聚乙二醇模拟干旱胁迫对黄/红麻种子萌发及茎段扦插的效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱、盐碱、低温(冷害)是影响作物生产的三大非生物因素。其中,干旱对农作物造成的损失在所有非生物胁迫中占首位。麻类作物是我国继粮、棉、油、菜之后的第五大作物群,在我国是极具特色的经济作物。其中,黄/红麻综合用途极广,是21世纪公认的优势作物。黄麻纤维品质优于红麻,但因其抗旱性不及红麻而极大地限制了黄麻生产。红麻本身具有一定的耐旱性,但目前国内外尚未有对其进行全面、系统的抗旱资源的鉴定工作,且未有任何关于水分胁迫对红麻扦插效应的报道。因此建立系统的黄/红麻抗旱品种的鉴定体系,选育具有较高耐旱性的黄/红麻品种,对于发展黄/红麻生产具有重要意义。
     本研究分为两大部分:其一,以6份圆果种(38、3号、4号、09-10、09-30、09-35)、5份长果种(09-1、09-2、09-40、09-41、09-43)共11份黄麻种质资源以及4个红麻种质资源(P3A、R4、R10、R11)为材料,研究不同的聚乙二醇(PEG)浓度对黄/红麻种子各萌发指标的效应,以寻求一套评价黄/红麻种子萌发期抗旱性强弱的评价体系,并筛选萌发期抗旱性较强的黄/红麻品种;其二,以4个黄麻材料(09展16、09展17、中引黄麻1号、中黄麻1号)的扦插苗和5个红麻材料(P3A、992、R10、R11、R12)的扦插苗为供试材料,研究了不同PEG浓度对黄/红麻扦插苗的生长影响,以建立评价黄/红麻扦插苗抗旱性强弱的鉴定体系,筛选抗旱性较强的黄/红麻扦插材料。得出如下主要研究结果:
     1、所有供试材料的发芽率、发芽势、发芽指数、活力指数、芽鲜重、胚根长、胚芽长都随着PEG浓度的增加而减小。除了P3A、R4、R10的胚根长与PEG浓度的相关性不显著,其余指标与PEG浓度的相关关系均达显著水平,可用于对黄/红麻种子萌发期抗旱性进行评价。其中,以活力指数、芽鲜重与PEG浓度的相关性最好。
     2、各材料种子萌发期的抗旱性大小依次为:圆09-30>圆09-35>圆38>圆09-10>圆4号>圆3号;长09-41>长09-40>长09-43>长09-2>长09-1;R1 1>R10>P3A>R4。供试的圆果种黄麻种子在萌发期的抗旱性最好的是圆09-30,相对最差的是圆3号;长果种黄麻种子萌发期抗旱性相对最好的是长09-41,相对最差的是长09-1;在红麻供试材料中,R11的种子萌发期的抗旱性相对最好,R4相对最差。5%-10%的PEG浓度可作为区分长果种黄麻萌发期抗旱性差异的适宜浓度;15%-20%的PEG浓度可作为区分圆果种黄麻萌发期抗旱性差异的理想浓度;区分红麻种子抗旱性差异的浓度建议在10%~20%之间选择。
     3,、一定浓度的PEG对黄/红麻扦插的发根抑制作用均较明显。15%及以上的PEG浓度的处理对黄/红麻的扦插生根有很强的抑制作用,甚至不能正常存活。而红麻扦插发根前就已经死亡。红麻扦插发根较黄麻扦插发根慢约8天左右。
     4、黄/红麻扦插苗的可溶性蛋白含量与PEG浓度的相关关系较复杂,可溶性糖含量与PEG浓度呈正相关,根系活力、根长、根表面积、根尖数均与PEG浓度均为极显著负相关,根体积与PEG浓度的相关关系除了中引黄麻1号的差异不显著外,其余各材料下均达到1%的极显著水平。因此,可溶性蛋白不适宜作为扦插苗抗旱性评价的生理指标,其余6个指标均可作为评价黄/红麻扦插苗抗旱性强弱的指标。
     5、黄麻扦插苗的抗旱性大小为:09展16>09展17>中黄麻1号>中引黄麻1号;红麻扦插苗的抗旱性大小为:992>R10>P3A>R11。
Drought, salt, low temperature (chilling injury) are three non-biological factors affecting crop growth and restricting crop production. The loss caused by drought on crops in all non-biological stress accounting for first place. Fiber crops is the fifth-largest group after grain, cotton, oil and food crops, and is extremely unique economic crops in our country. Among them, jute and kenaf are recognized the dominant crops in the 21st century, they are very versatile. Jute fiber quality is better than kenaf, but its drought resistance is less than kenaf that limited jute production severely. Kenaf itself has some drought resistance, but has not yet to makes a comprehensive and systematic drought-resistant resources appraisal, and no any reports on water stress of kenaf cutting. So making a comprehensive and systematic drought-resistant resources appraisal system and breeding the high drought resistance jute and kenaf varieties is very important to develop the jute and kenaf production.
