建筑施工高空坠落危险的时空分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高空坠落危险源是建筑施工现场的首要危险源,对它的研究分析是当前研究的热点之一。但对于发生在工序层面上的高空坠落危险源对施工作业产生的影响的随机波动性问题,已有的研究很少涉及。本文以施工活动中不断往复循环执行的工序,以及临边高空坠落危险源和起重机高空坠物危险源为研究对象,对上述问题展开研究。本文的主要研究内容和创新点包括:
     (1)在工序层面上,运用循环网络模型描述了高空坠落危险源对施工作业产生的动态影响,建立了高空坠落危险源与潜在受害者工序之间的动态时空联系,即前者的存在时间与后者的作业时间发生动态重合并且前者的影响空间与后者的工作空间存在着动态的空间重叠区域,分析得出了对上述高空坠落危险源的影响及其波动性进行定量化分析的思路。
     (2)从切断上述动态时空联系从而消除高空坠落危险源影响的角度进行分析,揭示了工序调度的本质是产生危险源工序和潜在受害者工序在独自占用上述空间重叠区域上的排队竞争。通过将这种排队竞争抽象为排队节点,并根据相邻工序施工作业是否连续,以及是否严格遵守先进先出规则,从而给出了四种类型的工序调度循环网络模型,进而通过循环网络仿真,提出了由工序调度导致的施工活动劳动生产率损失率及其随机波动性的定量化估算方法。
     (3)从动态时间联系角度出发,运用循环网络仿真技术,将施工人员在高空坠落危险源影响范围内的时间暴露描述为产生危险源工序与潜在受害者工序之间作业时间的动态重叠,并据此提出了动态波动的时间暴露程度的定量化估算方法。
     (4)对于前述两种高空坠落危险源,按照它们释放的危害能量在空间中的覆盖范围和能量转换特性,分别构建了它们的影响空间几何分布模型和危害能量分布模型。在此基础上,从空间联系角度出发,给出了施工人员在高空坠落危险源影响范围内的空间暴露程度和危害能量对人体头枕部伤害程度的定量化估算方法。
     通过某商办楼项目塔吊高空坠物危险源影响的案例应用研究,说明了本文的研究成果能够在工序层面上对施工作业受到的高空坠落危险源影响及其随机波动性进行定量化分析,并进一步表明,本文的研究成果能够为合理地选择施工措施、更好地确定施工资源的投入等提供有力的数据支撑。
Evaluating the risk of fall from high places, one of the primary hazardson construction sites, is a prevailing research field. However, few studies haveassessed the randomness of the effect of fall hazards on constructionoperations in low-level operations. This research focuses on two types of fallhazards in relation to repetitive operations on construction site. One is withhuman or objects falling from the edge of high places, and the other is withobjects falling from crane hook. Furthermore, this research evaluates thefluctuating effect of falling in the operation level. The major contributions ofthis research are stated as the followings.
     (1) Based on the cyclic network model, the dynamic effect of fallhazards on construction operations is described from the perspective oflow-level operations. And then, this research abstracts the dynamicspatio-temporal relationship between fall hazards and potential victimoperations, including dynamic temporal overlap between the existing periodof the former and the duration of the latter, and dynamic spatial intersectionbetween the reachable space of the former and the workspace of the latter.Accordingly, the approaches are proposed for quantitative estimating therandomness of the effect of fall hazards.
     (2) Operation coordination can remove the aforementionedspatio-temporal relationship, eliminating the effect of fall hazards. The natureof operation coordination lies in the competition of exclusively utilizing thecommon intersecting space between the hazardous operation and the potential victim operation. Thus, this competition can be abstracted as the Queue node.Subsequently, based on some coordination rules, four types of cyclic networkmodels of operation coordination are created. The typical coordination rulesare whether adjacent operations are continuous and first-in-first-out. Throughthe simulation of cyclic network, this study further develops the quantitativeapproach for computing the fluctuating productivity loss rate of constructionactivities affected by operation coordination.
     (3) Using the simulation technique of cyclic network, the temporalexposure of potential victims in relation to fall hazards can be represented asthe dynamic overlaps between the durations of hazardous operations and thetime intervals of potential victim operations from the perspective of thedynamic temporal relationship. Consequently, a number of formulas toquantitative estimate the fluctuating temporal exposure degree are developed.
