微电极阵列细胞芯片的设计及其对心肌细胞生理特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞传感器作为一类以活体细胞为一级传感单元、换能器为二级传感单元的器件,具有高灵敏度、低成本、高通量检测等特点,是环境毒性研究、食品安全、药物筛选等领域研究的有效手段并在近年来逐渐实现产业化。微电极阵列(Microelectrode Arrays, MEAs)是以检测电兴奋类细胞如心肌细胞、神经网络等的电生理活动的一类细胞传感器。它因无损检测、响应速度快、制备工艺简单、可扩展性强等特点而具有广泛的应用前景。本论文基于微电极阵列,针对心肌细胞的特性扩展了其设计和功能,开发了具有多功能共同分析的细胞传感器平台,并研究了心肌细胞的生理特性及基于此的药物毒性研究。所设计的平台亦可推广用于其它类型细胞的研究。
     本论文的主要内容和创新点在于:
     一.深入分析微电极阵列胞外场电位的检测机理,并应用于实际细胞芯片的设计。
     本文基于金属电极-电解液双电层模型和离子通道模型,系统地研究了细胞与微电极耦合的点接触模型。采用仿真软件工具对胞内外场电位的关系进行了深入的分析,阐述了细胞-微电极的界面特性对分析细胞胞内外电位的影响。基于该模型的分析结果设计的细胞芯片表现出良好的生物相容性和稳定性。细胞芯片成功记录了心肌细胞、海马区神经元以及嗅觉细胞的胞外场电位信号,实际检测结果与模型仿真结果具有较高的一致性。
     二.本文首次提出了设计小同尺度的电极阵列芯片实现对心肌细胞兴奋-收缩偶联以整体进行分析的方法。
     根据心肌细胞的生长特点,将电极尺寸从微米级扩展至毫米级,从而在用微米级电极检测细胞兴奋电位的同时,使用毫米级的电极可同时检测细胞的收缩电位,其幅度及持续时间和面积呈正相关,并采用常规的微管抑制剂验证了该方法的正确性。在此基础上,基于电极-电解液双电层的检测机理,分析了机械搏动引起了双电层电荷的排布变化,从而影响了电极电位的变化。根据该分忻结果,将微米尺寸电极和大面积电极共同设计并采用统一电学方式检测,实现了心肌细胞兴奋-收缩偶联的整体研究,弥补了传统方式膜片钳-荧光染色等方法的不足;该方法可进一步扩展成以兴奋-收缩偶联机制为靶点的心脏药物研究手段。
     三.提出了细胞电生理和形态多功能检测的方法,设计了结合微电极阵列和细胞阻抗电极复合细胞芯片,并共同完成了基于该复合细胞芯片检测的自动分析仪的设计制作,建立了药物分析的研究平台。
     将微电极阵列和检测细胞-电极阻抗的叉指电极对集成于同一芯片内,在一次实验中同时记录细胞的胞外电生理和形态的变化。芯片应用于蒽环类抗癌药物阿霉素的心脏毒性研究,将分析结果和传统心肌细胞研究方法及临床出现的症状进行对比分析,证明了平台的有效性,提出了将长时程检测中出现的症状按时间点排布,得到的药物作用时间谱可直观地描绘其诱发的心脏毒性的症状变化过程。
     共同设计了基于复合细胞芯片自动分析仪的设计制作;实现了细胞生理多参数的自动化分析;初步探索了心脏毒性的检测和评价方法。
Cell-based biosensors (CBBs), taking live cells and transducers as primary and secondary sensing elements respectively, exhibit the characteristics of high sensitivity, low cost and high-throughput detection. They have been widely applied in the fields of environmental toxicity, food safety and pharmacological screening, and gradually commercialized. Microelectrode arrays (MEAs), a type of cell-based biosensors, are specially to detect the extracellular electrophysiological activities of electrigenic cells including cardiomyocytes and neuronal networks. With outstanding qualities such as non-invasiveness to cells, fast response, uncomplicated fabrication process and scalability, it has been a research hotspot. In this paper, we designed some chips with multiple functions based on microelectrode arrays to study the cardiac physiology and exploit the drug-induced cardiotoxicity. These chips can also be used to study other types of cells.
     The work mainly consisted of three parts as follows:
     Firstly, we systematically explored the extracellular detection mechanism of microelectrode array and achieved the design.
     Based on the electrochemical attributes of metal-electrolyte interface and ion-channel model, the point-contact model was built up to simulate the relationship between transmembrane action potential and extracellular field potential by software tool. According to the simulation result, we achieved chip design and found it with good biocompatibility and stability. It successfully recorded the extracellular field potential of cardiomyocytes hippocampal neurons and olfactory epithelium. The experimental results showed high fitness with the simulated result.
     Secondly, we firstly designed the chip of multi-scale electrode array (MSEA) to detect the cardiac excitation-contraction coupling as a whole system.
