基于数字流域系统的平原河网区非点源污染模型研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在环太湖丘陵地区选择典型小流域以及径流小区开展野外原位试验,通过野外观测和室内分析相结合的方法,研究小流域及不同土地利用下各形态营养盐在自然降雨-径流驱动下的迁移特征,建立了稻季和非稻季营养盐的迁移通量与径流通量的回归方程,揭示了营养盐在暴雨条件下随径流的流失过程,重点分析了不同土地利用下营养盐迁移的频率分布特征和时空分布特征,以及导致营养盐迁移时空分布存在显著差异的主要原因,对比了不同土地利用下各形态营养盐的迁移通量。
     针对平原河网区稻田面积所占比例较高的特点,从稻田水分和营养盐运移转化规律出发,结合土壤胶体对营养盐的吸附—解吸速率公式,动态模拟稻田土壤养分的运移和转化,建立水—土耦合稻田营养盐流失模型,并采用田间实测数据对模型参数进行率定和验证,并对模型关键参数进行灵敏性分析。
     在荷兰Delft水力学研究所开发的污染负荷模型(Waste Load Model,WLM)的基础上,将环太湖丘陵小流域的研究成果以及稻田营养盐流失模型引入WLM,通过借鉴非点源污染模型的发展方向和特点,提出适合平原河网区非点源污染物迁移特征的时空分配方法,建立了分布式污染负荷模型(Distributed Waste Load Model,DWLM)。模型将污染源分为工业、大城市居民、城镇居民、农村居民、城市和城镇降雨径流、旱地降雨径流、稻田降雨径流、畜禽养殖和渔业养殖等9种类型,采用四种模式计算各种污染源的负荷量,并根据污染源的迁移特征分别计算其入河过程。
     针对平原河网区河道纵横交错、湖泊星罗棋布的特点,分别采用零维、一维和准三维水质模型模拟平原河网区的中小型湖泊、河道以及大型浅水湖泊等水体中污染物的运移转化规律。结合污染物在不同水体中的转化特征,分别建立各种水质指标的动力反应项,对三种水质模型的基本方程组进行耦合联解,并与水量模型实现步长级耦合,建立了平原河网区多维数水质模型。水质模型包含C、N、P三种物质的循环,模拟COD、BOD_5、TN、TP、NH_3-N和DO等六种水质指标。
     在3S技术的支撑下,将DWLM模型与降雨径流模型和水质数学模型相耦合,建立了基于数字流域系统的平原河网区非点源污染模型。并将其成功应用于太湖流域平原地区,取得了满意的效果。
A typical agricultural watershed and runoff plots in hilly area around Taihu Lake was selected and experiment in situ was conducted. The transporation characteristics of various forms nutrients drived by natural rainfall-runoff were studied by field observations and laboratory testings. Regression relationships between transporation fluxes and runoff fluxes were set up. Temporal variation of agricultural nutrients concentration under storm rainfall condition was analyzed also. Furthermore, different land uses in the watershed were investigated on frequency, temporal and spatial distribution characteristics of nutrients losses in surface runoff. The main reasons about significant difference of temporal and spatial distribution were analyzed and transportation fluxes of nutrients were compared between different land uses.
    The water-soil coupled nutrient loss model of paddy field had been developed based on the characteristic that paddy field area in plain river network had a large proportion. It can simulate the nutrient transporation and transformation dynamically and adsorption-desorption rate formula of soil colloid was adopted. The parameters of the model were calibrated and verified with field datas, and sensitivity analyses were carried out on critical parameters.
    Distributed waste load model (DWLM) was derived from waste load model (WLM) developed by Delft Hydraulics Institute, and draw lessons from non-point source pollution model and distributed hydrological model. Research findings of the watershed around Taihu Lake and nutrient loss model of paddy field were introduced into the DWLM. In addition, temporal and spatial distribution method for non-point source pollution of river networks was promoted. The pollution source of DWLM had nine types, such as industries, municipal citizens, town citizens, rural citizens, municipal and town runoff, dryland runoff, paddy field runoff, fish breeding and poultry raising. The waste loads from different pollution source were calculated by using corresponding methods.
    As channels in river networks area were crisscross and lakes were densely, 0d, 1d and 2d water quality models that had different kinetic reaction items were applied to modeling transportation and transformation of pollutants in medium and small sized lakes, channels and large lake respectively. The basic equations of the different dimensional water quality models were coupled with each other to solving as well as hydrodynamic model. The water quality models were comprised of C, N and P cycling and can simulate 6 water-quality indexes, including COD, BOD_5, TN, TP, NH_3-N and DO.
引文
[1] Novotny V, Chesters G. Handbook of non-point pollution: sources and management. New York: Van Nostrand Reinbhold Company, 1981: 81-103.
    [2] Tim U S, Jolly R. Evaluating agricultural nonpoint-source pollution using integrated geographic information systems and hydrologic/water quality model. J Environ. Qual., 1994, 23(1): 25-35.
    [3] Boers P C M. Nutrient emissions from agriculture in the Netherlands, causes aud remedies. Water Science and Technology, 1996, 33(4-5): 183-189.
    [4] Van der Molen D T, Breeuwsma A, Boers P C M. Agricultural nutrient losses to surface water in the Netherlands: impact, strategies, and perspectives. J Environ Qual, 1998, 27(1): 4-11.
    [5] Carpenter S R, Carcao N F, Correll D L, et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 1998, 8(3): 559-568.