     (4) According to the spatial coverage and the energy conversion featureof harmful energy released from two types of aforementioned fall hazards, thegeometric distribution and the harmful energy distribution of the reachablespace of these hazards are modeled, respectively. From the viewpoint of thespatial relationship, this research further proposes the quantitatively formulaof the spatial exposure degree of potential victims in relation to the effect offall hazards, together with an analysis framework to quantitatively evaluatethe damage degree to the occipital regions arising from harmful energy in thereachable space.
     A case study of the effect of a hazard of objects falling from the hook ofa crane on an office building is explored. It shows that the findings of thisresearch can be used to quantitatively evaluate the random fluctuation of theeffect of fall hazard on construction operations in low-level operations.Furthermore, it indicates that these findings provide strong data support for reasonably selecting construction measures and better allocating constructionmanagement resources on construction site.
引文
[1]建设部建筑市场管理局.中国建筑业的对外开放[N].中国建设报,2007-01-12:第005版.
    [2]方东平,黄新宇.工程建设安全管理[M].北京:中国水利水电出版社,2001.
    [3]方东平,黄新宇,李晓东等.建筑业安全事故经济损失研究[J],建筑经济,2000(3):13-16.
    [4]彭成.世界主要国家职业安全事故统计指标与安全状况比较[J].中国煤炭,2003,29(8):49-51.
    [5]来永宝.创新:企业安全文化[J].嘉应大学学报,2003,21(4):33-35.
    [6]建设部工程质量与行业发展司.建设工程事故专项分析报告[R].2004.
    [7] HINZE J, RUSSELL D B. Analysis of Fatalities Recorded by OSHA[J]. Journal of ConstructionEngineering and Management,1995,121(2):209-214.
    [8] HINZE J, PEDERSEN C, FREDLEY J. Identifying root causes of construction injuries[J]. Journalof Construction Engineering and Management,1998,124(1):67-71.
    [9] CHIA C F, CHANGA T C, TINGB H I. Accident patterns and prevention measures for fataloccupational falls in the construction industry[J]. Applied Ergonomics,2005(36):391-400.
    [10]方东平,黄新宇,黄钊等.建筑业高处坠落事故研究[J].施工技术,2001,30(12):38-40.
    [11] RAJENDRAN S, GAMBATESE J.A. Development and initial validation of sustainableconstruction safety and health rating system[J]. Journal of Construction Engineering andManagement,2009,135(10):1067-1075.
    [12] AKINCI B, FISCHEN M, LEVITT R, et al. Formalization and automation of time-space conflictanalysis[J]. Journal of Computing in Civil Engineering,2002,16(2):124-134.
    [13] MITROPOULOS P, NAMBOODIRI M. New method for measuring the safety risk of constructionactivities: task demand assessment[J]. Journal of Construction Engineering and Management,2011,137(1):30-38.
    [14] HALLOWELL M.R, GAMBATESE J.A. Activity-based safety risk quantification for concreteformwork construction[J]. Journal of Construction Engineering and Management,2009,135(10):990-998.
    [15]张军.建筑施工危险源安全评价及管理的方法研究[D].大连:大连理工大学,2007.
    [16] SACKS R, ROZENFELD O, ROSENFELD Y. Spatial and temporal exposure to safety hazards inconstruction[J]. Journal of Construction Engineering and Management,2009,135(8):726-736.
    [17] HALPIN D W. CYCLONE-method for modeling job site processes[J]. Journal of ConstructionDivision,1977,103(3):489-499.
    [18] HALPIN D W. MicroCYCLONE user's manual[M]. West Lafayette, Indiana: Division ofConstruction Engineering and Management, Purdue University,1990.
    [19] ZHANG H, TAM C M, SHI J J. Resource allocation heuristic in construction simulation[J].Construction Management and Economics,2001,19(6):643–651.
    [20] CHUA D K H, GOH Y M. Utilising the modified loss causation model for the codification andanalysis of accident data[M]//Rowlinson S. Construction safety management systems. London: SponPress,2004:443-464.
    [21] SCHWARTZKOPF W. Calculating lost labor productivity in construction claims (secondedition)[M]. New York: Wiley Law Publications,2004.
    [22] SANDERS S R, THOMAS H R, SMITH G R. An analysis of factors affecting labor productivity inmasonry construction[M]. Pennsylvania State: Pennsylvania State Univ., University Park, Pa.,1989.
    [23] JANNADI O A, ALMISHARI S. Risk assessment in construction[J]. Journal of ConstructionEngineering and Management,2003,129(5):492-500.