     Based on the special attributes of cardiomyocytes, we changed the common microelectrode array and expanded the diameter of electrodes from several tens micrometers to millimeter scale. It is observed that the general microelectrodes could detect the extracellular field potentials, as well as the millimeter scale electrode can detect the mechanical contraction whose amplitude and time duration showed positive relationship with electrode area. Furthermore, the contractile detection was confirmed by a type of microtubule inhibitor. The generation mechanism of hump was analyzed and it resulted from the change of electrode half-cell potential due to the mechanical perturbation on the charge in double electric layers.
     According to the study, the MSEA integrated with micro-and milli-scale electrodes could detect the extracellular field potential and mechanical contraction synchronously in electric way. It could be a platform for cardiac pharmacology screening targeted with the excitation-contraction coupling.
     Thirdly, we raised the method of jointly studying the extracellular field potential and physical state.
     Based on the method, the cell chip integrated with microelectrode array and interdigitated electrodes was designed. To avoid the electric disturbance between these two types of sensors, the whole recording process was scheduled in a time-switch way. The chip was used to recording the extracellular field potential and cell-electrode impedance change of cardiomyocytes under the treatment of anthracycline anticancer drug doxorubicin. The analysis showed that most of the symptoms extracted from the recording results by chip ExCell occurred in the clinical treatment of histological results, which proved the validity of the designed chip. Additionally, we proposed the temporal spectrum of the symptoms of drug-induced cardiotoxicity, which could clearly map the changing process of the symptoms when drugs acting on cardiomyocytes.
     Correspondingly, we built up a multi-function automatic analyzing system based on the integrated chip. With these work, it explored the methods of detection and evaluation on cardiotoxicity preliminary.
引文
Allen, B.L., Kichambare, P.D., Star, A.,2007. Carbon Nanotube Field-Effect-Transistor-Based Biosensors. Advanced Materials,19,1439.
    Baumann, W.H., Lehmann, M., Schwinde, A., Ehret, R., Brischwein, M., Wolf, B., 1999. Microelectronic sensor system for microphysiobgical application on living cells. Sensors and Actuators B (Chemical),55:77-89.
    Brischwein, M., Motrescu, E.R., Cabala, E., Otto, A.M., Grothe, H., Wolf, B.,2003. Functional cellular assays with multiparametric silicon sensor chips. Lab on a Chip,3:234-240.
    Bruggemann, A., Stoelzle, S., George, M., Behrends, J.C., Fertig, N.,2006. Microchip technology for automated and parallel patch-clamp recording. Small,2(7): 840-846.
    Cheng, W, Klauke, N., Smith, G. and Cooper, J.M.,2010. Microfluidic cell arrays for metabolic monitoring of stimulated cardiomyocytes. Electrophoresis,31: 1405-1413.
    Ciambrone, G.J., Liu, V.F., Lin, D.C., McGuinness, R.P., Leung, GK., Pitchford, S., 2004. Cellular dielectric spectroscopy:a powerful new approach to label-free cellular analysis, journal of Biomolecular Screening,9(6):467-480.
    Dertinger, S.K.W., Chiu, D.T, Jeon, N.L., Whitesides, GM.,2001. Generation of gradients having complex shapes using microfluidic networks. Analytical Chemistry,73:1240-1246.
    Duffy, D.C., McDonald, J.C., Schueller, O.J.A., and Whitesides, GM.,1998. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analytical Chemistry,70:4974-4984.
    F.I-Ali, P., Sorger, K., Jensen, K.F.,2006. Cells on Chips. Nature 442:403-411.
    Hoess, A., Teuscher, N., Thormann, A., Aurich, H., Heilmann, A.,2007. Cultivation of hepatoma cell line HepG2 on nanoporous aluminum oxide membranes. Acta biomaterialia,3:43-50.
    Hu, X.Y. Bessette, P.H. Qian, J.R. Meinhart, C.D. Daugherty P.S. Soh, H.T.2005. Marker-specific sorting of rare cells using dielectrophoresis. Proceedings of the National Academy of Sciences of the United States of America,102: 15757-15761.
    Ingebrandt, S., Yeung, C.K., Krause, M., and Offenhausser, A.,2001. Cardiomyocyte-transistor-hybrids for sensor application. Biosensors and Bioelectronics,16:565-570.
    Kewley, D. T., M. D. Hills, D. A. Borkholder, I. E. Opris, N. I. Maluf, C. W. Storment, J. M. Bower, and G. T. A. Kovacs,1997. Plasma-etched neural probes. Sensors and Actuators A (Physical), A58(1), Inclusive Pagination:27-35.
    Koh, W.G., Pishko, M.V.,2006. Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors. Analytical and Bioanalytical Chemistry.385(8):1389-97.
    Lapizco-Encinas, B.H., Simmons, B.A., Cummings, E.B., Fintschenko, Y.,2004. Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis,25:1695-1704.