    [6] Schueler T R. The importance of imperviousness. Watershed Protection Techniques, 1994, 1(1): 100-111.
    [7] Pitt R, Field R. Water-quality effect from urban runoff. Journal AWWA, 1977, 69(8): 432-436.
    [8] Browne F X. Non-point sources. Journal WPCF, 1978, 50(6): 1665-1674.
    [9] Sator J D, Boyd G B, Agardy F J. Water pollution aspects of street surface containments. 1974, 46(3): 458-467.
    [10] Collins P G, Ridgway J W. Urban storm runoff quality in southeast michigan. Journal of Envir. Engrg. Division, ASCE, 1980, 106(EE1): 485-501.
    [11] Sator J D, Gaboury D R. Street sweeping as a water pollution control measure: lessons learned over the past ten years. The Science of the Total Environment, 1984, 33(1): 171-183.
    [12] Viklander M. Particle size distribution and metal content in street sediments. Journal of Envir. Engrg. Division, ASCE, 1988, 124(8): 761-766.
    [13] Andral M C, Roger S. Particle size distribution and hydrodynamic characteristics of solid matter carried by runoff from motorways. Water Environment Research, 1999, 71(4): 398-407.
    [14] 赵剑强.城市地表径流污染与控制.北京:中国环境科学出版社,2002:3-4.
    [15] Stotz G. Investigations of the properties of the surface water run-off from federal highways in the FRG. The Science of the Total Environment, 1987, 59: 329-337.
    [16] Ellis K V, White G, Warn A E. Surface water pollution and its control. England: Macmillan Publishers Ltd., 1989: 268-270.
    [17] Stanley D W. Pollutant removal by a stormwater dry detention pond. Water Environment Research, 1996, 68(6): 1076-1083.
    [18] 夏青.城市径流污染系统分析.环境科学学报,1982,2(4):17-19.
    [19] 刘爱蓉,曹万金.南京市城北地区暴雨径流污染研究.水文,1990,10(6):15-23.
    [20] 车武,汪慧珍,任超等.北京城区屋面雨水污染及利用研究.中国给水排水,2001,17(6):57-61.
    [21] James W. Current practices in modelling the management of stormwater impacts. USA: Lewis Publishers: 121-139.
    [22] Drapper D, Tomlinson R, Williams P. Pollutant concentrations in road runoff: southeast queensland case study. J. of Envir. Engrg., ASCE, 2000, 126(4): 313-320.
    [23] Ellis J B, Revitt D M. The contribution of highway surfaces to urban stormwater sediments and metal loadings. The Science of the Total Environment, 1987, 59(4): 339-349.
    [24] Young G K, Stein S, Cole P, et al. Evaluation and management of highway runoff water quality. Washington D. C.: Federal Highway Administration, 1996.
    [25] Chui T W, Mar B W, Horner R R. Pollutant loading model for highway runoff J. of Envir. Engrg., ASCE, 1982, 108(EE6): 1193-1210.
    [26] Wu J S, Allan C J, Saunders W L, et al. Characterization and pollutant loading estimation for highway runoff. J. of Envir. Engrg., ASCE, 1998, 124(7): 584-592.
    [27] Lee J H, Bang K W. Characterization of urban stormwater runoff Water Research, 2000, 34(6): 1773-1780.
    [28] Driscoll E, Shelley P E, Strecker E W. Pollutant loadings and impacts from highway stormwater runoff, Vols. Ⅰ-Ⅳ. Washington D. C.: Federal Highway Administration, 1990.
    [29] Barrett M E, Zuber R D, Collins E R, et al. A review and evaluation of literature pertaining to the quantity and control of pollution from highway runoff and construction. Austin, Texo: University of Texas at Austin, 1993.
    [30] Stotz G, Krauth K. The pollution from pervious pavements of an experimental highway section:first results. Sci. Tot. Environ., 1994, 146/147: 465-470.
    [31] Ranchet J. Impacts of porous pavements on the hydraulic behaviour and the cleansing of water. Techniques Sciences et Methodes, 1995, 11: 869-871.
    [32] Pagotto C, Legret M, Cloirec P L. Comparison of the hydraulic behaviour and the quality of highway runoff water according to the type of pavement Water Research, 2000, 34(18): 4446-4454.
    [33] Jr. Whipple W, Hunter J V. Effects of storm frequency on pollution from urban runoff Journal WPCF, 1977, (11): 2243-2248.
    [34] Akan A O. Urban stormwater hydrology. USA: Technomic Publishing Company Inc., 1993.
    [35] Charbeneau R J, Barrett M E. Evaluation of methods for estimating stormwater pollutant loads. Water Environment Research, 1998, 70(7): 1295-1302.
    [36] Krein A, Schorer M. Road runoff pollution by polycyclic aromatic hydrocarbons and its contribution to river sediments. Water Research, 2000, 34(16): 4110-4115.
    [37] Vaze J, Francis H S Chiew. Experimental study of pollutant accumulation on an urban road surface. Urban Water, 2002, 4(2): 379-389.
    [38] Sutherland R C, Field R. Discussion on effects of storm frequency on pollution from urban runoff J. Water Pollution Control Fed., 1978, 50(5): 977-979.
    [39] Deletic A, Maksimovic C, Ivetic M. Modelling of storm wash-off of suspended solids from impervious surfaces. J. Hydr. Res., ASCE, 1997, 35(1): 97-188.