    [24]田元福.建筑安全控制及其应用研究[D].西安:西安建筑科技大学,2004.
    [25]冯兆瑞,崔国璋.安全系统工程[M].北京:冶金工业出版社,1987.6:206-267.
    [26] ROZENFELD O, SACKS R, ROSENFELD Y.‘CHASTE’: construction hazard assessment withspatial and temporal exposure[J]. Construction Management and Economics,2009,27(7):625-638.
    [27] GUO S J. Identification and resolution of work space conflicts in building construction[J]. Journalof construction engineering and management,2002,128(4):287-295.
    [28] SONG Y B, CHUA D K H. Detection of spatio-temporal conflicts on a temporal3d spacesystem[J]. Advances in Engineering Software,2005,36(11-12):814-826.
    [29] HANNA A S, RUSSELL J S, GOTZION T W, et al. Impact of change orders on labor efficiency formechanical construction[J]. Journal of Construction Engineering and Management,1999,125(3):176-184.
    [30] GINSBURG G J, BANNON B A. Calculating loss of efficiency claims[M]. Washington D C: USfederal publications,1985.
    [31] MARTIN L, BUDZIK P. Impacts of rising construction and equipment costs on energyindustries[M]//The U.S. Energy Information Administration (EIA). Independent statistics andanalysis report of U.S.,2007.
    [32] HARMON K M, COLE B. Loss of productivity studies—current uses and misuses[J]. ConstructionBriefings,2006,8(1):1-19.
    [33] LIU M, BALLARD G, IBBS W. Work flow variation and labor productivity: case study[J]. Journalof Management in Engineering,2011,27(4):236-242.
    [34] JONES R M. Update on proving and pricing inefficacy claims[J]. Construction Lawyer,2003,23(2):3-11.
    [35]赵联文,郭耀煌,王亚平.生产率降低损失计算中成本的模糊估测模型[J].西南交通大学学报,1999,34(2):218-222.
    [36] AACE. Estimating lost labor productivity in construction claims[M].International RecommendedPractice No.25R-03,2004:1-29.
    [37]张进,贾革续.基于K-means聚类的施工劳动生产率损失索赔计算[J].工程管理学报,2010,24(4):374-377.
    [38] ZINK D A.The measured mile: proving construction inefficiency costs[J]. Cost Engineering,1986,28(4):19-21.
    [39] LOULAKIS M C, SANTIAGO S J. Getting the most out of your “measured mile” approach[J].Civil Engineering,1999,69(11):69.
    [40] IBBS W, LIU M. Improved measured mile analysis technique[J]. Journal of ConstructionEngineering and Management,2005,131(12):1249-1256.
    [41] FINKE M R. Statistical evaluations of measured mile productivity claims[J]. Cost Engineering,1998,40(12):28–30.
    [42] THOMAS H R, SANVIDO V E. Quantification of losses caused by labor inefficiencies: where isthe elusive measured mile[J]. Journal of Construction Law and Business,2000,1(3):1-14.
    [43] PRESNELL T W.“Measured Mile” process[J]. Cost Engineering,2003,45(11):14-20.
    [44] IBBS W, LIU M. An improved methodology for selecting similar working days for measured mileanalysis[J]. International Journal of Project Management,2011,29(6):773-780.
    [45] SANDERS S R, THOMAS H R. Factors affecting masonry——labor productivity[J]. Journal ofConstruction Engineering and Management,1991,117(4):626-644.
    [46] KOSKELA L J. An exploration towards a production theory and its application to construction[D].Helsinki, Finland: Teknillinen Korkeakoulu,2000.
    [47] RILEY D, SANVIDO V. Space planning for mechanical, electrical, plumbing and fire protectiontrades in multi-story building construction[A]. In:5th ASCE Construction Congress[C], ASCE,Reston, Va.,1997:102-109.
    [48] RAD P. Analysis of working space congestion from scheduling data[M]. American Association ofCost Engineer Transactions,1980: F4.1-F4.5.
    [49] AHUJA H N, NANDAKUMAR V. Enhancing reliability of project duration forecasts[M].American Association of Cost Engineers Transactions,1984: E6.1-E6.12.
    [50] OGLESBY C H, PARKER H W, HOWELL G A. Productivity improvement in construction[M].New York: McGraw-Hill,1989.
