有机无机肥磷配施的协同效应与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷素是植物生长必需的大量营养元素之一,但我国磷肥生产和应用面临以下三个问题:(1)磷矿资源不足;(2)化学磷肥的利用效率低,制约了农业的发展;(3)过量的磷肥投入导致环境污染。因此,提高磷肥利用率对农业可持续发展和保护生态环境具有重要意义。有机无机肥配施是提高养分效率的重要途径,有关其协同效应前人多以氮素为研究对象,获得了有机无机肥氮配施的最佳比例和协同增效的机理,而在有机无机肥配施对磷的影响方面关注较少,尤其是保证作物稳产高产的有机无机肥磷的最佳配比、有机无机肥配施提高磷肥利用率的机理方面研究更少。本文旨在探求不同有机无机肥磷配施的协同效应及机理,为农业生产上磷肥高效利用提供理论依据。
     采用盆栽模拟生物试验,分别以过磷酸钙和猪粪为无机和有机肥磷源,设置不施磷肥(0:0)、化肥磷(100:0)、90%化肥磷+10%有机肥磷(90:10)、85%化肥磷+15%有机肥磷(85:15)、80%化肥磷+20%有机肥磷(80:20)、70%化肥磷+30%有机肥磷(70:30)、有机肥磷(0:100)等7个处理;在上述有机无机肥配施的基础上,另设5个解磷菌(荧光假单胞杆菌)处理:90:10K3(90:10+K3解磷菌)、85:15K3、80:20K3、70:30K3和0:100K3。通过连续种植小麦、水稻、小麦和大豆四茬作物,研究了有机无机肥磷配施对作物产量、土壤磷素形态、土壤微生物量碳磷、土壤磷素的吸附解吸和迁移的影响及有机无机磷配施并接种解磷菌后作物产量和土壤微生物群落的变化。主要结果如下:
     分析麦-稻-麦-豆四茬作物的产量发现,第一茬小麦籽粒产量以100:0处理最高,但与80:20的处理差异不显著,其他有机无机肥磷配施处理显著低于80:20处理;第二茬水稻籽粒产量以100:0处理最高,且显著高于各有机无机肥磷配施处理;第三茬小麦产量以80:20的处理最高,显著高于100:0处理,80:20处理与70:30处理之间无显著差异;第四茬大豆产量也以80:20处理的最高,显著高于100:0处理,但与其他有机无机肥磷配施处理间无显著差异。该结果表明,有机无机肥磷的协同效应随着处理茬数增多而愈发明显。
     经过四茬有机无机肥磷配施后,酸性水稻土上90:10、85:15、80:20和70:30处理的活性有机磷分别比100:0处理增加40.0%、53.3%、60.0%和64.4%,中等活性有机磷分别比100:0处理增加29.6%、39.8%、51.7%和53.4%。有机无机肥配施也影响土壤无机磷的形态,形态分级测定发现,酸性水稻土中80:20处理的铁磷和闭蓄态磷含量较100:0处理显著降低,其他形态的无机磷含量变化很小;石灰性中土壤经过三季有机无机配施后,80:20处理的Ca2-P、Ca8-P、Al-P和Fe-P的相对含量比100:0处理显著提高,Calo-P和O-P的相对含量显著降低,施入土壤的无机磷主要转化为Ca2-P和Ca8-P,分别占无机磷积累总量的28.5%和27.8%。
     土壤植酸酶活性经过四茬施肥后发生了改变,随着有机肥磷配施比例的提高,植酸酶活性显著增加,80:20处理植酸酶活性在小麦、水稻、小麦和大豆季比100:0处理分别提高14.9%、12.7%、49.6%和28.1%。80:20和70:30处理的土壤微生物量碳均显著高于100:0处理。大豆幼苗期、开花期、鼓粒期和成熟期80:20处理的土壤微生物量碳含量分别比100:0处理增加29.2%、31.9%、85.7%和130%,处理80:20土壤微生物量磷含量分别是处理100:0的2.11、1.84、2.16和1.49倍;处理80:20的作物磷素累积量分别比100:0处理增加43.1%、42.7%、64.7%和24.1%。土壤速效磷含量大豆幼苗期80:20处理显著低于100:0处理,开花期处理80:20是100:0处理的1.36倍,鼓粒期的土壤速效磷含量为70:30>80:20>85:15>90:10>100:0处理,成熟期处理80:20的土壤速效磷含量是处理100:0的2.10倍。
     有机无机肥磷配施影响磷在土壤中吸附解吸和迁移。经过四茬不同施肥后,酸性水稻土上80:20处理的磷吸附亲和力常数和最大吸附量显著低于100:0处理,磷累积解吸量高于100:0处理;石灰性土壤上经过连续3茬有机无机肥磷配施后,80:20处理的磷吸附亲和力常数在4和8h时显著低于100:0处理。32P示踪薄层层析试验表明,酸性水稻土中80:20处理的32P随展开剂迁移的距离明显高于100:0处理,80:20处理的比移值在4、8和12h内分别比100:0处理高11.7%、16.6%和34.8%。土柱淋洗试验中80:20处理的32P在淋洗液达到13.1mL时即出现,而100:0处理则延后至淋洗液达19.0mL时始出现;处理0:0、100:0和80:20在50mL总淋洗液中淋出的32P量分别占32P总加入量的1.6%、8.4%和9.8%。石灰性土壤中80:20的处理在淋洗液达到48.1mL时出现32P,而100:0的处理在淋洗液达到70.3mL时方检测到32P。
     在有机无机肥磷配施的基础上接种解磷菌显著影响作物产量。第一茬小麦产量以80:20K3的处理最高,分别比处理80:20和100:0增加8.3%和5.2%;第二茬水稻籽粒产量80:20K3处理比80:20处理增加20.7%;第三茬小麦产量处理80:20K3比100:0处理增加54.95%;第四茬大豆产量以70:30K3最高,80:20K3处理比100:0处理高16.82%。有机无机肥磷配施四茬并接种解磷菌,改变了土壤微生物群落,平板计数结果显示,处理80:20K3的细菌数量比处理80:20增加一个数量级,真菌数量则比后者少一个数量级。变性梯度凝胶电泳研究结果表明,80:20K3处理的细菌群落与100:0处理明显不同,处理80:20K3的真菌群落与处理100:0仅有0.1的相似性。BIOLOG磷源分析发现,处理80:20K3的土壤平均颜色变化值显著高于处理100:0,处理80:20K3的Shannon指数、Simpson指数和Mclntosh指数均高于100:0处理,这些可能是接种解磷菌较有机无机配施提高作物产量的机理之一。。
     综合四茬的结果,80%无机肥磷与20%有机肥磷配合施用能够提高作物产量,是本试验条件下有机无机肥磷配施的最佳比例。有机无机肥磷协同增效的主要机理是减少酸性水稻土上铁磷和闭蓄态磷的固定,显著降低石灰性土壤上Ca10-P和O-P含量,增加Ca2-P和Ca8-P含量;提高植酸酶活性,增加活性和中等活性有机磷含量;减少土壤对磷的吸附,增加磷在土壤中的移动性;土壤微生物通过其生物量磷的变化调节土壤磷素供给进而与作物需磷规律相吻合,提高磷素有效性。解磷微生物的应用进一步活化土壤磷素,尤其在有机无机肥磷配施的第一、二季,对于保持作物的稳产高产,提高磷肥利用率具有积极意义。
Phosphorus (P) is a major nutrient limiting plant growth in many soils. The problems of phosphate fertilizer industry China is facing today include1) limited resources of phosphate minerals;2) low use efficiency;3) Environmental pollution caused by overuse of phosphate fertilizer. Phosphorus availability to crops can be increased by application of organic or inorganic amendments such as manures, composts, crop residues, rock phosphates or various commercial inorganic P fertilizers. Little is known about the effects of long-term application of organic and inorganic P fertilization on P fixation, organic P mineralization and crop yields. The objectives of this study are1) to investigate the effects of additions of relatively small amounts of superphosphate (SP) combined with various rates of pig manure (PM) on crop yields, organic and inorganic P fractions, accumulation of microbial biomass carbon and phosphorus (MB-C, P) and the correlation between MB and yields.2) to determine the P fate by using32P tracing technology.3) to investigate the effect of combined application of SP and PM inoculated with phosphate-solubilizing bacteria (PSB).