    [40] Metcalf and Eddy Inc., University of Florida, Water Resources Engineers Inc. Storm Water Management Model, volume 1: final report. Washington D. C.: Environmental Protection Agency, 1971.
    [41] Barrett M E, Jr. Irish L B, Jr. Malina J F, et al. Characterization of highway runoff in Austin, Texas, Area. J. of Envir. Engrg., ASCE, 1998, 124(2): 131-137.
    [42] Hardee J, Miller R A, Mattraw Jr. H C. Stormwaterrunoff data for a multifamily residential area, Dade County, Florida. Tallahassee, Fla.: U.S. Geological Survey, 1979.
    [43] Haster T W, James W P. Predicting sediment yield in storm-water runoff from urban areas. J. Water Resour. Plng. and Mgmt., ASCE, 1994, 120(5): 630-650.
    [44] Deletic A B, Maksimovic C T. Evaluation of water quality factors in storm runoff from paved areas. J. of Envir. Engrg., ASCE, 1998, 124(9): 869-879.
    [45] Olness A E, Smith S J, Rhoades E D, et al. Nutrient and sediment discharge from agricultural watersheds in Oklahoma. J. Environ. Qual., 1975, 4(2): 331-336.
    [46] Romkens M J, Nelson D W. Phosphorus relationships in runoff from fertilized soil. J. Environ. Qual., 1974, 3(1): 10-13.
    [47] Sharpley A N. Dependence of runoff phosphorus on extractable soil phosphorus. J. Environ. Qual., 1995, 24(5): 920-926.
    [48] Pote D H, Daniel T C, Nichols D J, et al. Relationship between phosphorus levels in three Ultisols and phosphorus concentrations in runoff. J. Environ. Qual., 1999, 28(1): 170-175.
    [49] 朱兆良,文启孝.中国土壤氮素.江苏:江苏科学技术出版社,1992:213-287.
    [50] 彭琳,王继增,卢宗藩.黄土高原旱作土壤养分剖面运行与坡面流失的研究.西北农业学报,1994,3(1):62-66.
    [51] 黄丽,张光远,丁树文.侵蚀紫色土壤颗粒流失研究.水土保持学报,1999,5(1):35-39.
    [52] 黄满湘,章申,等唐以剑.模拟降雨条件下农田径流中氮素的流失过程.土壤与环境,2001,10(1):6-10.
    [53] Smith K A, Jackson D R, Pepper T J. Nutrient losses by surface runoff following the application of organic manures to arable land:Nitrogen. Environmental Pollution, 2001, 112: 41-51.
    [54] 袁冬海,王兆塞,等陈欣.不同农作方式红壤坡耕地土壤氮素流失特征.应用生态学报,2002,13(7):863-866.
    [55] 李志博,王起超,陈静.农业生态系统中氮素循环研究进展.土壤与环境,2002,11(4):417-421.
    [56] Campbell C A, Zentner R P, Selles F, et al. Nitrate leaching as influenced by fertilization in the brown soil zone. Canadian Journal of Soil Science, 1993, 73(4): 387-397.
    [57] 吕殿青,同延安,孙本华.氮肥施用对环境污染影响的研究.植物营养与肥料学报,1998,4(1):8-15.
    [58] Bergstrom L, Brink N. Effects of differentiated applications of fertilizer N leaching losses and distribution of inorganic N in soil. Plant and Soil, 1986, 93(3): 333-345.
    [59] Liang B C, MacKenzie A F. Changes of soil nitrate-nitrogen and denitrification as affected by nitrogen fertilizer on two Quebec soils. Journal of Environmental Quality, 1994, 23(3): 521-525.
    [60] 范丙全,胡春芳,平建立.灌溉施肥对壤质潮土硝态氮淋溶的影响.植物营养与肥料学报,1998,4(1):16-21.
    [61] Webb J, Henderson D, Anthony S G. Optimizing livestock manure applications to reduce nitrate and ammonia pollution: scenario analysis using the MANNER model. Soil Use and Management, 2001, 17: 188-194.
    [62] Jones R D, Schwab A P. Nitrate leaching and nitrite occurrence in a fine-textured soil. Soil Science, 1993, 155(4): 272-278.
    [63] Gaines T P, Gaines S T. Soil texture effect on nitrate leaching in soil percolates. Communications in Soil Science and Plant Analysis, 1994, 25(13-14): 2561-2570.
    [64] Owens L B, Edwards W M, Shipitalo M J. Nitrate leaching through lysimeters in a cornsoybean rotation. Soil Science Society of America Journal, 1995, 59(3): 902-907.
    [65] Dou Z, Fox R H, Toth J D. Seasonal soil nitrate dynamics in corn as affected by tillage and nitrogen-source. Science Society of America Journal, 1995, 59(3): 858-864.
    [66] Eghball B, Binford G D, Baltensperger D D. hosphorus movement and adsorption in a soil receiving long-term manure fertilizer application. Journal of Environmental Quality, 1996, 25(6): 1339-1343.
    [67] Sharpley A N, Withers P J A. The environmentally-sound management of agricultural phosphorus. Fert. Res., 1994, 39: 133-146.
    [68] Heckrath G, Brookes P C, Poulton P R, et al. hosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment. J. Environ. Qual., 1995, 24(5): 904-910.
    [69] Sharpley A N. Identifying sites vulnerable to phosphorus loss in agricultural runoff J. Environ. Qual., 1995, 24(5): 947-951.