    Li, J., Ng, H. T., Cassell, A., Fan, W, Chen, H., Ye, Q., Koehne, J., Han, J. and Meyyappan, M.,2003. Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Letters,3:597-602.
    McConnell, H.M., Owicki, J.C., Parce, J.W., Miller, D.L., Baxter, GT., Wada, H.G., and Pitchford S.,1992. The cytosensor microphysiometer:Biological applications of silicon technology, Science,257:1906-1912.
    Melin, J, Quake, S.R.,2007. Microfluidic large-scale integration:the evolution of design rules for biological automation. Annual Review of Biophysics and Biomolecular Structure,36:213-231.
    Pantarotto, D., Briand, J.P., Prato, M., and Bianco, A.,2004. Translocation of bioactive peptide across the cell membranes by carbon nanotubes. Chemical Communications,1:16-17.
    Seo,J., Lonescu-Zanetti, C., Diamond, J., Lai, R., Lee, L.P.,2004a. Integrated multiple patch-clamp array chip via lateral cell trapping junctions. Applied Physics Letters,84(11):1973-1975.
    Seo, J.M., Kim, S.J., Chung, H.; Kim, E.T., Yu, H.G., Yu, Y.S.,2004b. Biocompatibility of polyimide microelectrode array for retinal stimulation. Materials Science and Engineering:C,24:185-189.
    Solly, K., Wang, X.B., Xu, X., Strutavici, B., Zheng, W,2004. Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay and Drug Development Technologies,2(4):363-372.
    Stett, A., Bucher, V., Burkhardt, C., Weber, U., Nisch, W.,2003. Patch-clamping of primary cardiac cells with micro-openings in polyimide films. Medical & Biological Engineering & Computing,41:233-240.
    Taketani, M., Baudry, M.,2006. Advances in Network Electrophysiology:Using Multi-Electrode Arrays. Springer,321-331.
    Thorsen, T., Maerk, S.J.I, Quake, S.R.,2002. Microfuidic large-scale integration. Science,298:580-584.
    Vo-Dinh, T., Kasili, P.,2005. Fiber-optic nanosensors for single-cell monitoring. Analytical and Bioanalytical Chemistry.382:918-925.
    Wang, P., Liu, Q.,2009. Cell-Based Biosensors:Principles and Applications. Engineering in Medicine & Biology. Artech House, ISBN:1596934395.
    Wlodkowic, D., Cooper, J.M.,2010. Microfluidic cell arrays in tumor analysis:new prospects for integrated cytomics. Expert Review of Molecular Diagnostics, 10:521-530.
    Wolf, B., Brischwein, M., Lob, V., Ressler J., Wiest, J.,2007. Cellular signaling: aspects for tumor diagnosis and therapy. Biomedical engineering,52: 164-168.
    Xu, G.X., Ye, X.S., Qin, L.F., Xu, Y., Li, Y, Li R., Wang, P.,2005. Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosensors and Bioelectronics,20(9):1757-1763.
    Yu, H., Cai, H., Zhang, W., Xiao, L., Liu, Q., Wang, P.,2009. A novel design of multifunctional integrated cell-based biosensors for simultaneously detecting cell acidification, extracellular potential. Biosensors and Bioelectronics,24:1462-1468.
    Yu, J.J., Liu Z.B., Mak, A.F.T., Yang, M,2009. Nanoporous Membrane based Cell Chip for the Study of Anti-Cancer Drug Effect of Retinoic Acid with Impedance Spectroscopy. Talanta,80(1):189-194.
    Zeck, C., Fromherz, P., 2001. Noninvasive neuroelectronic interfacing with synaptically connected snail neurons immobilized on a semiconductor chip. Proceedings of the National Academy of Sciences of the United States of America,98:10457-10462.
    Arnold, F.J., Hofmann, F., Bengtson, C.P., Wittmann, M., Vanhoutte, P. and Bading, H., 2005. Microelectrode array recordings of cultured hippocampal networks reveal a simple model for transcription and protein synthesis-dependent plasticity, The Journal of Physiology,564:3-19.
    Berdondini, L., Chiappalone, M., van der Wal, P.D., Imfeld, K., de Rooij, N.F., Koudelka-Hep, M., Tedesco, M., Martinoia, S., van Pelt, J., Le Masson, G., Garenne, A.,2006, A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-population of neurons. Sensors and Actuator B,114: 530-541.
    Bers, D.M.,2002. Cardiac excitation-contraction coupling. Nature,415:198-205.
    Bishopric, N.H., Andreka, P., Slepak, T., Webster, K.A.,2001. Molecular mechanisms of apoptosis in the cardiac myocyte. Current Opinion in Pharmacology,1: 141-150.
    Borkholder, D.A.,1998. Cell-Based Biosensors Using Microelectrodes. Ph.D. Thesis, Stanford University, CA.