    [51] TOMMELEIN I D, ZOUEIN P P. Interactive dynamic layout planning[J]. Journal of ConstructionEngineering and Management,1993,119(2):266-287.
    [52] MUEHLHAUSEN F. Construction site utilization: impact of material movement and storage onproductivity and cost[M]. AACE Transactions,35,1991: L.2.1-L.2.9.
    [53] HOWELL G, BALLARD G. Factors affecting project success in the piping function[M]//ALARCON L. Lean construction. Rotterdam, the Netherlands: Balkema,1997,161-185.
    [54] THOMAS H R. Schedule acceleration, work flow, and labor productivity[J]. Journal ofConstruction Engineering and Management,2000,126(4):261-267.
    [55] DAWOOD N, MALLASI Z. Construction workspace planning: Assignment and analysis utilizing4D visualization technologies[J]. Computer-Aided Civil and Infrastructure Engineering,2006,21(7):498-513.
    [56] AKINCI B, FISCHER M, KUNZ J, et al. Representing work spaces generically in constructionmethod models[J]. Journal of Construction Engineering and Management,2002,128(4):296-305.
    [57] RILEY D R, SANVIDO V E. Patterns of construction-space use in multistory buildings[J]. Journalof Construction Engineering and Management,1995,121(4):464-473.
    [58] THABET W Y, BELIVEAU Y J. Modeling work space to schedule repetitive floors in multistorybuildings[J]. Journal of Construction Engineering and Management,1994,120(1):96-116.
    [59] Jacobus. PlantSpace navigator[EB/OL]. Jacobus Technologies,1997. http://www.bentley.com/products/peproducts/
    [60] Intergraph. Plant Design System (PDS)[EB/OL]. Intergraph,1999. http://www.intergraph.com/pds/pdsover.asp
    [61] THABET W Y, BELIVEAU Y J. HVLS: horizontal and vertical logic scheduling for multistoryprojects[J]. Journal of Construction Engineering and Management,1994,120(4):875-892.
    [62] TOMMELEIN I, DZENG R, ZOUEIN P. Exchanging layout and schedule data in a real-timedistributed environment[A]. In:5th International Conference on Computing in Civil and BuildingEngineering[C], ASCE, New York,1993:947-954.
    [63] RILEY D. Modeling the space behavior of construction activities[D]. Department of ArchitecturalEngineering, Pennsylvania State University, University Park, Pa.1994
    [64] ZOUEIN P, TOMMELEIN I. Time-space tradeoff strategies for space-schedule construction[A]. In:Proceedings of the First Congress, conjunction with A/E/C Systems’94[C], Washington, D.C.,1994:1180-1187.
    [65] ZOUEIN P, TOMMELEIN I. Improvement algorithm for limited space scheduling[J]. Journal ofConstruction Engineering and Management,2001,127(2):116-124.
    [66] WINCH G M, NORTH S. Critical space analysis[J]. Journal of Construction Engineering andManagement,2006,132(5):473-481.
    [67] AKINCI B, FISCHER M. Four-dimensional workplanner—a prototype system for automatedgeneration of construction spaces and analysis of time-space conflicts[M]//FRUCHTER R et al.Computing in civil and building engineering. ASCE, Reston, Va.,2000:740-747.
    [68] RILEY D R, SANVIDO V E. Space planning method for multistory building construction[J].Journal of Construction Engineering and Management,1997,123(2):171-180.
    [69] CHUA D K H, YEOH K W, SONG Y B. Quantification of spatial temporal congestion infour-dimensional computer-aided design[J]. Journal of Construction Engineering and Management,2010,136(6):641-649.
    [70] SHI J, ABOURIZK S. Resource-based modeling for construction simulation[J]. Journal ofConstruction Engineering and Management,1997,123(1):26-33.
    [71] PAULSON B C. Interactive graphics for simulating construction operations[J]. Journal ofConstruction Division,1978,104(1):69-76.
    [72] CHANG D. RESQUE[D]. Ann Arbor, Michigan: University of Michigan,1987.
    [73] IOANNOU P G. UM_CYCLONE user's guide[M]. Ann Arbor, Michigan: Department of CivilEngineering, University of Michigan,1989.
    [74] TOMMELEIN I D, ODEH A M. Knowledge-based assembly of simulation networks usingconstruction designs, plans, and methods[A]. In: Proceedings of the1994Winter SimulationConference[C],1994:1145-1158.