    [70] Syers J K, Harris R F, Armstrong D E. Phosphate chemistry in lake sediments. J. Environ. Qual., 1973, 2(1): 1-14.
    [71] Sharpley A N. The selective erosion of plant nutrients in runoff Soil Sci. Soc. Am. J, 1985, 49(6): 1527-1534.
    [72] John N Q, John A C, Tim M H. The selective removal of phosphorus from soil:is event size important? J. Environ. Qual., 2001, 30(3): 538-545.
    [73] Sharpley A N. The enrichment of soil phosphorus in runoff sediments. J. Environ. Qual., 1980, 9(3): 521-526.
    [74] Li W C, Armstrong D E, Williams J D, et al. Rate and extent of inorganic phosphate exchange in lake sediments. Soil Sci. Soc. Am. Proc., 1972, 36: 279-284.
    [75] Kuo S, Lotse E G. Kinetics of phosphate adsorption by calcium carbonate and Ca-kaolinite. Soil Sci. Soc. Am. Proc., 1972, 36: 725-729.
    [76] Kuo S, Lotse E G. Kinetics of phosphate adsorption and desorption by hematite and gibbsite. Soil Sci., 1974, 116: 400-406.
    [77] Chien S H, Clayton W R. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci. Soc. Am. J, 1980, 44: 265-268.
    [78] Sanyal S K, De Datta S K. Chemistry of phosphorous transformations in soil. Advances in Soil Science. New York: SpringerVerlag, 1991: 1-120.
    [79] Ahuja L R, Sharpley A N, Lehman O R. Effect of soil slope and rainfall characteristics on phosphorus in runoff J. Environ. Qual., 1982, 11(1): 9-13.
    [80] Ahuja L R, Sharpley A N, Yamamoto M, et al. The depth of rainfall-runoff-soil interaction as determined by ~(32)p. Water Resour. Res., 1981, 17(4): 969-974.
    [81] Shapley A N. Depth of surface soil-runoff interaction as affected by rainfall, soil slope, and management. Soil Sci. Soc. Am. J, 1985, 49(4): 1010-1015.
    [82] Smith R A, Alexander R B, Wolman M G. Water-quality trends in the nation's rivers. Science, 1986, 235(4796): 1607-1015.
    [83] Whipple W, Hunter J. Nonpoint sources and planning for water pollution control. Water Pollut. Control Fed., 1977, 49(1): 15-23.
    [84] Apicella Gruy, Schuepfer Frederick, Zaccagnino James, et al. Water-quality modeling of combined sewer overflow effects on Newtown Creek. Water Environment Research, 1996, 68(6): 1012-1024.
    [85] Huber W C, Dickinson R E. Storm water management model version 4, user's manual. Athens: Environmental Protection Agency, 1988: 569.
    [86] Beasley D B, Huggins L F, Monke E J. ANSWERS: a model for watershed planning. Trans. ASAE., 1980, 23(4): 938-944.
    [87] Bouraoui F, Dllaha T A. ANSWERS-2000: runoff and sediment transport model. J. Environ. Eng., 1983, 122(6): 493-502.
    [88] Johanson R C, Kittle J L. Design, programming and maintenance of HSPF. J. Technical Topics in Civil Eng., 1983, 109(1): 41-57.
    [89] Bicknell B R, Imhoff J C, Kittle J L, et al. Hydrological simulation program-FORTRAN, user's manual for release 11: Environmental Research Laboratory Office of Research and Development, USEPA, 1996: 755.
    [90] USDA. CREAMS, a field scale model for chemicals, runoff, and erosion from agricultural management systems. Washington, D. C., 1980: 643.
    [91] Williams J R, Jones C A, Dyke P T. A modeling approach to determining the relationship between erosion and soil productivity. Trans. ASAE., 1984, 27(1): 129-144.
    [92] Williams J R, Nicks A D, Arnold J G. Simulator for water resources in rural basins. J. Hydraul. Eng., 1985, 111(6): 970-1186.
    [93] Arnold J G, Srinivasan R, Muttiah T S, et al. Large area hydrologic modeling and assessment part I: model development. JAWRA, 1998, 43(1): 73-89.
    [94] Arnold J G, Srinivasan R, Muttiah T S, et al. Large area hydrologic modeling and assessment part Ⅱ: model application. JAWRA, 1998, 43(1): 91-101.
    [95] Haith D A, Tubbs L J, Pickering N B. Simulation of pollution by soil erosion and soil nutrient loss. Wageningen, Netherlands: Pudoc, 1984: 77.
    [96] Young R A, Onstad C A, Bosch D D, et al. AGNPS: A non-point source pollution model for evaluating agricultural watersheds. J. Soil and Water. Conserv., 1989, 44(2): 168-173.
    [97] Wilson B N, Barfield B J, Ward A D, et al. A hydrology and sedimentology watershed model. Part Ⅱ: sedimentology component. Trans. ASAE, 1984, 27(5): 1378-1384.
    [98] Ascough J C, Baffaut C, Nearing M A, et al. The WEPP watershed model: Ⅰ. Hydrology and erosion. Trans. ASAE., 1997, 40(6): 921-933.
    [99] Leonard R A, Knisel W G, Still D A. GLEAMS: groundwater loading effects of agricultural management systems. Trans. ASAE., 1987, 30(5): 1403-1418.
    [100] 王飞儿,吕唤春,陈英旭等.基于AnnAGNPS模型的千岛湖流域氮、磷输出总量预测.农业工程学报,2003,19(6):281-284.