    Breckenridge, L.J., Wilson, R.J.A., Connolly, P., Curtis, A.S.G, Dow, J.A.T., Blackshaw, S.E. Wilkinson, C.D.W.,1995. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording. Journal of Neuroscience Research,42:266-276.
    Bucher, V., Brunner, B., Leibrock, C., Schubert, M., Nisch,W.,2001. Electrical properties of a light-addressable microelectrode chip with high electrode density for extracellular stimulation and recording of excitable cells. Biosensors and Bioelectronics,16:205-210.
    Caspi,0., Itzhaki, I., Arbel, G., Kehat, I., Gepstien, A., Huber, I., Satin, J., Gepstein, L., 2009. In vitro electrophysiological drug testing using human embryonic stem cell derived cardiomyocytes. Stem Cells and Development,18:161-72.
    Chiu, D.T., Jeon, N.L., Huang, S., Kane, R.S., Wargo, C.J., Choi, I.S.,2000. Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proceedings of the National Academy of Sciences of the United States of America,97(6):2408-2413.
    Chlopcikova, S., Psotova,J., Miketova, P.,2001. Neonatal rat cardiomyocytes--a model for the study of morphological, biochemical and electrophysiological characteristics of the heart. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia,145,49-55.
    Chu, H.Y., Kuo, T.Y., Chang, B., Lu, S.W., Chiao, C.C., Fang, W.,2006. Design and fabrication of novel three-dimensional multi-electrode array using SOI wafer. Sensors and Actuators A:Physical,130-131:254-261.
    DeBusschere, B. D., Kovacs, G. T., 2001. Portable cell-based biosensor system using integrated CMOS cell-cartridges. Biosensors and Bioelectronics,16(7-8): 543-56.
    Dworak, B.J., Wheeler, B.C., 2009. Novel MEA platform with PDMS microtunnels enables the detection of action potential propagation from isolated axons in culture. Lab on a Chip,9:404-410.
    Egert, U., Banach, K., Meyer, T., 2006. Analysis of cardiac myocyte activity dynamics with microelectrode arrays. In:Taketani, M., Baudry, M., Advances in network electrophysiology using multi electrode arrays. Springer,274-290.
    Gesteland, R.C., Howland, B., Lettvin, J.Y., Pitts, W.H.,1959. Comments on microelectrodes. Proceedings of the Institude of Radio Engineers,47: 1856-1862.
    Gholmieh, G., Soussou, W., Han, M., Ahuja, A., Hsiao, M.C., Song, D., Tanguay Jr A.R., Berger T.W., 2006. Custom-designed high-density conformal planar multielectrode arrays for brain slice electrophysiology. Journal of Neuroscience Methods,152:116-129.
    Giovangrandi, L., Gilchrist, K.H., Whittington, R.H., Kovacs, G.T.A., 2006. Low-cost microelectrode array with integrated heater for extracellular recording of cardiomyocyte cultures using commercial flexible printed circuit technology. Sensors and Actuators B:Chemical,113 (1):545-554.
    Gray, D.S., Tan, J.L., Voldman, J., Chen, C.S.,2004. Dielectrophoretic registration of living cells to a microelectrode array. Biosensors and Bioelectronics, 19:1765-1774.
    Greve, F., Lichtenberg,J., Kirstein, K.U., Frey, U., Perriard, J.C., Hierlemann, A., 2007. A perforated CMOS microchip for immobilization and activity monitoring of electrogenic cells. Journal of Micromechanics and Microengineering,17:462-471.
    Gross, G.W., Azzazy, H.M.E., Wu, M.C, Rhoades, B.K.,1995. The use of neuronal networks on multielectrode arrays as biosensors. Biosensors and Bioelectronics,10:553-567.
    Gross, G.W., Harsch, A., Rhoades, B.K., Gopel, W.,1997. Odor, drug and toxin analysis with neuronal networks in vitro:extracellular array recording of network responses. Biosensors and Bioelectronics,12:373-393.
    Gross, G.W., Rieske, E., Kreutzberg, G.W., Meyer, A.,1977. A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neuroscience Letters,6: 101-105.
    Gross, G.W., Wen, W.Y., Lin, J.W.,1985. Transparent indium-tin oxide electrode patterns for extracellular, multisite recording in neuronal cultures. Journal of Neuroscience Methods,15:243-252.
    Guenther, E., Herrmann, T, Stett, A.,2006. The retinasensor:an in vitro tool to study drug effects on retinal signaling, In:Taketani, Makoto, Baudry, Michel, Advances in network electrophysiology:using multi-electrode arrays, Springer,321-331.
    Hai, A., Shappir, J., Spira, M.E.,2010. In-cell recordings by extracellular microelectrodes. Nature Methods,7:200-202.
    Halbach, M.D., Egert, U., Hescheler, J. and Banach, K.,2003. Estimation of action potential changes from field potential recordings in multicellular mouse cardiac myocyte cultures, Cellular Physiology and Biochemistry, 13(5):271-284.