     The pot experiment with different ratios of inorganic to organic fertilizer was conducted to evaluate the best proportion of SP to PM. The treatments included0:0,100:0,90:10,85:15,80:20,70:30, and0:100of inorganic to organic P fertilizer ratios. Another pot experiment used SP and manure in combination and in the same time inoculated with phosphate-solubilizing bacteria (PSB) K3. The treatments included the90:10K3(SP manure+K3),85:15K3,80:20K3,70:30K3,0:100K3. The main results obtained were as follows.
     The100:0treatment gave the highest yield and shoot biomass, which was similar to the yield from80:20treatment in the first wheat season.The yield of rice grain was the highest in the100:0treatment, which was much higher than any other treatments. The80:20treatment gave the highest content of soil available P, which was similar to the yield from the third wheat in the70:30treatment. The grain yield from80:20treatment was significantly higher than that from100:0treatment. There was no difference between the yields from70:30and0:100treatments. The yield of soybean was the highest in the100:0treatment, which was significantly higher than that from the100:0treatment, increasing by5.7%. The result indicated that the combined organic and inorganic phosphorous fertilizer had a significant synergistic effect in long time application.
     As for various forms of organic P under different fertilization in paddy soil, labile organic P(LOP) in90:10,85:15,80:20and70:30treatments was higher than that of the100:0treatment, increasing by40.0%,53.3%,60.0%and64.4%, respectively. In the treatment of no P application, the contents of moderately labile organic P (MLOP) decreased. The decreasing rate was in order of0:100>70:30=80:20>85:15>90:10>100:0>0:0. The combination of organic and inorganic P fertilizers had stronger effects on iron phosphates (Fe-P), calcium phosphates (Ca-P) and occluded P (O-P) than on aluminium phosphates (Al-P) in paddy soil. Compared with the100:0treatment, soil inorganic phosphorous (Pi) decreased by12.4%,16.1%,17.8%and19.3%when the ratios of TSP/PM fertilizer were90:10,80:20,70:30, and0:100, respectively. When combining chemical fertilizer and organic manure application to the calcareous soil, the accumulated phosphorus was transformed mainly into readily available forms of Ca2-P and Ca8-P, which increased the inorganic phosphorus pool of Ca8-P、A1-P、Fe-P and Ca2-P by combine use of chemical fertilizer and organic manure, and increased the contents of these forms of inorganic phosphorus as well.
     The phytase activity of the80:20treatment was higher than that of the100:0treatment, increasing by14.9%(the first wheat season)、12.7%(the second rice season)、49.6%(the third wheat season) and28.1%(the fourth soybean season), respectively. MB-C and MB-P of the80:20treatment was higher than that of the100:0treatment at soybean different stages, and P accumulation of the80:20treatment was also higher than that of the100:0treatment, increasing by43.1%(the seeding stage),42.7%(the flowering stage),64.7%(the seed filling stage),24.1%(the harvest stage), respectively. Under the combined fertilization, the dynamics of soybean phosphorous uptake was well regulated by MB-P, which promoted the soil available P and phosphorous accumulation in plant. We found a remarkably close relationship between MB-P and yield, which was y=23.413Ln(x)-40.254(r2=0.9584).
     We conducted a32P-labeled experiment to investigate the mechanisms affecting P availability in the paddy soil and calcareous soil. Sorption isotherms of the treated paddy soils were different.32P in the80:20treatment moved faster than the other two treatments in the paddy soil. The leachate volumes collected from the paddy soil before32P first appeared were13.1(80:20),19.0(100:0) and19.8(0:0) mL. Total32P recovery for the100:0and the80:20treatments increased significantly after about45mL of leachate were collected. When the amount of leachate was50mL, only1.6%,8.4%and9.8%of the total32P added leached out from the0:0,100:0and80:20treated soils, respectively. The other result indicated that the phosphorus isothermal adsorption curves of the3experimental calcareous soils all properly fitted the Langmuir adsorption equation. The affinity constant of P in the80:20treatment was lower than in the100:0treatment.32P in the80:20treatment also moved faster than the other two treatments in the calcareous soil. The leachate volumes collected from the calcareous soil before32P first appeared were40.8(80:20) and70.3(100:0) mL
     The result showed the80:20K3treatment gave the higher yield than the100:0treatment in every season. The80:20K3treatment was not significantly different from the70:30K3treatment and higher than the100:0treatment in shoot biomass. The combination of TSP and manure inoculated with PSB could increase quantities of bacteria, decrease counts of fungi remarkably and affect on soil microbial communities through denaturing gradient gel electrophoresis (DGGE) and change the average well color development (AWCD).
     Our results indicated that a ratio of80:20resulted in the best grain yield, which was a more suitable ratio than the other ratios. Mechanisms of combined application of organic and inorganic phosphorous fertilizers improving the phosphorous use efficiency were that1) Fe-P and O-P were decreased in paddy soil, and Ca2-P, Ca8-P were increased meanwhile Ca10-P, O-P were decreased in calcareous soil.2) The phytase activity had been promoted by the combining organic and inorganic fertilization. LOP and MROP of the combined organic and inorganic fertilizer treatments were higher than that of the inorganic fertilizer treatment.3) The manure could block P-absorbing sites effectively, thus decreasing Pi from fixation.4) Plant phosphorous uptake was well regulated by MB-P, which increased fertilizer use efficiency. Inoculation with phosphorus solubilizing bacteria can activated soil P and observably improve the P use efficiency in the first and second seasons, which has a positive significance for keeping high and stable yields.
引文
Abbas S., Gilkes R.J. Phosphorus transformations and their relationships with calcareous soil properties of southern wester Australia[J]. Soil Science Society of America Journal.1999,63:809-815
    Agbenin J.O., Goladi J.T. Dynamics of phosphorus fractions in a savanna Alfisol under continuous cultivation[M]. Oxford, ROYAUME-UNI:Wiley-Blackwell,1998.
    Andrew Bissett, Alan E. Richardsona, Geoff Bakerb, a P.H.T. Long-term land use effects on soil microbial community structure and function[J]. Applied Soil Ecology.2011,51:66-78
    Arihara J.A.N. Phosphorus uptake by pigeonpea and its role in cropping systems of the Indian subcontinent[J]. Science.1990,248:477-480
    Aulakh M.S., Pasricha N.S., Bahl G.S. Phosphorus, fertilizer response in an irrigated soybean-wheat production system on a subtropical, semiarid soil[J]. Field Crops Research.2003,80 (2):99-109
    Ayaga G., Todd A., Brookes P.C. Enhanced biological cycling of phosphorus increases its availability to crops in low-input sub-Saharan farming systems.[J]. Soil Biol. Biochem.2006,38:81-90.