    [101] Whittemore R C. The BASINS model. Water Environ. Technol., 1998, 10(12): 57-61.
    [102] Singh V P. Computer Models of Watershed Hydrology. Highlands Ranch, Colorado, USA: Water Resources Publications, 1995.
    [103] 陈欣,郭新波.采用AGNPS模型预测小流域磷素流失的分析.农业工程学报,2000,16(5):44-47.
    [104] 赵刚,张天柱,陈吉宁.用AGNPS模型对农田侵蚀控制方案的模拟.清华大学学报(自然科学版),2002,42(5):705-707.
    [105] 曹文志,洪华生,张玉珍等.AGNPS在我国东南亚热带地区的检验.环境科学学报,2002,22(4):537-540.
    [106] 胡远安,程声通,贾海峰.非点源模型中的水文模拟--SWAT模型在芦溪小流域的应用为例.环境科学研究,2003,16(5):29-32,36.
    [107] 刘阳,王凯,徐淳宁等.小流域土壤养分运移的数学模型及模拟.吉林大学学报(信息科学版),2004,22(3):279-282.
    [108] 李怀恩.透水性流域非点源产污模型的初步研究.水利学报,1998,(2):16-19.
    [109] 张水龙,庄季屏.分散型流域农业非点源污染模型研究.干旱区资源与环境,2003,17(5):76-80.
    [110] 胡雪涛,陈吉宁,张天柱.非点源污染模型研究.环境科学,2002,23(3):124-128.
    [111] 王德甫,翟家瑞.遥感技术在水文学中的应用前景.人民黄河,1996,18(5):55-59.
    [112] Zhang R, Hamerlink J D, Gloss S P, et al. Determination of non-point sources pollution using GIS and numerical models. J. Environ. Qual., 1996, 25(3): 411-419.
    [113] Parson S C, Hamlett J M, Robillard P D, et al. Determining the decision making risk from AGNPS simulation. Trans. ASAE., 1998, 41(6): 1679-1688.
    [114] Kao Jehng-jung, Hong Hong-Jyh. NPS model parameter uncertainty analysis for an off-stream reservoir. Water Resources Bulletin, 1996, 32(5): 1067-1079.
    [115] Beck M B. Water quality modeling: a review of the analysis of uncertainty. Water. Resour. Res., 1987, 23(8): 1393-1442.
    [116] 王少平,陈满荣,俞立中等.GIS在农业非点源污染研究中的应用.农业环境保护,2000,19(5):289-292.
    [117] 傅国伟,程声通.水污染控制规划.北京:清华大学出版社,1985.
    [118] 谢永明.环境水质模型概论.北京:中国科学技术出版社,1996.
    [119] 叶常明.水环境数学模型的研究进展.环境科学进展,1993,1(1):74-80.
    [120] Streeter H W, Phelps E B. A Study of the Pollutional and Natural Purification of the Ohio River, Ⅲ. Factor COncerned in the Phenomena of Oxidation and Reaeration. Vol. No. 146., Feb: Public Health Bulletin, 1925.
    [121] 郭劲松,李胜海,龙腾锐.水质模型及其应用研究进展.重庆建筑大学学报,2002,24(2):109-115.
    [122] Ditoro D M, Fitzpatrick J J, Thompson R V. Water Quality Analysis Simulation Program(WASP)-Documentation: Hydrosciences, 1983.
    [123] Ambrose R B, Jr Wool T A, Martin J L. The Water Quality Analysis Simulation Program. WASPS, Part A: Model Documentation. Athens, Georgia: U S Environmental Protection Agency, 1993.
    [124] 陈长胜.海洋生态系统动力学和模型.北京:高等教育出版社,2003.
    [125] Eng B A, Srinivasan R, Arnold J, et al. Nonpoint source pollution modeling using models integrated with Geographic Information System (GIS). Wat. Sci. Tech, 1993, 28(3-5): 685-590.
    [126] Baxter E Vieux, Needham Scott. Nonpoint pollution model sensitiveity to grid-cell size. Water Resource Plann. Manage, 1993, 119(2): 141-157.
    [127] Udoyara S Tim, Jolly Robert, Liao Hsiu-hua. Impact of landscape feature and feature placement on agricultural nonponint source pollution control. J. Water Resour. Plann. Manage, 1995, 121(6): 463-470.
    [128] He Chansheng, Shi Changan, Yang Changchun, et al. A windows-based GIS AGNPS intergace. Am. Water Res. Assoc., 2001, 37(2): 395-406.
    [129] Srinivasan R, Engel B A. A spatial decision support system for assessing agriculture nonpoint source pollution. Water Resources Bulletin, 1994, (3): 441-451.
    [130] Robert H Fraser. Predicting stream pathogen loading from livestock using a geographical information system-based delivery model. Environ. Qual., 1998, 27:935-945.
    [131] 董亮,朱荫湄,王珂.应用GIS建立西湖流域非点源污染信息数据库.浙江农业大学学报,1999,25(2):117-120.
    [132] 于苏俊,高平平,何政伟.基于GIS平台的农业非点源污染研究.西南交通大学学报,2002,37(5):593-596.
    [133] 王宁,朱颜明,徐崇刚.GIS用于流域径流污染物的量化研究.东北师大学报自然科学版,2002,39(2):92-98.