     This research is divided into two parts:First, take 6 copies of Corchorus.capsularis (38、No.3、No.4、09-10、09-30、09-35),5 copies of Corchorus.olitorius(09-1、09-2、09-40、09-41、09-43) a total of 11 jute germplasm resources, and 4 kenaf germplasm(P3A、R4、R10、R11) as materials, research effects of different PEG concentrates on germination index of jute and kenaf seeds. In order to find a evaluation system of evaluating drought resistance in seed germination of jute and kenaf, and choose the stronger drought resistance varieties in germination, to provide the reference for the other growth periods of drought resistance identification. Second, take 4 jute materials (09 zhan 16、09 zhan 17、Zhongyin No.1 of jute、Zhong No.1 of jute) of the cuttings and 4 kenaf materials(P3A,992, R10, R11, R12) of the cutting as materials, research effects of different PEG concentrates on cuttings of jute and kenaf. In order to research effect of PEG simulated drought stress concentrates on cuttings of jute and kenaf, gradually establish evaluation system of drought resistance identification of jute and kenaf cuttings, choose the stronger drought resistance varieties in jute and kenaf cutting. The main results obtained are as follows:
     1. The germination energy, germination rate, germination index, vigor index, buds fresh weight, radicle long and germ long etc. of all the tested materials is decrease when the PEG concentration increase. In addition to the correlation of radicle length of P3A、R4 and RIO between PEG concentration are not significantly enough, the other indexes and the correlation between the concentration of PEG were all significantly, and can be used for seed germination of jute and kenaf evaluation of drought resistance. The vigor index and buds fresh weight have the best correlation results with PEG concentration.
     2. The rang of the drought-tolerrance in all materials seeds:Round 09-30> Round 09-35> Round 38> Round 09-10> Round 4> Round 3; Long 09-41> Long 09-40>long 09-43> Long 09-2> Long 09-1; R11> R10> P3A> R4. The drought resistance of Corchorus.capsularis in drought resistance of seed that Round 09-30 tested the best, Round 3 is worst relatively. The Long 09-41 is the best and Long 09-1 is the worst in Corchorus.olitorius. R11 is relatively good, R4 is relatively bad in kenaf.5% to 10% of the PEG concentration can be chose as a suitable concentration to distinguish differences of drought resistance between Corchorus.olitorius; 15% to 20% of the PEG concentration to distinguish the difference of drought resistance between Corchorus.capsularis made the ideal of the concentration; 10% to 20% of the PEG concentration is suggested to distinguish the difference of drought resistance of kenaf.
     3. A certain concentration of PEG significantly inhibited the rooting of jute and kenaf cuttings.15% and above PEG concentration have a strong inhibitory effect on the rooting of jute and kenaf, not even the normal survive. The kenaf cuttings were dead before rooting. Kenaf cuttings root more slowly than jute cuttings about 8 days.
     4. The correlation between the soluble protein content of jute and kenaf cuttings with the concentration of PEG are complex. The soluble sugar content is positively correlated with PEG concentration. Root vigor, root length, root surface area and root number are all significantly negatively correlated with PEG concentration. Root volume of the correlation between the concentration of PEG addition to Zhongyin No.1 of jute was not significant, the rest of the materials to reach 1% under all the difference. Therefore, the soluble protein is not suitable for evaluating the drought-tolerance of cuttings. The remaining six indicators can be used as evaluation of the cuttings of kenaf and jute drought resistance indicators.