    Ayed L.B., Hassen A., Jedidi N., Saidi N., Bouzaiane O., Murano F. Microbial C and N dynamics during composting process of urban solid waste. [J]. Waste Manage. Res.2007,25:24-29
    Bandyopadhyay K.K., Misra A.K., Ghosh P.K., Hati K.M. Effect of integrated use of farmyard manure and chemical fertilizers on soil physical properties and productivity of soybean[J]. Soil & Tillage Research.2010,110:115-125
    Bolan N.S.评述菌根真菌在植物吸收磷素中的作用[J].土壤学进展.1993,21(2):21-27
    Bolan N.S., Naidu R., Mahimairaja S.e.a. Influence of low-molecular-weight organic acids on the solubilization of phosphates[J]. Biol Fertil Soils.1994,18:311-319
    Boparai H.K., Sharma K.N. Phosphorus adsorption and desorption characteristics of some soils as affected by clay and available phosphorus content.[J]. Journal of the Indian Society of Soil Science.2006,54 (1): 111-114
    Bowman R.A., Cole C.V. Transformation of organic phosphorus substrates in soils as evaluated by NaHCO3-extraction[J]. Soil Sci.1978,125:49-54
    Braum S.D., Helmke P.A. White lupin utilizes soil phosphorus that is unavailable to soybean[J]. Plant and soil. 1995,176:95-100
    Brookes P.C., Powlson D.S., Jenkinson D.S. Measurement of microbial biomass phosphorus in soil[J]. Soil Biol. Biochem.1982,14:319-329
    Cakmakci R., Donmez F., Aydmd A. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions[J]. Soil Biology & Biochemistry.2006,38: 1482-1487
    Calbrix R., Barray S., Chabrerie O., Fourrie L., Laval K. Impact of organic amendments on the dynamics of soil microbial biomass and bacterial communities in cultivated land[J]. Appl. Soil Ecol.2007,35: 511-522
    Chang S.C., Jackson M.L. Fractionation of soil phosphorus[J]. Soil Sci.1957,84:133-144.
    Colvan S.R., Syers J.K., O'Donnell A.G. Effect of long-term fertilizer use on acid and alkaline phosphomonoesterase and phosphodiesterase activities in managed grassland[J]. Bio.Fert Soils.2001, 34 (4):258-263
    Dalal R.C. Mineralisation of carbon and phosphorus from carbon-14 and phosphorus-32 labelled plant material added to soi[J]. Soil Science Society of America Journal.1979,43:913-916
    Dinkelaker B., Romheld V. Marschner H. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (L upinus albus L.)[J]. Plant, Cell and Environment.1989,12:285-292
    Easterwood G.W., Sartain J.B. Clover residue effectiveness in reducing orthophosphate sorption on ferric hydroxide coated soil[J]. Soil Science Society of America Journal.1990,54:1345-1350
    Eghball B., Gilley J.E. Phosphorus and nitrogen in run-off following beef cattle manure or compost application[J]. Environ Qual.1999,28:1201-1210
    Erich M.S., Fitzgerald C.B., Porter G.A. The effect of organic amendments on phosphorus chemistry in a potato cropping system[J]. Agriculture Ecosystems and Environment.2002,88:79-88
    Feng K., Lu H.M., Sheng H.J. Effect of organic ligands on biological vailability of inorganic phosphorus in soils[J]. Pedosphere.2004,14 (1):85-92
    Fliessbach A., Eyhorn F., Mder P. Long-term farming systems trial:Microbial biomass. activity and diversity affect the decomposition of plant residues[M]. London:2001.
    Fox T.R., Comerford N.B., McFee W.W. Soil Phosphorus and aluminium release from a spodic horizon mediated by organic acids[J]. Sci. Soc. Am. J 1990,54:1763-1767
    Gerke J. Phosphate, aluminium and iron in the soil solution of three different soils in relation to varying concentrations of citric acid[J]. Z. Pflanzenernahr. Bodenk.1992,155:339-343
    Gerke J. Phosphate adsorption by humic/Fe-oxide mixtures aged at pH 4 and 7 and by poorly ordered Fe-oxide[J]. Geoderma.1993,59 (1-4):279-288
    Gerke J. Kinetics of soil phosphate desorption as affected by citric acid[J]. Z. Pflanzenernahr. Bodenk.1994, 157:17-22
    Grinsted M.J., Hedley M.J., White R.E., Nye P.H. Plant-Induced Changes in the Rhizosphere of Rape (Brassica napus Var. Emerald) Seedlings. I. pH Change and the Increase in P Concentration in the Soil Solution[J]. New Phytologist.1982,91 (1):19-29
    Gyaneshwar P., Naresh K.G., Parekh L.J. Role of soil microbial in improving P nutrition of plants[J]. Plant Soil 2002,245:83-93
    Halajnia A., Haghnia G.H., Fotovat A., Khorasani R. Phosphorus fractions in calcareous soils amended with P fertilizer and cattle manure[J]. Geoderma.2009,150:209-213
    Hameeda B., Harini G., Rupela O.P. Growth promotion of maize by phosphate solubilizing bacteria isolated from composts and macrofauna[J]. Microbiological Research.2008,163:234-242
    Hao X., Liu S., Wu J., Hu R., Tong C., Su Y. Effect of long-term application of inorganic fertilizer and organic amendments on soil organic matter and microbial biomass in three subtropical paddy soils[J]. Nutr. Cycl. Agroecosyst.2008,81:17-24
    Heckrath C., Brookes P.C., Poulton P.R. Goulding K W T.Phosphorus leaching from soils containing different phosphorus concentrations on the Broadbalk Experiment[J]. Environ.Qual.1995,24: 904-910
    Hooda P.S., Moynagh M., Svoboda I.F., Edwards A.C. Phosphorus loss in drain flow intensively managed grassland soils[J]. Environ.Qual.1999,28:1235-1242
