的源库关系及碳、氮代谢的研究进展.中国水稻科学,1998,12:63-69.
    [13] 孙羲.作物营养与肥料.北京,农业出版社,1990.
    [14] 王余龙,蔡建中.江苏农学院学报,1990,11(4):27-31.
    [15] 黄见良,邹应斌,彭少兵.水稻对氮素的吸收、分配及其在组织中的挥发损失.植物营养与肥料学报.2004,10(6):579-583.
    [16] 张亚丽.水稻氮效率基因型差异评价与氮高效机理研究.博士论文,南京农业大学出版社,2006.4.
    [17] 刘国栋水稻的氮素利用效率、光合作用和产量潜力.世界农业.2000,13.
    [18] 张金恒,王珂,王人潮.叶绿素计SPAD-502在水稻氮素营养诊断中的应用.西北农林科技大学学报,2003,31(2):177-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700