     5. Drought resistance of jute cuttings:09 zhan 16> 09 zhan 17> Zhong No.1 of jute> Zhongyin No.1 of jute; drought resistance of kenaf cuttings:992> R10> P3A> R11.
引文
[1]陈荣敏,杨学举,梁凤山等.利用隶属函数法综合评价冬小麦的抗旱性.河北农业大学学报,2002,25(2):7-9
    [2]程舟,鲛岛一言,陈家宽,等.日本红麻的研究、开发和应用.中国麻业,2001,23(3):5~13
    [3]戴高兴,彭克勤,邓国富.聚乙二醇模拟干旱对耐低钾水稻幼苗的根系生长及某些生理特性的影响.植物生理学通讯,2007,43(5):865~868
    [4]方平平,祁建民,粟建光,等.世界黄麻红麻生产概况与发展前景.中国麻业科学,2009,31(3):215~219
    [5]方志红,董宽虎NaCl胁迫对碱嵩可溶性糖和可溶性蛋白含量的影响.中国农学通报,2010报.2010,26(16):147~149
    [6]高世铭,赵松岭.1995.半干旱区春小麦水分亏缺补偿效应研究[J].西北植物学报,15(8):32~39
    [7]高祥斌,张秀省,蔡连捷,等.聚乙二醇模拟干旱对白蜡苗生理指标的影响.辽宁林业科技,2009,2,11-23
    [8]高志红,陈晓远.聚乙二醇造成的水分胁迫对水稻根系生长的影响.华北农学报,2009,24(2):128~133
    [9]郭春芳,孙云,赖呈纯,等.聚乙二醇胁迫下茶树叶片的蛋白质组分析.茶叶科学,2009,29(2):79~88
    [10]何军贤,傅家瑞.种子LEA蛋白的研究进展.植物生理学通讯,1996,32(4):241-246
    [11]胡立勇,丁艳峰,等.作物栽培学.北京:高等教育出版社,2008.357~361
    [12]胡晓艳,呼天明.李红星.2006.草坪草马蹄金与结缕草种子萌发期抗旱性比较[J].草业科学,23(1):89~92
    [13]黄诚梅,毕黎明,杨丽涛,等.聚乙二醇胁迫对甘蔗伸长期间叶片中脯氨酸积累及其代谢关键酶活性的影响.植物生理学通讯,2007,43(1):77~81
    [14]黄诚梅,杨丽涛,江文,等.聚乙二醇胁迫对甘蔗生长前期叶片水势及脯氨酸代谢的影响.干旱地区农业研究,2008,26(1):205~209
    [15]姜海青.红麻干旱胁迫的蛋白质组学初步研究[学位论文].福州:福建农林大学,2008
    [16]蒋明义,杨文英,徐江,等.渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用.植物学报,1994,36(4):289-295
    [17]兰涛,汪斌,童治军,等.红麻种质资源耐旱性的初步鉴定研究.中国麻业科学,2007,29(6):322~325
    [18]黎裕.作物抗旱鉴定方法与指标.干旱地区农业研究,1993,11(1):91-99
    [19]李合生主编.现代植物生理学.北京:高等教育出版社,2004.399~404
    [20]李合生主编.植物生理生化实验原理和技术.北京:高等教育出版社,2000.164~169
    [21]李娟,章明清,林琼等.水稻根系动态模拟和生长特性研究.福建农业学报,2009,24(3):217~221
    [22]李培英,孙宗玖,阿不来提.PEG模拟干旱胁迫下29份偃麦草种质种子萌发期抗旱性评价.中国草地学报,2010,32(1):32~39
    [23]李振基,宋爱琴.聚乙二醇(PEG)模拟水分胁迫对木荷种子萌发的影响.福建林业科技.2007,34(4):1-3
    [24]李志辉,刘延青,张斌K-IBA处理对仿栗秋季扦插生根的影响.中国农学通报,2010,26(16):109~112
    [25]梁国玲,周青平,颜红波.聚乙二醇对羊茅属4种植物种子萌发特性的影响研究[J].草业科学,2007,24(6):50~53
    [26]刘娥娥,汪沛洪,郭振飞.植物的抗旱诱导蛋白.植物生理学通讯,2001,37(2):155~160
    [27]刘建新,赵国林.干旱胁迫下骆驼蓬抗氧化酶活性与渗透调节物质的变化[J].干旱地区农业研究,2005,23(5):127~131
    [28]骆爱玲,刘家尧,马德钦,等.转甜菜碱脱氢酶基因烟草叶片中抗氧化酶活性增高.科学通报,2000,45(18):1953~1956
    [29]马春晖,张玲.2001.PEG渗调处理改善高冰草种子活力的研究[J].中国草地,23(5):38~40
    [30]孟艳玲,韩振海,闫建河,等.干旱胁迫下平邑甜茶各器官中山梨醇的累积.植物生理学通讯,2007,43(6):1065~1071
    [31]祁建民,方平平,林荔辉,等.浅析黄/红麻发展的技术瓶颈与政策支持.中国麻业科学,2007,29(增刊21:408~410