    Horst W.J., Abdou M., Wiesler F. Genotypic differences in phosphorus efficiency of wheat[J]. Plant Nutrition. 1993:367-370
    Horst W.J., Abdou M., Wiesler F. Differences between wheat in acquisition and utilization of phosphorus[J]. Z. Pflanzenernahr. Bodenk.1995,158:1-7
    Hue N.V. Effect of organic acids/anions on P sorption and phytoavailability in soils with different mineralogies[J]. Soil Sci.1991,152:463-471
    Hue N.V., Ikawa H., Silva J.A. Increasing plant available phosphorus in an ultisol with yard waste compost[J]. Communications in Soil Science and Plant Analysis.1994,25 (3292-3303):
    Joergensen R.G., Kubler H., Meyer B., Wolters V. Microbial biomass phosphorus in soils of beech (Fagus sylvatica L) forests[J]. Biol. Fert. Soils 1995,19:215-219
    Katarina B., Erasmus O., Elisabetta B. Phosphorus sorption in relation to soil properties in some cultivated Swedish soils[J]. Nutrient Cycling in Agroecosystems.2001,59:39-46
    Kennedy Z.J., Rangarajan M. Biomass production root colonization and phosphatase activity by six VA2mycorrhizal fungi in papaya[J]. Indian Phytopathology.2001,54 (1):72-77
    Khalid S.K., Rainer G.J. Relationships between P fractions and the microbial biomass in soils under different land use management[J]. Geoderma.2012,173-174:274-281
    Khan K.S., Joergensen R.G. Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers[J]. Bioresour Technol.2009,100:303-9
    Khiari L., Parent L.E. Phosphorus transformations in acid light-textured soils treated with dry swine manure[J]. Can. J. Soil Sci.2005,85:75-87
    Kouno K., Wu J., Brookes P.C. Turnover of biomass C and P in soil following incorporation of glucose or ryegrass.[J]. Soil Biol. Biochem.2002,34:617-622
    Kovacs K., Anna L., Rudnai P., Schoket B. Recovery of bulky DNA adducts by the regular and a modified 32P-postlabelling assay; influence of the DNA-isolation method[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis.2011,721 (1):95-100
    Lei L., Per G., Tao Z., Jiangming M. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China[J]. Soil Biology & Biochemistry. 2012,44:31-38
    Leytem A.B., Turner B.L., Raboy V., Peterson K.L. Linking manure properties to phosphorus solubility in calcareous soils:importance of the manure carbon to phosphorus ratio [J]. Soil Sci. Soc. Am. J.2005, 69:1516-1524
    Li S., Gu L., Liu K., Liao Z. Effects of combined application of organic fertilizers on the control of soilborne diseases and the regulation of soil microbital diversity[J]. Plant Nutrition and Fertilizer Science. 2009,15 (4):965-969
    Li X.L., George E., Marschner H. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil[J]. Plant Soil.1991,136:41-48
    Linquist B.A., Singleton P.W., Yost R.S., Cassman K.G. Aggregate size effects on the sorption and release of phosphorus in an ultisol[J]. Soil Science Society of America Journal.1997,61:160-166
    Liu E., Yan C., Mei X., He W., Ding L., Liu Q., Liu S., Fan T. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China[J]. Geoderma.2010,158: 173-180
    Lopez-Hernandez D., Siegert G., Rodriguez J.V. Competitive adsorption of phosphate with malate and oxalate by tropical soils.[J]. Soil Science Society of America Journal.1986,50:1460-1462
    Magid J. Vegetation effects on phosphorus fractions in set-aside soils[J]. Plant and Soil.1993,149:111-119
    Marschner P., Neuman G., Kania A. Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L)[J]. Plant Soil 2002,246:167-174
    Maurice P.A., Hochella M.F.J., Parks G.A., Sposito G., Schwertmann U. Evolution of hematite surface microtopography upon dissolution by simple organic acids[J]. Clays and Clay Minerals.1995,43: 29-38
    Milkha S., Aulakh, Nanak S., Pasricha, Gulshan S., Bahl. Phosphorus fertilizer response in an irrigated soybean-wheat production system on a subtropical, semiarid soil[J]. Field Crops Research.2003,80: 99-109
    Mittal V., Singh O., Nayyar H. Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2)[J]. Soil Biology & Biochemistry.2008,40:718-727
    Mokolobate M.S., Haynes R.J. A glasshouse evaluation of the comparative effects of organic amendments, lime and phosphate on alleviation of Al toxicity and P deficiency in an Oxisol[J]. Journal of Agricultural Science.2003,140:409-417
    Murphy J., Riley J.P. A modified single solution method for the determination of phosphate in natural waters[J]. Analysis Chemistry Acta.1962,27:31-36
    Nziguheba G., Merckx R., Palm C.A., Rao M.R. Organic residues affect phosphorus availability and maize yields in a Nitisol of western Kenya[J]. Biol. Fertil. Soils 2000,32:328-339.
    Oberson A., Friesen D.K., Rao I.M., Buhler S., Frossard E. Phosphorus transformations in an Oxisol under contrasting land-use systems:the role of the soil microbial biomass.[J]. Plant Soil.2001,237: 197-210
    Ofori Frimpong K., Rowell D.L. The decomposition of cocoa leaves and their effect on phosphorus in dynamics in tropical soil[J]. European Journal of Soil Science.1999,50 (1):165-172
    Ozawa K., Osaki M. Purification and properties of acid phosphatase secreted fromLupin roots under phosphorus-deficiency conditions[J]. Soil Sci. Plant Nutr.1995,41 (3):461-469