    [134] 王少平,俞立中,许世远等.基于GIS的苏州河非点源污染的总量控制.中国环境科学,2002,22(6):520-524.
    [135] 黄金良,洪华生,张珞平等.基于GIS的九龙江流域农业非点源氮磷负荷估算研究.农业环境科学学报,2004,23(5):866-871.
    [136] 万超,张思聪.基于GIS的潘家口水库面源污染负荷计算.水力发电学报,2003,7(2):62-68.
    [137] 河海大学.引江济太水量水质联合调度研究报告,2004:206-208.
    [138] 周慧平,葛小平,许有鹏等.GIS在非点源污染评价中的应用.水科学进展,2004,15(4):441-444.
    [139] Liao H, Tim U S. Interactive water quality modeling within GIS environment. Comp. Environ. Urban syst., 1994, 18(2): 343-363.
    [140] 张秋文,张勇传,王乘等.数字流域整体构架及实现策略.水电能源科学,2001,19(3):18-23.
    [141] 李晓梅,黄朝晖等.并行与分布式可视化技术及应用.北京:国防工业出版社,2001.
    [142] 王玲.基于Vega的数字流域三维可视化仿真系统的应用研究.武汉:华中科技大学,2004.
    [143] 高超.太湖地区农田土壤磷素状况及其环境行为研究.南京:中国科学院南京土壤研究所,2000:45.
    [144] 杨桂山 于兴修,欧维新.非点源污染对太湖上游西苕溪流域水环境的影响.湖泊科学,2003,15(1):49-55.
    [145] 国家环保总局.水和废水监测分析方法.北京:中国环境科学出版社,1989.
    [146] Shelley P E, Driscoll E D, Sartor J D. Probabilistic characterization of pollutant discharges from highway stormwater runoff Sci. of the Total Envir., 1987, 59(3): 401-410.
    [147] 梁涛,张秀梅,章申等.西苕溪流域不同土地类型下氮元素输移过程.地理学报,2002,57(4):389-396.
    [148] 王鹏,高超,姚琪等.环太湖丘陵地区农田氮素随地表径流输出特征.农村生态环境,2005,21(2):46-49.
    [149] 黄漪平,范成新,濮培民等著.太湖水环境及其污染控制.北京:科学出版社,2001:7.
    [150] 梁涛,王浩,章申等.西苕溪流域不同士地类型下磷素随暴雨径流的迁移特征.环境科学,2003,24(2):35-40.
    [151] 单保庆,尹澄清,白颖等.小流域磷污染物非点源输出的人工降雨模拟研究.环境科学学报,2000,20(1):33-37.
    [152] 陈欣,范兴海,李东.丘陵坡地地表径流中磷的形态及其影响因素.中国环境科学,2000,20(3):284-288.
    [153] Schuman G E, Spomer R G, Piest R F. Phosphorous losses from four agricultural watersheds on Missouri Valley Loess. Soil Sci. Soc. Am. Proc., 1973, 37: 424-427.
    [154] Turner Ⅱ B L. The sustainability principle in global agendas: implication for understanding land use/land cover change. The Geographical Journal, 1997, 163(2): 133-140.
    [155] 李秀彬.全球环境变化研究的核心领域—土地利用/土地覆被变化的国际研究动向.地理学报,1996,51(6):553-558.
    [156] 孟庆华,杨林章.三峡库区不同土地利用方式的养分流失研究.生态学报,2000,20(6):1028-1033.
    [157] 杨金玲,张甘霖,张华等,et al.亚热带地区土地利用对磷素径流输出的影响.农业环境科学学报,2003,22(1):16-20.
    [158] 杨金玲,张甘霖,张华等.丘陵地区流域土地利用对氮素径流输出的影响.环境科学,2003,24(1):16-23.
    [159] 李俊然,陈利顶,郭旭东等.土地利用结构对非点源污染的影响.中国环境科学,2000,20(6):506-510.
    [160] Barton A P, Fullen M, Mitchell D J, et al. Effects of soil conservation measures on erosion rates and crop productivity on subtropical Ultisols in Yunnan Province, China. Agriculture, Ecosystems and Environment, 2004, 104(2): 343-357.
    [161] Kumar R, Ambasht R S, Srivastava A, et al. Reduction of nitrogen losses through erosion by Leonotis nepetaefolia and Sida acuta in simulated rain intensities. Ecological Engineering, 1997, 8(3): 233-239.
    [162] 中国土壤学会农业化学专业委员会编.土壤农业化学常规分析方法.北京:科学出版社,1983:20-169.
    [163] 鲁如坤主编.土壤农业化学分析方法.北京:中国农业科技出版社,2000:166-185.
    [164] Thomson N R, McBean E A, Snodgrass W, et al. Sample size needs for characterizing pollutant concentrations in highway runoff. Journal of Envir. Engrg., 1997, 123(10): 1061-1065.
    [165] 沈善敏.中国土壤肥力.北京:中国农业出版社,1998:57-110.
    [166] Quinton J N, Catt J A, Hess T M. The selective removal of phosphorus from soil:is event size important? J. Environ. Qual., 2001, 30(3): 538-545.
    [167] Duffy J, Chung C, Boast C, et al. A simulation model of biophysiochemical transformations of nitrogen in tile-drained corn belt soils. J. Environ. Qual., 1975, 4(4): 447-480.
    [168] Baker J L, Johnson H P. Nitrate-nitrogen in tile drainage as affected by fertilization. J. Environ. Qual., 1981, 10(4): 523-528.