    Heer, F., Franks, W., Blau, A., Taschini, S., Ziegler, C., Hierlemann, A., Baltesa, H., 2004. CMOS microelectrode array for the monitoring of electrogenic cells. Biosensors and Bioelectronics,20:358-366.
    Heller, D.A., Garga, V., Kelleher, K. J., Lee, T.C., Mahbubani, S., Sigworth, L.A., Lee, T.R., Rea, M. A.,2005. Patterned networks of mouse hippocampal neurons on peptide-coated gold surface. Biomaterials,26:883-889.
    Heuschkel, M.O., Fejtl, M., Raggenbass, M., Bertrand, D., Renaud, P,2002. A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices. Journal of Neuroscience Methods,114(2): 135-148.
    James, C., Spence, A., Dowell-Mesfin, N., Hussain, R., Smith, K., Craighead, H., et al. 2004. Extracellular recording from patterned neuronal networks using planar microelectrode arrays. IEEE Transactions on Biomedical Engineering, 51:1640-8.
    Janders, M., Egert, U., Stelzle, M., Nisch, W.,1996. Novel thin film titanium nitride micro-electrodes with excellent charge transfer capability for cell stimulation and sensing applications.18th annual international conference of the IEEE engineering in medicine and biology society. Amsterdam 19961.6.1: Microfabrication 1.
    Jimbo, Y., Kasai, N., Torimitsu, K., Tateno T., Robinson, H.P.,2003. A system for MEA-based multisite stimulation. IEEE Transactions on Biomedical Engineering,50:241-248.
    Johnstone, A. F. M., Gross, G. W., Weiss, D. G., Schroeder, O. H., Gramowski, A., Shafer, T. J.,2010. Microelectrode arrays:a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology,31: 331-350.
    Kamioka, H., Maeda, E., Jimbo, Y., Robinson, H., and Kawana, A., 1996. Spontaneous periodic synchronized bursting during formation of mature patterns of connections in cortical cultures. Neuroscience Letters, 206:109-112.
    Klauke, N., Smith, G.L. and Cooper, J.,2006. Extracellular recordings of field Potentials from single cardiomyocytes. Biophysical Journal,91:2543-2551.
    Kleinman, H.K., L. Luckenbill-Edds, Cannon, F.W., and Sephel, G.C.,1987. Review. Use of extracellular matrix components for cell culture. Analytical Biochemistry,166:1-13.
    Koo, K., Chung, H., Yu, Y., Seo, J., Park,J., Lim J.M., Paik, S.J., Park, S., Choi, H.M., Jeong, M.J., Kim, GS., Cho, D.D.,2006. Fabrication of pyramid shaped three-dimensional 8x8 electrodes for artificial retina. Sensors and Actuators A: Physical,130-131:609-615.
    Li, Y., Zhou, W., Li, X., Zeng, S., Liu, M., and Luo, Q.,2007. Characterization of synchronized bursts in cultured hippocampal neuronal networks with learning training on microelectrode arrays. Biosensors and Bioelectronics,22: 2976-2982.
    Liang, H., Matzkies, M., Schunkert, H., Tang, M., Bonnemeier, H., Hescheler, J., Reppel, M.,2010. Human and murine embryonic stem cell-derived cardiomyocytes serve together as a valuable model for drug safety screening. Cellular Physiology and Biochemistry,25:459-466.
    Liu, Q., Ye, W., Xiao, L., Du, L., Hu, N., Wang, P., 2010. Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose. Biosensors and Bioelectronics,25:2212-2217.
    Maher, M.P., Pine, J., Wright, J., Tai, Y.-C.,1999. The neurochip:a new multielectrode device for stimulating and recording from cultured neurons. Journal of Neuroscience Methods,87(1):45-56.
    Maynard, E.M., Fernandez, E., and Normann, R.A.,2000. A technique to prevent dural adhesions to chronically implanted microelectrode arrays. Journal of Neuroscience Methods,97(2):93-101.
    Meyer, T, Leisgen, C., Gonser, B., Gunther, E.,2004. QT-screen, high-throughput cardiac safety pharmacology by extracellular electrophysiology in primary cardiac myocytes. Assay and Drug Development Technologies,2:507-514.
    Morefield, S.I., Keefer, E.W., Chapman, K.D., Gross, G.W., 2000. Drug evaluations using neuronal networks cultured on microelectrode arrays. Biosensors and Bioelectronics,15:383-396.
    Morin, F., Naoki, Nishimura., Laurent, Griscom. et al., 2006. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques:a step towards neuron-based functional chips. Biosensors and Bioelectronics,21 (7):1093-100.
    Morin, F., Takamura, Y. and Tamiya, E.,2005. Investigating neuronal activity with planar microelectrode arrays:achievements and new perspectives. Journal of Bioscience and Bioengineering,100(2):131-143.