    Parmar D.K., Sharma P.K. Phosphorus and mulching effects onnutrient uptake and grain yield of wheat at different growth stages[J]. Tropical Agriculture.1996,73:196-200
    Pushparajah E. Nutrient management and challenges in managing red and lateritic soils[M]. In'Red and Lateritic soils(Eds J Sehgal, WE Blum, KS Gajbhiye) pp.293-304,1998.
    Rehm G.W., Randakk G.W., Scobbie A.J. Impact of fertilizer placement and tillage system on phosphorus distribution in soil[J]. Soil Sci. Soc. Am. J.1995,59 (1):661-665
    Rice R.W., Datnoff L.E., Raid R.N. Influence of vesicular-rbuscular mycorrhizae on celery transplant growth and phosphorus use efficiency [J]. Journal of Plant Nutrition.2002,25 (8):1839-1853
    Sharpley A.N. Relationship between the phosphorus forms extracted from soil tests and soil-forming[J], Soil Science progress.1990,18(3):39-41
    Sharpley A.N., Smith S.J., Stewart J.W.B., Mathers A.C. Phosphorus forms in soil receiving cattle feedlot waste. [J]. J Environ Qual 1984,13:211-215
    Sibanda H.M., Young S.D. Competitive adsorption of humus acids and phosphate on goethite, gibbsite and two tropical soils[J]. Journal of Soil Science.1986,37:197-204
    Singh M., Sammi Reddy K., Singh V.P., Rupa T.R. Phosphorus availability to rice (Oriza sativa L.)-wheat (Triticum estivum L.) in a Vertisol after eight years of inorganic and organic fertilizer additions[J]. Bioresource Technology.2007,98:1474-1481
    Son H.J., Park G.T., Cha M.S. Solubilization of insoluble inorganic phosphates by a novel salt-and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere[J]. Bioresource Technology.2006,97:204-210
    Sperber J.I. Solution of mineral phosphates by soilbacteria[J]. Nature.1957,180:994-995
    Su D.C., Yang F., Zhang F.S. Profile characterics and potential environmental effect of accumulated phosphorus in soils of vegetable fields in Beijing[J]. Pedosphere.2002,12 (2):179-184
    Subramaniam V., Singh B.R. Phosphorus supplying capacity of heavily fertilizedsoils.1.Phosphorus adsorption characteristics and phosphorus fractionation[J]. Nutr Cycl Agroecosys.1997,47:115-122
    Sumner M.E., Farina M.P.W. Phosphorus interactions with other nutrients and lime in field cropping systems[J]. Advances in Soil Science.1986,5:201-236
    Varinderpal S., Dhillon N.S., Brar B.S. Influence of long-term use of fertilizers and farmyard manure on the adsorption-desorption behaviour and bioavailability of phosphorus in soils[J]. Nutrient Cycling in Agroecosystems.2006,75 (1):67-78
    Vazquez P., Holguin G., Puente M.E. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon[J]. Biology and Fertility of Soils.2000,30:460-468
    Wang X., Yost R.S., Linquist B.A. Soil aggregate size affects phosphorus desorption from highly weathered soils and plant growth[J]. Soil Science Society of America Journal.2001,65:139-146
    Wu J., Joergensen R.G., Pommerening B., Chaussod R., Brookes P.C. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure[J]. Soil Biol. Biochem.1990,22:1167-1169
    Xie X.J., Ran W., Shen Q.R., Yang C.Y., Yang J.J. Field studies on 32P movement and P leaching from flooded paddy soils in the region of Taihu Lake, China[J]. Environmental Geochemistry and Health. 2004,26:237-243
    XU Ming-gang, LI Dong-chu, LI Ju-mei, QIN Dao-zhu, Kazuyuki Yagi, Hosen. Y. Effects of Organic Manure Application with Chemical Fertilizers on Nutrient Absorption and Yield of Rice in Hunan of Southern China[J]. Agricultural Sciences in China.2008,7 (10):1245-1252
    Xu Y.P., Yang M., Pan D.H., Wang L.Z., Liu L., Huang P.L., Shao G.Q. Bioevaluation study of 32P-CP-PLLA particle brachytherapy in a rabbit VX2 lung tumor model[J]. Applied Radiation and Isotopes.2012,70 (4):583-588
    Zhang F.S., Ma J., Cao Y.P. Phosphorus deficiency enhances root exudation of low2molecular weight organic acids and utiliation of sparingly soluble inorganic phosphates by radish (Raphanus satiuvs L.) and rape (B rassica napus L.) plants[J]. Plant and Soil.1997, (196):261-264
    Zhao Qingyun, Dong Caixia, Yang Xingming, Mei Xinlan, Ran Wei, Shen Qirong, Yangchun X. Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer[J]. Applied Soil Ecology.2011,47:67-75
    Zhong W.H., Cai Z.C. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay[J]. applied soil ecology.2007, 36:84-91
    曹一平,崔健宇.石灰性土壤中油菜根际磷的化学动态及生物有效性[J].植物营养与肥料学报(试刊).1994,1:49-54
    曹志洪,李庆逵.黄土性土壤对磷的吸附和解吸[J].土壤学报.1988,25(3):218-225
    曾希柏,刘更另.化肥施用和秸秆还田对红壤磷吸附性能的影响研究[J].土壤与环境.1999,8(1):45--49
    陈波浪,盛建东,文启凯,王翠红,王伯仁.不同施肥制度对红壤耕层磷的吸持特性影响的研究[J].新疆农业大学学报.2005,28(1):22-26
    陈军平,汪金舫.长期施肥条件下潮土耕层有机磷含量与组分的变化研究[J].中国生态农业学报.2008,16(2):331-334
    陈欣,赵晶晶.有机物料中磷素研究进展[J].河南大学学报.2007,37(1):56-60
    陈欣,宇万太,沈善敏.肥低量施用制度下土壤磷库的发展变化——Ⅰ.土壤总磷库和有机、无机磷库[J].土壤学报.1997,34(1):81-87
    戴沈艳,申卫收,贺云举,陈雯雯,钟文辉.一株高效解磷细菌的筛选及其在红壤性水稻土中的施用效果[J].应用与环境生物学报.2011,17(5):678-683
    董鲁浩,李玉义,逢焕成,孙庆泉.不同土壤类型下长期施肥对土壤养分与小麦产量影响的比较研究[J].中国农业大学学报.2010,15(3):22-28
    段秀梅,高晓蓉,吕军,安利佳.两株土壤分离菌的解磷能力及对玉米的促生作用[J].中国土壤与肥料.2010,2:79-85
    冯固,杨茂秋,白灯莎,黄全生.用32P示踪法研究石灰性土壤中磷素的形态和有效性变化[J].土壤学报.1996,33(3):301-307
    冯跃华,张杨珠,黄运湘.不同稻作制、有机肥用量及地下水深度对红壤性水稻土无机磷形态的影响[J].中国农业科学.2009,42(10):3551-3558