    [75] MARTINEZ J C. STROBOSCOPE: state and resource based simulation of constructionprocesses[D]. Ann Arbor, Michigan: University of Michigan,1996.
    [76] HAJJAR D, ABOURIZK S M. Unified modeling methodology for construction simulation[J].Journal of Construction Engineering and Management,2002,128(2):174-185.
    [77] PAULSON B C, CHAN W T, KOO C C. Construction operations simulation by microcomputer[J].Journal of Construction Engineering and Management,1987,113(2):302-314.
    [78] HALPIN D W, RIGGS L S. Planning and analysis of construction operations[M]. New York: Wiley,1992.
    [79] VANEGAS J A, BRAVO E B, HALPIN D W. Simulation technologies for planning heavyconstruction processes[J]. Journal of Construction Engineering and Management,1993,119(2):336-354.
    [80] HAMMAD A, ZHANG C. Towards real-time simulation of construction activities consideringspatio-temporal resolution requirements for improving safety and productivity[A]. In: Proceedingsof the2011Winter Simulation Conference[C],2011:3533-3544.
    [81] ABOURIZK S M, RUWANPURA J Y, ER K C, et al. Special Purpose simulation template forutility tunnel construction[A]. In: Proceedings of the1999Winter Simulation Conference[C].Piscataway New Jersey: Institute of Electrical and Electronics Engineers, Inc.1999:948-955.
    [82] ZAYED T M, HALPIN D W. Simulation of concrete batch plant production[J]. Journal ofConstruction Engineering and Management,2001,127(2):132-141.
    [83]钟登华,刘东海.大型地下洞室群施工系统仿真理论方法与应用[M].北京:中国水利水电出版社,2004.
    [84] IBBS C W. Future direction for computerized construction research[J]. Journal of ConstructionEngineering and Management,1987,112(3):326-345.
    [85] HUANG R, GRIGORIADIS A M, HALPIN D W. Simulation of cable-stayed bridges usingdisco[a]. in: proceedings of the1994winter simulation conference[C],1994:1130-1136.
    [86] LIU L Y, IOANNOU P G. Graphical object-oriented discrete-event simulation system[A]. In:Proceedings of the1992Winder Simulation Conference[C],1992:1285-1291.
    [87] SAWHNEY A, ABOURIZK S M. Simulation based planning method for construction project[J].Journal of Construction Engineering and Management,1995,121(3):297-303.
    [88] MCCAHILL D F, BERNOLD L E. Resource-oriented modeling and simulation in construction[J].Journal of Construction Engineering and Management,1993,119(3):590-606.
    [89] SHI J. Automated modeling and optimization for construction simulation[D]. Department of CivilEngineering, University of Alberta,1995.
    [90] ABOURIZK S, SHI J. Automated construction simulation optimization[J]. Journal of ConstructionEngineering and Management,1994,120(2):374-385.
    [91] CHUA D K H, LI G M. RISim: resource-interacted simulation modeling in construction[J]. Journalof Construction Engineering and Management,2002,128(3):195-202.
    [92]商杰.美国、加拿大高处坠落事故研究报告(连载下)[J].建筑安全,2007(5):38-40.
    [93]陈兴武,王慧君,赵卫东等.人头部力锤冲击试验的生物力学研究[J].中国临床解剖学杂志,2005,23(3):298-302.
    [94] CHUA D K H, GOH Y M. Incident causation model for improving feedback of safetyknowledge[J]. Journal of Construction Engineering and Management,2004(7/8):542-551.
    [95]黄柯棣.系统仿真技术[M].北京:国防科技大学出版社,1998.
    [96]韦有双,杨湘龙,王飞.虚拟现实技术与系统仿真[M].北京国防工业出版社,2004.
    [97]张璇.典型生产事故调查分析及事故能量机理初探[D].西安:西安建筑科技大学,2008
    [98] MITROPOULOS P, NAMBOODIRI M. New method for measuring the safety risk of constructionactivities: task demand assessment[J]. Journal of Construction Engineering and Management,2011,137(1):30-38.
    [99]贾启芬,刘习军,王春敏.理论力学[M].天津:天津大学出版社,2003.
    [100]王盼盼,李启明,邓小鹏.施工人员安全能力模型研究[J].中国安全科学学报,2009,19(8):40-45.
    [101]商杰.美国、加拿大高处坠落事故研究报告(连载上)[J].建筑安全,2007(4):44-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700