    Musters, R.J. Ph., Post, J.A., Verkleij, A.J.,1991. The isolated neonatal rat-cardiomyocyte used in an in vitro model for 'ischemia'.I. A morphological study. BBA-Biochimica et Biophysica Acta,1091:270-277.
    Nakanishi, K. and Kukita, F.,1998. Functional synapses in synchronized bursting of neocortical neurons in culture. Brain Research,795:137-146.
    Palyvoda,0., Chen, C.C.. Auner G.W., 2007. Culturing neuron cells on electrode with self-assembly monolayer. Biosensors and Bioelectronics, 22(9-10):2346-50.
    Pine,J.,1980. Recording action potentials from cultured neurons with extracellular microcircuit electrodes. Journal of Neuroscience Methods, 2:19-31.
    Shahaf, G. and Marom, S.,2001. Learning in networks of cortical neurons. The Journal of Neuroscience,21:8782-8788.
    Shein, M, Greenbaum, A., Gabay, T., Sorkin, R., David-Pur, M., Ben-Jacob, E., Hanein, Y., 2009. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays. Biomedical Microdevices,11: 495-501.
    Shimojo, T., Hiroe, M., Ishiyama, S., Ito, H., Nishikawa, T.,Marumo, F.,1999. Nitric oxide induces apoptotic death of cardiomyocytes via a cyclic-GMP-dependent pathway. Experimental Cell Research,247:38-47.
    Snopko, R.M., Aromolaran, A.S., Karko, K.L., Ramos-Franco, J., Blatter, L.A., Mejia-Alvarez, R.,2007. Cell culture modifies Ca2+ signaling during excitation-contraction coupling in neonate cardiac myocytes. Cell Calcium,41: 13-25.
    Steare, S.E., Yellon, D.M.,1995. The potential for endogenous myocardial antioxidants to protect the myocardium against ischaemia-reperfusion injury:refreshing the parts exogenous antioxidants cannot reach? Journal of Molecular and Cellular Cardiology,27:65-74.
    Thomas, C.A. Jr, Springer, P.A., Loeb, GE., Berwald-Netter, Y, Okun, L.M.1972. A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Experimental Cell Research,74(1):61-66.
    Wang, L.J., Sobie, E.A.,2008. Mathematical model of the neonatal mouse ventricular action potential. American Journal of Physiology-Heart and Circulatory Physiology,294:H2565-H2575.
    Yla-Outinen, L., Heikkila, J., Skottman, H., Suuronen, R., aanismaa, R., Narkilhati, S., 2010. Human cell-based micro electrode array platform for studying neurotoxicity. Front. Neuroengineering,3:111.
    Zeck, G. and Fromherz, P.,2003. Repulsion and attraction by extracellular matrix protein in cell adhesion studied with nerve cells and lipid vesicles on silicon chips. Langmuir,19(5):1580-1585.
    Bers, D.M.,2002. Cardiac excitation-contraction coupling. Nature,415:198-205.
    Danowski, B.A.,1989. Fibroblast contractility and actin organization are stimulated by microtubule inhibitors. Journal of Cell Science,93: 255-266.
    Egert, U., Banach, K., Meyer, T.,2006. Analysis of cardiac myocyte activity dynamics with micro-electrode arrays, in:Taketani M., Baudry M. (Eds), Advances in network electrophysiology, Springer-Verlag, New York,274-290.
    Gomez, A.M., Guatimosim, S., Dilly, K.W., Vassort, G., Lederer, W.J.,2001. Heart failure after myocardial infarction:altered excitation-contraction coupling. American Journal of Physiology-Heart and Circulatory Physiology, 104:688-693.
    Iribe, G., Helmes, M., Kohl, P., 2007. Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load. American Journal of Physiology-Heart and Circulatory Physiology,292:H1487-H1497.
    Korchev, Y.E., Milovanovic, M., Bashford, C.L., Bennett, D.C., Sviderskaya, E.V., Vodyanoy, I., Lab, M.J.,1997. Specialized scanning ion-conductance microscope for imaging of living cells, Journal of Microscopy,188(Pt 1):17-23.
    Korhonen, T., Hanninen, S.L., Tavi, P.,2009. Model of excitation-contraction coupling of rat neonatal ventricular myocytes. Biophysical Journal,96: 1189-1209.
    Lampidis, T.J., Kolonias, D., Savaraj, N., Rubin, R.W.,1992. Cardiostimulatory and antiarrhythmic activity of tubulin-binding agents. Proceedings of the National Academy of Sciences of the United States of America,89:1256-1260.
    Lecarpentier, Y.C., Martin, J.L., Claes, V., Chambaret, J.P., Migus, A, Antonetti, A., Hatt, P.Y.,1985. Real-time kinetics of sarcomere relaxation by laser diffraction. Circulation Research,56:331-339.