    甘燕.应用(15)-N示踪法研究紫色土地区绿肥配施化肥对水稻的供氮特性[J].西南农业大学学报.1986,4:127-134
    高超,张桃林,吴蔚东.不同利用方式下农田土壤对磷的吸持与解吸特征[J].环境科学.2001,22(4):67-72
    顾益初,蒋柏藩.石灰性土壤无机磷的测定方法[J].土壤.1990,22(2):101-102
    顾益初,钦绳武.长期施用磷肥条件下潮土中磷素的积累、形态转化和有效性[J].土壤.1997,1:13-17
    顾益初,蒋柏藩,鲁如坤.风化对土壤粒级中磷素形态转化及其有效性的影响[J].土壤学报.1984,21(2):134-143
    顾永明,汪寅虎.磷肥在土壤中的转化及其与土壤有效性的关系[J].土壤.1986,18(3):120-125
    关春林,周怀平,解文艳.长期施肥对褐土土壤磷素累积及层间分布的影响[J].山西农业科学.2009,27(3):64-67
    关春林,周怀平,解文艳,于婧文,聂督.长期施肥对褐土土壤磷素累积及层间分布的影响[J].山西农业科学.2009,37(3):64-67
    郭胜利,党廷辉,刘守赞,郝明德.磷素吸附特性演变及其与土壤磷素形态、土壤有机碳含量的关系[J].植物营养与肥料学报.2005,11(1):33-39
    郭晓冬,张雪琴,杨玲.甘肃省主要农业区土壤对磷的吸附与解吸特性[J].西北农业学报.1997,6(2):7-12
    郭智芬,涂书新,李晓华,潘勇,张宜春.石灰性土壤不同形态无机磷对作物磷营养的贡献[J].中国农业科学.1997,30(1):26-32
    韩梅,温志丹,肖亦农.解磷细菌的筛选及对植物病原真菌的拮抗作用[J].沈阳农业大学学报.2009,40(5):594-597
    韩晓日,马玲玲,王晔青,王颖,战秀梅.长期定位施肥对棕壤无机磷形态及剖面分布的影响[J].水土保持学报.2007,21(4):51-55
    韩志卿,张电学,王秋兵,陈洪斌,常连生,于玉桥,刘东强.秸秆还田对潮褐土及其微团聚体磷素吸附与解吸特性的影响[J].沈阳农业大学学报.2007,12(6):816-820
    郝晶,洪坚平,刘冰.石灰性土壤中高效解磷细菌菌株的分离、筛选及组合[J].应用与环境生物学报.2006,12(3):404-408
    何雪香,李玫,廖宝文.红树林固氮菌和解磷菌的分离及对秋茄苗的促生效果[J].华南农业大学学报.2012,33:64-69
    何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤.1997,21(2):61-69
    何振立,袁可能,朱祖祥.有机阴离子对磷酸根吸附的影响[J].土壤学报.1990,27(4):377-383
    洪坚平,郝晶,毕理智,谢英荷,刘冰.不同解磷菌群对油菜土壤养分与酶活性的影响[J].中国生态农业学报.2007,15(5):51-54
    胡红青,徐凤琳,李学垣.幕阜山土壤粘粒复合体的固相组成与磷的吸附及解吸[J].华中农业大学学报.1993,12(1):31-39
    胡可,王利宾,杜慧玲.菌剂与缓释肥配施对复垦土壤微生物生态的影响[J].水土保持学报.2011,25(5):86-89
    胡曰利,吴晓芙.土壤微生物生物量作为土壤质量生物指标的研究[J].中南林学院学报.2002,22(3):51-53
    黄敏.稻田土壤微生物磷变化对土壤有机碳和磷素的响应[J].中国农业科学.2004,37(9):1400-1406
    黄敏,吴金水,黄巧云,李学垣.土壤磷素微生物作用的研究进展[J].生态环境.2003,12(3):366-370
    黄庆海,赖涛,吴强,李茶苟,吴建华,赵美珍.长期施肥对红壤性水稻土有机磷组分的影响[J].植物营养与肥料学报.2003,9(1):63-66
    黄绍敏,宝德俊,皇甫湘荣.长期施肥对潮上土壤磷素利用与积累的影响[J].中国农业科学.2006,39(1):102-108
    贾学萍,刘勤,张焕朝,袁嫚嫚,朱强根.水稻土对有机、无机磷吸附-解吸的特征[J].南京林业大学学报(自然科学版).2010,34(2):129-132
    姜东,于振文,许玉敏.有机无机肥料配合施用对冬小麦根系和旗叶衰老的影响[J].土壤学报.1999,36(4):440-447
    蒋柏藩.石灰性土壤无机磷有效性的研究[J].土壤.1992,24:61-64
    蒋柏藩,沈仁芳.土壤无机磷分级的研究[J].土壤学进展.1981,9(2):1-11
    蒋柏藩,顾益初.石灰性土壤无机磷分级体系研究[J].中国农业科学.1989,22(3):58-66
    康国战,翟金中,张振华,刘广军,孙治安.大豆施用有机无机复混肥的增产效果[J].安徽农业科学.2003,31(2):316-317
    柯福源,汪寅虎,陈春宏.青紫泥土壤养分供应特征和演变规律[J].上海农业学报.1997,13(4):61-66
    来璐,郝明德,彭令发.黄土早塬长期施肥条件下土壤磷素变化及管理[J].水土保持研究.2003,10(1):68-70
    郎娇娇,王丽丽,胡江,沈其荣.微生物有机肥防治棉花黄萎病机制研究[J].土壤学报.2011,48(6):1298-1304
    李艾芬,章明奎.浙北平原不同种植年限蔬菜地土壤氮磷的积累及环境风险评价[J].农业环境科学学报.2010,29(1):122-127
    李翠兰,李志洪,高强,张晋京.有机无机复合肥及调节剂对玉米产量及磷素吸收的影响[J].玉米科学.2010,18(5):105-107
    李冬初,李菊梅,徐明岗.化肥有机肥配合施用下双季稻田氮素形态变化[J].湖南农业大学学报(自然科学版).2004,31(3):23-25
    李法云,高子勤.白浆土-植物系统营养物质转化机制及其有效性研究:32P同位素示踪法对白浆土中磷肥利用率的研究[J].应用生态学报.1996,7(2):174-178
    李和生,王林权,赵春生.小麦根际磷酸酶活性与有机磷之关系[J].西北农业大学学报.1997,25(2):47-49
    李君.利用同位素技术对不同磷肥的土壤评价[J].云南化工.1998,4:66-69
    李绍长,白萍,龚江.作物磷效率研究进展[J].石河子大学学报(自然科学版).2002,6(3):251-254
    李晓林,姚青.VA菌根与植物的矿质营养[J].自然科学进展.2000,6:524-531
    李孝良,于群英,陈世勇.土壤无机磷形态生物有效性研究[J].安徽农业技术师范学院学报.2001,15(2):17-19
    李秀英,李燕婷,赵秉强,李小平,王丽霞,张振山.褐潮土长期定位不同施肥制度土壤生产功能演化研究[J].作物学报.2006,32(5):683-689
    李云,张宁,邢文英.一年两熟地区小麦的磷肥累积利用率研究[J].土壤肥料.2002,4:26-30
    李中阳,徐明岗,李菊梅,李林,高静.长期施用化肥有机肥下我国典型土壤无机磷的变化特征[J].土壤通报.2010,41(6):1434-1439
    李祖荫,吕家珑.碳酸钙和物理性粘粒固磷特性的研究[J].土壤.1995,27:304-310
    梁国庆,林葆,林继雄,荣向农.长期施肥对石灰性潮土无机磷形态的影响[J].植物营养与肥料学报.2001,7(3):241-248
    梁美英,卜玉山,张广峰,郭淑红.石灰性土壤吸磷差异及其与土壤性质的关系[J].山西农业科学.2011,39(6):564-571
    林国林,云鹏,陈磊,高翔,张金涛,卢昌艾,刘荣乐,汪洪.小麦季磷肥施用对后作玉米的效果及土壤中无机磷形态转化的影响[J].土壤通报.2011,42(3):676-680
    林利红,韩晓日,刘小虎,战秀梅.长期轮作施肥对棕壤磷素形态及转化的影响[J].土壤通报.2006,37(1):80-83
    林启美,赵小蓉,孙焱鑫.四种不同生态系统的土壤解磷细菌数量及种群分布[J].土壤与环境.2000,9(1):34-37
    刘方,黄昌勇,何腾兵.长期施磷对黄壤旱地磷库变化及地表径流中磷浓度的影响[J].应用生态学报.2003,14(2):196-200
    刘方,黄昌勇,何腾兵,钱晓刚,刘元生,罗海波.长期施磷对黄壤旱地磷库变化及地表径流中磷浓度的影响[J].应用生态学报.2003,14(2):196-200
    刘骅,王讲利,谭新霞,张小玲,赵秉强,张夫道.长期定位施肥对灰漠土磷肥肥效与形态的影响[J].新疆农业科学.2003,40(2):111-115
    刘建玲,廖文华,王新军,贾可,娜孟.大量施用磷肥和有机肥对白菜产量和土壤磷积累的影响[J].中国农业科学.2006,39(10):2147-2153
    刘建玲,廖文华,张作新,张海涛,王新军,孟娜.磷肥和有机肥的产量效应与土壤积累磷的环境风险评价[J].中国农业科学.2007,40(5):959-965
    刘经荣,沈润平,张德远,周卫.水稻土有机肥与化肥配合施用的效应(之六)--施肥对稻田土壤肥力和水稻产量的影响[J].江西农业大学学报.1993,15(2):138-143
    刘小虎,邹德乙,刘新华.长期轮作施肥对棕壤有机磷组分及其动态变化的影响[J].土壤通报.1999,30(4):178-180
    刘益仁,李想,郁洁,沈其荣,徐阳春.有机无机肥配施提高麦-稻轮作系统中水稻氮肥利用率的机制[J]. 应用生态学报.2012,23(1):81-86
    刘芷宇.植物的磷素营养和土壤磷的生物有效性[J].土壤.1992,2:97-101
    卢志红,嵇素霞,张美良,刘经荣.长期定位施肥对水稻土磷素形态的影响[J].植物营养与肥料学报.2009,15(5):1065-1071
    鲁如坤,时正元,顾益初.土壤积累态磷研究Ⅱ磷肥的表观积累利用率[J].土壤.1995,27(6):286-289
    陆文龙,张福锁,曹一平,王敬国.低分子量有机酸对石灰性土壤磷吸附动力学的影响[J].土壤学报.1999,3(2):189-197
    罗春燕,冀宏杰,张认连,雷秋良,龙怀.有机废弃物的磷素形态研究进展[J].土壤通报.2009,40(3):709-715
    吕家珑,张一平,张君常.土壤磷运移研究[J].土壤学报.1999,36(1):75-82
    吕珊兰,杨熙仁,康新茸.土壤对磷的吸附与解吸及需磷量探讨[J].植物营养与肥料学报.1995,1(3-4):29-35
    马良,徐仁扣.pH和添加有机物料对3种酸性土壤中磷吸附-解吸的影响[J].生态与农村环境学报.2010,26(6):596-599
    马艳梅.长期定点施肥对白浆土磷素形态转化的影响[J].黑龙江八一农垦大学学报.2006,18(2):39-41
    孟娜,廖文华,贾可,刘建玲.磷肥、有机肥对土壤有机磷及磷酸酶活性的影响[J].河北农业大学学报.2006,29(4):57-59
    莫淑勋.有机肥中磷及其与土壤磷素肥力的关系[J].土壤学进展.1992,20(3):1-7
    莫淑勋,钱菊芳,钱承梁.猪粪与有机肥料中磷素养分循环再利用的研究[J].土壤学报.1991,28(3):309-315
    秦嘉海,金自学,陈广泉,刘金荣,谢晓蓉.有机无机垃圾复混肥对土壤理化性质和玉米产量的影响[J].土壤.2005,37(5):559-562
    秦来寿,孙娟,张玉虎.陇东旱塬区土壤磷素养分利用率模型研究[J].农业系统科学与综合研究.2006,22(3):169-172
    曲秀兰,邵煜庭,甄清香.石灰性土壤无机磷分级方法的应用[J].土壤1992,24(5):275277
    沈乒松,张鼎华.酸性土壤无机磷研究进展[J].福建林业科技.2005,32(1):75-78
    沈仁芳,蒋柏藩.石灰性土壤无机磷的形态分布及其有效性[J].土壤学报.1992,29(1):80-86
    沈善敏.中国土壤肥力[M].北京:中国农业出版社,1998.