    [169] Kanwar R S, Johnson H P, Baker J L. Comparison of simulated and measured nitrate losses in tile effluent. Transactions of the ASAE, 1983, 26(5): 1451-1457.
    [170] Addiscott T M, Wagenet R J. Concepts of solute leaching in soils: a review of modeling approaches. Journal of Soil Science, 1985, 36(3): 411-424.
    [171] 彭世彰等.水稻节水灌溉技术.北京:中国水利水电出版社,1998:15-17.
    [172] 马立珊,汪祖强,张水铭等.苏南太湖水系农业面源污染及其控制对策研究.环境科学学报,1997,17(1):39-47.
    [173] Fillery R P, Simpson J R, De Datta S K. Influence of field environment and feitilizer management on ammonia loss from flooded soil. Soil Sci. Soc. Am. J, 1984, 48(4): 914-920.
    [174] Fillery R P, De Datta S K. Ammonia volatilization from nitrogen volatilization as a N loss mechanism in flooded rice fields. Fert. Res., 1986, 9(1): 78-98.
    [175] 田光明,蔡祖聪,曹金留等.镇江丘陵区稻田化肥氮的氨挥发及其影响因素.土壤学报,2001,38(3):324-332.
    [176] 戴树桂.环境化学.北京:高等教育出版社,1996:164.
    [177] Skeffington R A. Accelerated nitrogen input: A new problem or a new perceptive? Plant and Soil, 1990, 128(1): 1-11.
    [178] 苏成国,尹斌,朱兆良.稻田氮肥的氨挥发损失与稻季大气氮的湿沉降.应用生态学报,2003,14(11):1884-1888.
    [179] 张明炷等.土壤学与农作学(第三版).北京:水利电力出版社,1994:21.
    [180] 谢鹏,蒋建敏,熊毅.我国几种主要土壤胶体的NH_4~+吸附特征.土壤学报,1988,25(2):175-183.
    [181] 张翠云,张胜,贾秀梅等.三氮吸附性能对比实验研究.勘察科学技术,2001,6(5):37-39.
    [182] 朱兆良.我国土壤供氮和化肥氮去向研究的进展.土壤,1985,17(1):2-9.
    [183] 黄见良,李合松,李建辉等.不同杂交水稻吸氮特性与物质生产的关系.核农学报,1998,12(2):89-94.
    [184] 陈荣业,朱兆良.氮肥去向的研究Ⅰ.稻田土壤中氮肥的去向.土壤学报,1982,19(2):122-129.
    [185] 朱兆良.太湖地区水稻土的氮素矿化及土壤供氮量的预测.土壤学报,1984,21(1):29-35.
    [186] 陈德立,朱兆良.稻田土壤供氮能力的解析研究.土壤学报,1988,25(3):262-267.
    [187] 朱兆良,陈德立,张绍林等.稻田非共生固氮对当季水稻吸收氮的贡献.土壤,1986,18(5):225-229.
    [188] 李生秀,艾绍英,何华.连续淹水培养条件下土壤氮素的矿化过程.西北农业大学学报,1999,27(1):1-5.
    [189] 文启孝,张晓华,杜丽娟等.太湖地区主要土壤中的固定态铵及其有效性.土壤学报,1988,25(1):22-30.
    [190] Stanford G, Smith S J. Nitrogen mineralization potentialls of soils. Soil Sci. Soc. Am. Proc., 1972, 36: 465-472.
    [191] 彭克明等编.农业化学.北京:农业出版社,1980:92-94.
    [192] Bremner J M. Recent researches on problems in the use of urea as a nitrogen fertilizer. Fertilizer Res., 1995, 42: 321-329.
    [193] Cabrera M L, Kissel D E, Bock B R. Urea hydrolysis in soil: effects of urea concentration and soil pH. Soil Biol Biochem, 1991, 23(2): 1121-1124.
    [194] 李新慧.稻田土壤中硝化—反硝化机制的研究[博士学位论文].南京:中国科学院南京土壤研究所,1994.
    [195] De Datta S K, Buresh R J, Samson M I, et al. Direct measurement of ammonia and denitrification fluxes from urea applied to rice. Soil Sci. Soc. Am. J, 1991, 55(2): 543-548.
    [196] 张水铭,马杏法.苏南太湖地区农业面源磷的污染.土壤,1995,27(3):141-143.
    [197] 李寿田,周健民,王火焰等.不同土壤磷的固定特征及磷释放量和释放率的研究.土壤学报,2003,40(6):908-914.
    [198] Shukla S S, Syers J K, Williams J D, et al. Sorption of inorganic phosphate by lake sediments. Soil Sci Soc Am Proc, 1971, 35: 244-249.
    [199] Khalid R A, Patrick W H Jr, De Laurie R D. P sorption characteristics of flooded soils. Soil Sci Soc Am J, 1977, 41: 305-310.
    [200] Ryden J C, Syers J K, Harris R F. Phosphorus in runoffand streams. Adv Agron, 1973, 25: 1-45.
    [201] Heckpath G, Brookes P C, Poulton P R, et al. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment. J Environ Qual, 1995, 24(904-910).
    [202] 刘德林.两系杂交稻对磷素营养吸需特性研究.激光生物学报,1999,8(3):201-204.
    [203] 鲁如坤,时正元,顾益初等.土壤积累态磷研究Ⅱ.磷肥的表观积累利用率.土壤,1995,27(6):286-289.