    McAdams, E.,2006. Bioelectrodes, in:Webster J.G. (Eds), Encyclopedia of Medical Devices and Instrumentation, John Wiley & Sons Inc., New York,120-166.
    Park,]., Ryu,J., Choi, S., Seo, E., Cha,J., Ryu, S., Kim, J., Kim, B., and Lee, S.,2005. Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevrs, Analytical Chemistry,77:6571-6580.
    Steadman, B., Moore, K., Spitzer, K., Bridge, J.,1988. A video system for measuring motion in contracting heart cells. IEEE Transactions on Biomedical Engineering,35:264-272.
    Stett, A., Egert, U., Guenther, E., Hofmann, F., Meyer, T., Nisch, W., Haemmerle, H., 2003. Biological application of microelectrode arrays in drug discovery and basic research.. Analytical and Bioanalytical Chemistry,377:486-495.
    Tsutsui, H., Ishihara, K., Cooper, G.,1993.4th. Cytoskeletal role in the contractile dysfunction of hypertrophied myocardium. Science,260:682-687.
    Wang, L.J., Sobie, E.A.,2008. Mathematical model of the neonatal mouse ventricular action potential. American Journal of Physiology-Heart and Circulatory Physiology,294:H2565-H2575.
    Wang, X. Abassi, Y., Xi, B., Zhang, W.F., Xu, X.,2009. Lable-free monitoring of excitation-contraction coupling and excitable cells using impedance based systems with millisecond time resolution. International Patent Publication No. WO 2009/137440 A1.
    Wilson, K., Das, M., Wahl, K.J., Colton, R.J., Hickman, J.,2010. Measurement of Contractile Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and Muscle Performance Enhancement. PLoS ONE,5(6): e11042.
    Yasuda, S.I., Sugiura, S., Kobayakawa, N., Fujita, H., Yamashita, H., Katoh, K., Saekl, Y., Kaneko, H,. Suda, Y., Nagai, R., Sugi, H.,2001. A novel method to study contraction characteristics of a single cardiac myocyte using carbon fibers. American Journal of Physiology-Heart and Circulatory Physiology, 281:H1442-H1446.
    Zhao, Y.; Zhang, X.,2005. Contraction Force Measurements in Cardiac Myocytes Using PDMS Pillar Arrays, Proceeding of the 18th IEEE International Conference on Micro Electro Mechanical Systems,834-837.
    Arola,0.J., Saraste, A., Pulkki, K., Kallajoki, M., Parvinen, M., Voipio-Pulkki, L.M., 2000. Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Research,60:1789-1792.
    Bouafsoun, A., Helali, S., Mebarek, S. et al.,2007. Electrical probing of endothelial cell behaviour on a fibronectin/polystyrene/thiol/gold electrode by Faradaic electrochemical impedance spectroscopy (EIS). Bioelectrochemistry, 70:401-407.
    Ghosh, S., Pulinilkunnil, T., Yuen, G., Kewalramani, G., Ding, A.,2005. Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion. American Journal of Physiology-Heart and Circulatory Physiology,289:H768-H776.
    Giaever, I., Keese, C.R.,1984. Monitoring fibroblast behavior in tissue culture with an applied electric field Proceedings of the National Academy of Sciences of the United States of America,81(12):3761-3764.
    Gonzalez, A., Fortuno, M.A., Querejeta, R., et al., 2003. Cardiomyocyte apoptosis in hypertensive car-diomyopathy. Cardiovascular Research,59:549-562.
    Guan, J.L., 2005. Cell Migration Developmental Methods and Protocols, Totowa, NJ: Humana Press.
    Kang, P.M., Haunstetter, A., Aoki, H., Usheva, A., Izumo, S.,2000. Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circulation Research,87(2):118-125.
    Keese, C.R., Karra, N., Dillon, B., Goldberg, A.M., Giaever, I.,1998. Cell-substratum interactions as a predictor of cytotoxicity. In-Vitro and Molecular Toxicology. 11:183-192.
    Keese, C.R., Wegener, J., Walker, S.R., and Giaever, I., 2004. Electrical wound-healing assay for cells in vitro. Proceedings of the National Academy of Sciences of the United States of America,101:1554-1559.
    Liu, X., Zhang, X., Lee, I.,2010. A quantitative study on morphological response of osteoblastic cells to fluid shear stress. Acta Biochimica et Biophysica Sinica, 42(3):195-201.
    Olson, R., Mushlin, P., 1990. Doxorubicin cardiotoxicity:analysis of prevailing hypothesis. The FASEBJournal,4:3076-3086.
    Parker, K.K., Brock, A.L., Brangwynne, C., Mannix, R.J., Wang, N., Ostuni, E., Geisse, N.A., Adams, J.C., Whitesides, GM., Ingber, D.E.,2002. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. The FASEB Journal,16:1195-1204.