    时正元,鲁如坤,顾益初.土壤积累态磷研究Ⅰ一次大量施磷的产量效应[J].土壤.1995,27(1):57-89
    束际林,李名君.茶树VA菌根和生理效应研究[J].茶叶科学.1987,7(1):7-14
    束良佐,邹德乙.长期定位施肥对棕壤无机磷形态及其有效性的影响Ⅰ.对各形态无机磷含量及比例的影响[J].辽宁农业科学.2001,1:4-7
    宋丹,王吉磊.外源植酸酶对土壤磷酸酶活性和有效磷含量的影响[J].中国土壤与肥料.2009,5:15-17
    宋丹,关连珠,王吉磊,高原,颜丽.外源植酸酶对土壤有机磷组分含量的影响[J].中国土壤与肥料.2008,2:24-26
    苏冰莹,颜丽,关连珠,杜舰.长期不同施肥对黑土无机磷组分的影响[J].中国土壤与肥料.2010,3:4-7
    隋跃宇,焦晓光,张兴义,赵军.不同施肥制度对大豆生育期土壤微生物量的影响[J].土壤通报.2006,37(5):894-896
    孙华,熊德祥.施用有机肥和溶磷细菌肥料对砂姜黑土磷素形态转化的影响[J].土壤通报.2002,33(3):194-196
    孙羲,章永松.有机肥料和土壤中的有机磷对水稻的营养效果[J].土壤学报.1992,29(4):365-369
    汪惠芳,朱丹华,郑连光.有机肥与无机肥配施对新垦红壤春大豆生长及产量的影响[J].土壤肥料.1997,6:35-36
    王伯仁,徐明岗,文石林.长期施肥对红壤旱地磷的影响[J].中国农学通报.2005,9:255-259
    王伯仁,徐明岗,文石林,李冬初.长期施肥对红壤旱地磷组分及磷有效性的影响[J].湖南农业大学学报(自然科学版).2002,28(4):293-297
    王道中,郭熙盛.长期施肥对砂姜黑土有机磷组分及其有效性的影响[J].土壤.2009,41(1):79-83
    王光火,朱祖祥.石灰性土壤与磷酸盐的反应及吸持态磷的同位素交换性[J].土壤学报.1993,30(4):374-379
    王鹏,孙剑秋,臧威.磷细菌研究进展[J].河南农业科学.2008,9:5-9
    王平利,张成江.农业生态系统中同位素示踪技术及发展趋势[J].生态环境.2003,12(4):512-515
    王树起,韩晓增,严君,李晓慧,乔云.低分子量有机酸对大豆磷积累和土壤无机磷形态转化的影响[J].生态学杂志.2009,28(8):1550-1554
    王新民,侯彦林.有机物料对石灰性土壤磷素形态转化及吸附特性的影响研究[J].环境科学学报.2004,24(3):440-443
    王新民,侯彦林,李见云.夏玉米和冬小麦秸秆对石灰性土壤磷吸附特性及磷素形态的影响[J].土壤通报.2004,35(2):177-180
    王晔青,韩晓日,马玲玲,王玲莉,赵立勇,李鑫.长期不同施肥对棕壤微生物量磷及其周转的影响[J].植物营养与肥料学报.2008,14(2):322-327
    王义,贺春萍,郑肖兰,杨芩,郑服从.土壤解磷微生物研究进展[J].安徽农学通报.2009,15(9):60-64
    王永和,曹翠玉,史瑞和,蒋仁成,厉志华.石灰性土壤有机-无机肥配施对土壤供磷的影响[J].南京农业大学学报.1993,16(4):36-42
    魏自民,席北斗,王世平,赵越,杨延梅,何连生,刘鸿亮.垃圾堆肥对难溶性磷转化及土壤磷素吸附特性影响[J].农业工程学报.2006,22(2):142-146
    吴金水,肖和艾,陈桂秋,黄敏.旱地土壤微生物磷测定方法研究[J].土壤学报.2003,40(1):70-78
    武淑霞.我国农村畜禽养殖业氮磷排放变化特征及其对农业面源污染的影响[M].北京:中国农业科学 院,2005.
    夏海勇,王凯荣.有机质含量对石灰性黄潮土和砂姜黑土磷吸附-解吸特性的影响[J].植物营养与肥料学报.2009,15(6):1303-1310
    夏立忠,Anderson R.长期施用牛粪条件下草原土壤磷的等温吸附与解吸动力学[J].土壤.2000,3:160-164
    谢林花.长期不同施肥对石灰性土壤微生物磷及磷酸酶的影响[J].生态学杂志.2004,23(4):65-68
    谢林花,吕家珑,张一平.长期施肥对石灰性土壤磷素肥力的影响-无机磷和有机磷[J].应用生态学报.2004,15(5):790-794
    熊顺贵.基础土壤学[M].北京:中国农业出版社,2001.