    [32]祁建民,方平平,徐建堂,等.黄麻红麻生物质高效利用与区域发展产业带建设.中国麻业科学,2007,29(2):57~63
    [33]曲东,王保莉,汪沛洪,等.渗透胁迫下磷对玉米叶片有机渗透物质的影响[J].干旱地区农业研究,1996,14(2):72~77
    [34]阮松林,薛庆中.2002.植物的种子引发[J].植物生理学通讯,38(2):198~202
    [35]邵艳军,山仑等.植物耐旱机制研究进展.中国生态农业学报,2006,14(4):16~19
    [36]沈建军,柏明娥,洪利兴.美丽胡枝子的扦插繁殖试验研究.安徽农业科学,2009,37(15):6966~6967
    [37]史燕山,骆建霞,王煦,等.5种草本地被植物抗早性研究.2005,33(5):130~133
    [38]宋金耀,宋刚,李辉等.几种园艺植物扦插生根过程中生化指标的变化.江苏农业科学.2010(3):211~214
    [39]宋丽华,刘雯雯.陈淑芬.PEG处理对臭椿种子萌发的影响[J].农业科学研究,2005,26(4):25~29
    [40]孙彩霞,沈秀瑛.作物抗旱性鉴定指标及数姑分析方法的研究进展.中国农学通报,2002,18(1):49-51
    [41]孙文越,王辉,黄久常,等.外源甜菜碱对干旱胁迫下小麦幼苗膜脂过氧化作用的影响.西北植物学报,2001,21(3):487~49
    [42]汤章城.逆境条件下植物脯氨酸的积累及其可能的意义.植物生理学通讯,1984(1):15-21
    [43]陶爱芬,张晓琛,祁建民,等.红麻综合利用研究进展与产业化前景.中国麻业科学,2007,29(1):1-5
    [44]王黄英,郭还威,罗坤等.几个玉米品种抗旱性的直接鉴定.玉米科学,2000,8(1):40~41
    [45]王玮,李德全.植物盐分胁迫与水分胁迫的异同.植物生理学通讯,2003,39(5):491-492
    [46]肖强,郑海雷,陈瑶等.盐度对互花米草生长及脯氨酸、可溶性糖和蛋白质含量的影响[J].生态学杂志,2005,24(4):373~376
    [47]辛金霞,李春燕,刘荣堂,戎郁萍.2010.一年生黑麦草、高羊茅及杂交羊毛黑麦草种子萌发期抗旱性研究[J].湖南农业科学,5(5):121~124
    [48]熊和平主编.麻类作物育种学.中国农业科学技术出版社,2008,208~214
    [49]许雯,孙梅好,朱亚芳,等.甘氨酸甜菜碱增强青菜抗盐性的作用.植物学报,2001:43(8):809~814
    [50]薛慧勤,孙兰珍,甘信民.花生品种抗旱性综合评价及其抗旱机理的数量分析.干旱地区农业研究,1993,17(1):83~87
    [51]曾彦军,王彦荣,萨仁,田雪梅.2002.几种旱生灌木种子萌发对干旱胁迫的响应[J].应用生态学报,13(8):953~956
    [52]张立新,李生秀.钾和甜菜碱对减缓冬小麦水分胁迫的效应.西北农林科技大学学报,2006,34(5):103~106
    [53]张林生,赵文明.LEA蛋白与植物的抗旱性.植物生理学通讯,2003,39(1):61~66
    [54]张十功,高吉寅,宋景芝,等.甜菜碱对NaCl胁迫下小麦细胞保护酶活性的影响.植物学通报,1999,16(4):429~432
    [55]赵博生,衣艳君,刘家尧,等.外源甜菜碱对干旱/盐胁迫下的小麦幼苗生长和光合功能的改善.植物学通报,200],18(3):378~380
    [56]赵庆典,郁崇文.亚麻/黄麻混纺初探.中国麻业科学.2010,32(1):20~23
    [57]郑利,赵松岭.1995.半干旱区春小麦水分亏缺补偿效应研究[J].西北植物学报,15(8):125~133
    [58]钟振华,潘磊,张梨花.苎麻扦插育苗能显著增产.江西农业学报,2005,17(4):93~94
    [59]邹琦主编.植物生理学试验指导.北京:中国农业出版社,2000.7~47
    [60]Daniels M J, Mirkov T E, Chrispeels M J. The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol,1994,106:1325~1333
    [61]Deping Xu, Xiaolan Duan, Baiyang Wang, et al. Expression of a late embryogenesis Abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physoil,1996,110:249~257.
    [62]Dure Ⅲ L,Crouch M,Harada J,et al.Common amino acid sequence domains among the LEA proteins of higher plants. Plant Molecular Biology,1989,12:475-486