    Pein, f., Sakiroglu,0., Dahan,M., Lebidois, J.,Merlet, P., Shamsaldin, A., Villain, E., De Vathaire, F., Sidi, D., Hartmann,0.,2004. Cardiac abnormalities 15 years and more after adriamycin therapy in 229 childhood survivors of a solid tumour at the Institut Gustave Roussy. British Journal of Cancer,91 (1),37-44.
    Powis, G., 1989. Free radical formation by antitumour quinones. Free Radical Biology & Medicine,6:63-101.
    Rajagopalan, S., Politi, P. M., Sinha, B. K., Myers, C.E., 1988. Adriamycin-induced free radical formation in the perfused rat heart: implications for cardiotoxicity. Cancer Research,48(17):4766-9.
    Solem, L. E., Henry, T. R., Wallace, K. B.,1994. Disruption of mitochondrial calcium homeostasis following chronic doxorubicin administration. Toxicology and Applied Pharmacology.,129:214-222.
    Torii, M., Ito, H., Suzuki, T.,1992. Lipid peroxidation and myocardial vulnerability in hypertrophied SHRmyocardium. Experimental and Molecular Pathology,57: 29-38.
    Unverferth, B.J., Magorien, R.D., Balcerzak, S.P., Leier, C.V., Unverferth, D.V.,1983. Early changes in human myocardial nuclei after doxorubicin. Cancer, 52(2):215-221.
    Vaynblat, M., Pagala, M.K., Davis, W.J., Bhaskaran, D., Fazylov, R., Gelbstein, C., Greengart, A., Cunningham, J.N.,2003. Telemetrically monitored arrhythmogenic effects of doxorubicin in a dog model of heart failure. Pathophysiology,9(4):241-248.
    Von, Hoff, D.D., Rozencweig, M., Layard, M., Slavik, M., Muggia, F.M.,1977. Daunomycin-induced cardiotoxicity in children and adults. A review of 110 cases. The American Journal of Medicine,62(2):200-208.
    Wang, GX., Wang, Y.X., Zhou, X.B., Korth, M.2001. Effects of doxorubicinol on excitation-contraction coupling in guinea pig ventricular myocytes. European Journal of Pharmacology,423(2-3):99-107.
    Watanabe, J., Eriguchi, T., and Ishihara, K.,2002. Cell adhesion and morphology in porous scaffold based on enantiomeric poly(lactic acid) graft-type phospholipid polymers, Biomacromolecules,3:1375-1383.
    Wold, L.E., Aberle, N.S. and Ren, J.,2005. Doxorubicin induces cardiomyocyte dysfunction via a p38 MAP kinase-dependent oxidative stress mechanism. Cancer Detection and Prevention Journal,29:294-299.
    Xing, J.Z., Zhu, L., Jackson, J.A., Gabos, S., Sun, X.B., Wang, X., et al.,2005. Dynamic monitoring on microelectronic sensors. Chemical Research in Toxicology, 18:154-61.
    Yim, E.K.F., Reano, R.M., Pang, S.W., Yee, A.F., Chen, C.S., Leong, K.W.,2005. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials,26:5405.
    Giovangrandi, L., Gilchrist, K. H., Whittington, R. H., and Kovacs, G. T. A.,2006. Low-cost microelectrode array with integrated heater for extracellular recording of cardiomyocyte cultures using commercial flexible printed circuit technology. Sensors and Actuators B:Chemical,113:545-554.
    Hoja, J., Lentka, G., 2009. Portable analyzer for impedance spectroscopy. XIX IMEKO World Congress Fundamental and Applied Metrology, Lisbon, Portugal.
    Liu, J., Fruhauf, U., and Sch necker, A.,1999. Accuracy improvement of impedance measurements by using the self-calibration. Measurement,25(3):213-225.
    Whitesides GM., Ostuni E., Takayama S., Jiang X., Ingber D.,2001. Soft lithography in biology and biochemistry. Annual Review of Biomedical Engineering,3: 335-373.
    吴闽,黄钊洪,2006。锑化铟磁阻型红外光电传感器及其特性研究。红外与激光工程,35,58-63。
    Chen, S., Lee, L.P.,2010. Non-invasive microfluidic gap junction assay. Integrative Biology,2:130-138.
    El-AIi P., Sorger K., Jensen K.F.,2006. Cells on Chips. Nature,442:403-411.
    Kehat I., Khimovich L., Caspi O., Gepstein A., Shofti R., Arbel G, Huber I., Satin J., Itskovitz-Eldor J., Gepstein L., 2004. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nature Biotechnology,22(10):1282-9.
    Satin J., Kehat I., Caspi O., Huber I., Arbel G., Itzhaki I., Magyar J., Schroder E.A., Perlman I., Gepstein L., 2004. Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes. The Journal of Physiology,559(Pt2):479-96.
    Schimmel, K.J., Richel, D.J., Van den Brink R.B., and Guchelaar, H.J.,2004。 Cardiotoxicity of cytotoxic drugs, Cancer Treatment Reviews,30,181-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700