    徐万里,刘骅,王讲利.长期定位施肥对无机磷形态转化及其有效性的影响[J].新疆农业大学学报.2001,24(2):40-44
    徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报.2002,1:89-94
    徐阳春,沈其荣,茆泽圣.长期施用有机肥对土壤及不同粒级中有机磷含量与分配的影响[J].土壤学报.2003,40(4):593-597
    薛冬,姚槐应,黄昌勇.植茶年龄对茶园土壤微生物特性及酶活性的影响[J].水土保持学报.2005,19(2):84-87
    杨邦俊,向世群.有机肥与化肥配施对紫色水稻土磷素转化与供应的影响[J].西南农业大学学报.1990,12(6):652-657
    杨芳,何园球,李成亮,王艳玲,林天.不同施肥条件下旱地红壤磷素固定及影响因素的研究[J].土壤学报.2006,43(2):267-272
    杨丽娟,李天来,曲慧,张小燕.长期施肥条件下设施栽培土壤无机磷组分及其剖面分布特点[J].土壤通报.2008,39(4):797-800
    杨莉琳,李金海.潮土中P肥动态转化及其影响因素的研究[J].生态农业研究.1998,6(4):40-42
    杨莉琳,李金海.磷肥在褐土中的动态转化及施用有机肥的影响[J].河北农业大学学报.2001,24(1):21-23
    杨利玲,杨学云,古巧珍,孙本华.长期施肥对旱地土壤有机磷及其组分的影响[J].土壤通报.2007,38(5):942-944
    杨茂秋,冯固,白灯莎,黄全生.VA菌根对玉米吸收利用磷肥的影响[J].土壤肥料.1992,4:36-41
    杨青华,韩锦峰.棉田不同覆盖方式对土壤微生物和酶活性的影响[J].土壤学报.2005,42(2):348-350
    杨太新,李雁鸣,张立言,刘树欣.应用32P对冬小麦返青期追磷吸收利用规律的研究[J].河北农业大学学报.2000,23(1):5-8
    杨学云,孙本华,古巧珍,李生秀,张树兰.长期施肥对填土磷素状况的影响[J].植物营养与肥料学报. 2009,15(4):837-842
    杨永华,姚健,华晓梅.农药污染对土壤微生物群落功能多样性的影响[J].微生物学杂志.2000,20(2):23-47
    杨忠芳,朱立,陈岳龙.现代环境地球化学[M].北京:地质出版社,1999.
    姚青,赵紫娟,冯固,李晓林,陈保东.VA菌根真菌外生菌丝对难溶性无机磷酸盐的活化及利用Ⅰ.32P间接标记法[J].核农学报.2000,14(3):145-150
    尹金来,曹翠玉,等.磷肥在石灰性土壤中的形态转化及其有效性[J].土壤通报.1989,20(5):211-214
    尹金来,周春霖,洪立洲,王凯,丁金海.长期棉麦轮作下石灰性土壤无机磷形态转化及有效性研究[J].江苏农业学报.1999,15(1):34-37
    尹金来,沈其荣,周春霖,洪立洲,王凯,丁金海,王茂文.猪粪和磷肥对石灰性土壤无机磷组分及有效性的影响[J].中国农业科学.2001,34(3):296-300
    尹瑞玲.我国早地土壤的溶磷微生物[J].土壤.1988,20(5):243-246
    尤振,聂俊华.施用外源植酸酶对土壤速效磷效应的研究[J].安徽农业科学.2010,38(14):7467-7468
    余海英,李廷轩,张树金,张锡洲.温室栽培条件下土壤无机磷组分的累积、迁移特征[J].中国农业科学.2011,44(5):
    于群英,李孝良,李粉茹,汪建飞.安徽省土壤无机磷组分状况及施肥对土壤磷素的影响[J].水土保持学报.2006,20(4):57-61
    宇万太,陈欣,张璐,廉鸿志,殷秀岩,沈善敏.磷肥低量施用制度下土壤磷库的发展变化Ⅰ.土壤总磷库和有机,无机磷库[J].土壤学报.1996,33(4):373-379
    袁韶峰,吕军,俞劲炎.氮磷的农业非点源污染防治方法[J].水土保持学报.2004,18(1):122-125
    张德俭,马艳梅,田秀萍.不同施肥处理对连作大豆土壤无机磷组分及作物产量的影响[J].黑龙江八一农垦大学学报.2004,16(1):7-9
    张迪,魏自民,李淑芹,王世平,许景钢.生物有机肥对土壤中磷的吸附和解吸特性的影响[J].东北农业大学学报.2005,36(5):571-575
    张海涛,刘建玲,廖文华,张作新,郝小雨.磷肥和有机肥对不同磷水平土壤磷吸附-解吸的影响[J].植物营养与肥料学报.2008,14(2):284-290
    张健,洪坚平,郝晶.不同解磷菌群在石灰性土壤中对油菜产量及品质的影响[J].山西农业大学学报.2006,26(2):149-151
    张兰松,马永安,李保军,朱静,孙书成.有机无机肥配合施用对小麦的增产作用[J].植物营养与肥料学报.2003,9(4):503-505
    张敏,王正银.生物有机肥料与农业可持续发展[J].磷肥与复肥.2006,21(2):58-59
    张明,白震,张威.长期施肥农田黑土微生物量碳、氮季节性变化[J].生态环境.2007,16(5):1498-1503
    张为政.土壤磷组分对有效磷影响的通径分析及其相对重要性[J].吉林农业科学.1988,3:49-53
    张为政,陈魁卿.有机肥对土壤有机磷组分及其有效性的影响[J].东北农学院学报.1988,2:111-118
    张亚丽,沈其荣,曹翠玉.有机肥料对土壤有机磷组分及生物有效性的影响[J].南京农业大学学报.1998,21(3):59-63
    章永松,林咸永.有机肥(物)土壤中磷的活化作用机理研究Ⅰ有机肥(物)对不同形态无机磷的活化作用[J].植物营养与肥料学报.1998,4(2):151-155
    张玉兰,王俊宇,马星竹,陈利军.提高磷肥有效性的活化技术研究进展[J].土壤通报.2009,40(1):195-202
    张作新,刘建玲,廖文华.磷肥和有机肥对不同磷水平土壤磷渗漏影响研究[J].农业环境科学学报.2009,28(4):729-735
    赵庆雷,王凯荣,谢小立.长期有机物循环对红壤稻田土壤磷吸附和解吸特性的影响[J].中国农业科学.2009,42(1):355-362
    赵琼,曾德慧.陆地生态系统磷素循环及其影响因素[J].植物生态学报.2005,29(1):153-163
    赵少华,宇万太,张璐,沈善敏,强马.土壤有机磷研究进展[J].应用生态学报.2004,15(11):2189-2194
    赵吴琼,李菊梅,徐明岗,周连仁.长期不同施肥下灰漠土有机磷组分的变化[J].生态环境.2007,16(2):569-572
    赵晓齐,鲁如坤.有机肥对土壤磷素吸附的影响[J].土壤学报.1991,28(1):7-13
    赵小蓉,林启美,孙焱鑫.玉米根际与非根际解磷细菌的分布[J].生态学杂志.2001,20(6):62-64
    周春霖,尹金来,洪立洲,王凯,丁金海,王茂文.猪粪和磷肥对黄潮土速效磷、有机磷组分及其有效性的影响[J].江苏农业学报.2001,17(1):39-43
    周广业,闫龙翔.长期施用不同肥料对土壤磷素形态转化的影响[J].土壤学报.1993,4(30):443-446
    周建朝,潘绍英.甜菜吸收植酸能力及植酸酶效应研究[J].中国糖料.1997,3:8-12
    周鑫斌,谢英荷,洪坚平.不同水分条件下磷细菌肥施用效果的研究[J].山西农业大学学报.2003,23(4):331-334
    朱宝国,于忠和,王囡囡,孟庆英.有机肥和化肥不同比例配施对大豆产量和品质的影响[J].大豆科学.2010,29(1):97-100
    朱培淼,杨兴明,徐阳春.高效解磷细菌的筛选及其对玉米苗期生的促进作用[J].应用生态学报.2007,18(1):107-112
    祝卓,张展羽,夏继红,迟艺侠.不同植物配置对土壤速效磷及pH值的影响[J].水资源保护.2009,25(1):61-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700