    [63]Holmberg N, Bulow L.Improving stress tolerance in plants by gene transfer[J]. Trends in Plant Science,1998,3(2):61~66
    [64]Hong Z L, Lakkineni K, Zhang Z M, el at. Removal of feedback inhibition of Al-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress[J]. Plant Physiology,2000,122:1129~1136
    [65]James M. Morgan. Osmoregulation and water stress in higher plants.Ann. Rev. Plant Physiol,1984,35:299~319
    [66]Jones M M. Osmotic adjustment in leaves of sorghum in response to water deficits[J]. Plant Physiol,1978,61:122~126
    [67]Ingram J,Bartels D. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol,1996,47:377~403
    [68]Lu G L, Paul A L, McCarty D R, et al. Transcription factor veracity:is GBF3 responsible for ABA-regulated expression of Arabidopsis.Adh. The Plant Cell,1996,8:847~857
    [69]Maurel C, Chrispheels M J. Aquaporins Molecular entry into plant water relations. Plant Physiology, 2001,125:135~138
    [70]Mckersie B D, Bowley S R, Harjanto E, et al. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Paysiol,1996,111:1177~1181
    [71]Mckersie B D,Chen Y R,Debeus M,et al. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.) [J]. Plant Physiol,1993,103:1155~1163
    [73]Michel B E, Kaufmann M R. The osmotic potential of polyethylene glycol 6000[J].Plant Physiol.1973,51:914~916
    [74]Sandal N N, Marcker K A. Soybean nodulin 26 is homologous to the major intrinsic protein of the bovine lens fiber membrane. Nucleic Acids Research,1988,16(19):9347
    [75]Singh N K, Handa A K, Hasegawa P M. Protein associated with adaptation of cultured tobacco cells to NaCl[J]. Plant Physiol,1985,79:126~137
    [76]Weaver J E. Root Development of Field Crops [M]. New York:McGraw-Hill Book Company, 1926:291
    [77]Yamada M, Morishita H, Urano K, el at. Effects of free proline accumulation in petunias under drought stress [J]. Journal Experimental Botany,2005,56 (417):1975~1981
    [78]Yang XiuFeng, Li FengLan, Sun XuHong et al. Study on the influencing factors and the root mechanism in cutting process of Prunus limilis(Bge).Sok. Agricultural Science & Technology-Hunan,2009,10(2):113~117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700