    [204] Oberson A, Fardeau J C, Besson J M, et al. Soil phosphorus dynamics in cropping systems managed according to conventional and biological agricultural methods. Biol Fertil Soils, 1993, 16(1): 111-117.
    [205] Oberson A, Besson J M, Maire N, et al. Microbiological processes in soil organic phosphorus transformations in conventional and biological cropping system. Biol Fertil Soils, 1996, 21(1): 138-148.
    [206] 高效江,胡雪峰,王少平等.淹水稻田中氮素损失及其对水环境影响的试验研究.农业环境保护,2001,20(4):196-198,205.
    [207] 何文寿,李生秀,李辉桃.水稻对铵态氮和硝态氮吸收特性的研究.中国水稻科学,1998,(12):4.
    [208] 连纲,王德建,林静慧等.太湖地区稻田土壤养分淋洗特征.应用生态学报,2003,14(11):1879-1883.
    [209] 冉炜,沈其荣,郑金伟.尿素浓度、培养时间和温度对3种土壤尿素水解过程的影响.南京农业大学学报,2000,23(2):43-46.
    [210] 邱凤琼,严昶昇,陈恩凤.土壤肥力实质的研究Ⅳ.水稻土.土壤学报,1987,24(3):232-238.
    [211] 殷永娴,李玉祥,彭春华等.水稻根际硝化作用的生态与生物反硝化.土壤,1996,28(3):123-127.
    [212] 廖先苓,徐银华,朱兆良.淹水种稻条件下化肥氮的硝化—反硝化损失的初步研究.土壤学报,1982,19(3):257-263.
    [213] 李荣刚,戴其根,皮家.江苏太湖稻麦两熟地区生态、经济施氮量的初步研究.江苏农业研究,2000,21(2):30-35.
    [214] 王强,杨京平,沈建国等.稻田田面水中三氮浓度的动态变化特征研究.水土保持学报,2003,17(3):51-54.
    [215] 高超,张桃林,吴蔚东.不同利用方式下农田土壤对磷的吸持与解吸特征.环境科学,2001,22(4):67-72.
    [216] 高超,张桃林,吴蔚东.氧化还原条件对土壤磷素固定与释放的影响.土壤学报,2002,39(4):542-549.
    [217] 李孝良.几种水稻土对磷的吸附及解吸特性研究.安徽农业技术师范学院学报,1999,13(1):21-26.
    [218] 丁训静,姚琪,阮晓红.太湖流域污染负荷模型研究.水科学进展,2003,14(2):189-192.
    [219] Pavoni J L. Handbook of water quality management planning. New York: Van Nostrand Reinhold Company, 1977: 69-71.
    [220] 夏立忠,杨林章,吴春加等.太湖地区典型小城镇降雨径流NP负荷空间分布的研究.农业环境科学学报,2003,22(3):267-270.
    [221] 国家环保总局南京环境科学研究所.太湖流域污染源调查及污染负荷分析.南京,1997:8-66.
    [222] 高俊峰,陆铭峰.太湖流域省市边界圩区建设问题初探.湖泊科学,2004,16(3):203-208.
    [223] 高俊峰,毛锐.太湖平原圩区分类及圩区洪涝分析Ⅱ以湖西区为例.湖泊科学,1993,5(4):307-315.
    [224] 河海大学.引江济太水量水质联合调度研究报告,2004.
    [225] 张二骏,顾再仁,姚志坚.不恒定流一、二维联解潮流计算.人民珠江,1986,(5):7-13.
    [226] 顾再仁,姚志坚.不恒定流多口门一、二维联解计算.人民珠江,1991,(2):22-25.
    [227] 钟上海,何焯霞,熊涛等.伶仃洋与东四口门一、二维连接水流数学模型的验证及方案计算.人民珠江,1991,(2):17-21.
    [228] 马燮铫.太湖流域河湖耦合水文数学模型及太湖流场模拟计算.南京:河海大学,1993.
    [229] 赖锡军,汪德爟.非恒定水流的一维!二维耦合数值模型.水利水运工程学报,2002,(2):48-51.
    [230] 李光炽,王船海.大型河网水流模拟的矩阵标识法.河海大学学报,1995,23(1):36-43.
    [231] 李光炽,王船海,周晶晏.二维流场模拟的矩阵标识法.河海大学学报,2002,30(3):80-84.
    [232] 河海大学.引江济太水量水质联合调度研究报告,2004:22-25.
    [233] 水利部太湖流域管理局.太湖流域水资源及开发利用现状调查评价报告.上海,2004:138-153.
    [234] 太湖流域管理局.太湖流域河网水质研究报告,1997.
    [235] 金相灿.湖泊富营养化控制技术与管理技术.北京:化学工业出版社,2001:18.
    [236] 张水铭,马杏法,汪祖强.农田排水中磷素对苏南太湖水系的污染.环境科学,1993,14(6):24-30.
    [237] 张桂英,汪祖强.苏南太湖地区农田水中COD的调查研究.农村生态环境(学报),1994,10(2):41-44.
    [238] 邢光熹,曹亚澄,施书莲等.太湖地区水体氮的污染源和反硝化.中国科学B辑,2001,31(2):130-137.
    [239] 李荣刚.苏南高产农田氮磷肥料的利用率和管理.北京:中国农业大学,2000:26-36.
    [240] 国家环保总局.运河及典型河网水量调控研究报告.北京,1990:159-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700