基于MODIS数据的作物物候期监测及作物类型识别模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于受自然条件和经济条件的限制,农业生产很大程度上依赖于天气气候条件。这种情况下,粮食安全面临巨大威胁,已经引起广泛的关注。及时监测农作物长势以及提早做出作物产量预测对政策制订和保持可持续发展十分重要。因此,无论发展中国家还是发达国家,几十年来,作物监测和产量预测一直受到高度重视。利用遥感技术来进行作物产量预测是最有发展前途的方法之一。
     Terra/MODIS是一种新型和重要的卫星传感器,其数据性能较NOAA/AVHRR数据有了较大改善,空间分辨率为1000m,500m,250m,在波谱0.4-14.5范围内有36个波段,覆盖了可见光、近红外和短波红外波段,且波段均较窄,加上其每天一次对地区覆盖的高时间分辨率,MODIS数据在大尺度作物遥感监测和估产方面具有潜在优势。
     在使用遥感信息获取作物生长发育状态信息时,如何将作物信息和其它信息分离,如何解决遥感信息和农学信息的匹配和转换是仍需进一步研究的问题。本文基于2003年、2004年MODIS数据进行中国华北地区主要作物物候期信息提取和作物类型识别研究。利用MODIS NDVI和EVI数据作为遥感参数,利用非线性方程模拟,提取作物关键物候期信息,并将物候遥感监测指标与地面观测指标进行对比分析,确定两者匹配关系。通过对作物生长期内植被指数变化曲线分析,选择合适的分类特征,进行华北地区主要作物类型识别。研究主要内容有:
     1.分别利用Logistic方程和高斯方程对作物生长期内植被指数曲线进行模拟,并采用最大曲率法、动态阈值法提取作物关键物候期。分别利用MODIS NDVI和EVI序列提取冬小麦关键物候期,以农业气象观测值为参考值对监测结果进行分析,结果表明,利用这两种数据源获取作物生长季始末期与参考值比较结果相近,而利用MODIS EVI序列数据提取作物生殖生长转折点提取结果,较NDVI数据更接近参考值。两种曲线模拟方法利用曲率最大值法确定的冬小麦物候期均取得了较好结果,利用动态阈值法提取作物物候期与参考值相比相差稍大。
     2.物候遥感监测结果与农业气象观测值相匹配。本文通过分析作物关键生育期的农学意义,及其在遥感植被指数序列数据的反映,分析农业气象观测指标及其大田表现,由此将物候遥感指标和观测指标相匹配。冬小麦与夏玉米关键物候期监测
Because of the limit of natural and economic condition, the agricultural production strongly depends on the weather and climate. In this case, the food security faces great threat and it has attracted wide attention. It is very important to real-time monitor the crop growth and to make prediction of crop production for policy making and sustainable development. So the crop monitoring and prediction of production draws great attention all the time in not only developing country but also developed country. It is one of the most promising methods to make prediction of crop production with remote sensing.
    Terra/MODIS is a new remote sensing sensor. It can view the entire surface of the Earth in 36 spectral bands sampling the electromagnetic spectrum from 0.4 to 14μm with a spatial resolution ranging from 250 to 1,000 meters and high time resolution. So it has potential advantage in crop monitor on large-scale.
    How to separate crop information from the others and how to resolve the match and transformation between remote sensing information and agricultural information in monitoring crop growth are the next-step research when the information of the crop growth is extracted from remote sensing. In this paper, based on MODIS data of 2003 and 2004, phenological information of primary crop is extracted and crop type is identified in North China. With MODIS NDVI and EVI as parameters, together with non-linear formulation, the key crop phenological phases can be extracted and the remote sensing phenological monitoring index is contrasted with the land observation index to determine the matching relationship. Selecting the proper classification features, the primary crop types in North China could be identified through the analysis of the vegetation index time series in growth season. Main research results and initiatives in the thesis are as follows:
    1. Modeling the vegetation index curve respectively using a series of piecewise Logistic and Gaussian functions of time and extracting the key crop phenological phase through the methods of maximum curvature and dynamic threshold. The estimated phenological stages and statistical data are compared. The result shows that EVI time series is more efficient than the NDVI time series in estimating heading date. The method of maximum curvature gets better result than dynamic threshold. The two asymmetric functions fitting methods used to extract crop phenology are all successful.
    2. The phenology detected using MODIS time series is linked to statistical data. The relationship between crop development stages and temporal variation in satellite derived VI data is discussed. It was realized that the estimated phenology using MODIS time series is translated to statistic data. The comparison between the key phenological phases monitoring result and agricultural statistic data of winter wheat and summer maize development stages shows that the remote sensing monitoring result matches the agricultural statistic well. The remote sensing monitoring start phase of growth is
引文
1.陈维英,肖乾广,盛永伟等.距平植被指数在1992年特大干旱监测中的应用[J].环境遥感,1994,1(4):37-43.
    2.陈仲新,刘海启,周清波,杨桂霞,刘佳.全国冬小麦面积变化遥感监测抽样外推方法的研究[J].农业工程学报,2000,16(5):126-129.
    3.程乾,黄敬峰,王人潮.MODIS和NOAA/AVHRR植被指数差异初步分析[J].科技通报,2005,21(2):205-209.
    4.池宏康.黄土高原地区提取植被信息方法的研究[J].植物学报,1996,38(1):40-44.
    5.胡如忠,刘海启.遥感技术应用与欧美农作物估产.北京:气象出版社,2002,34-59.
    6.胡如忠,刘海启.遥感技术应用与欧美农作物估产.北京:气象出版社,2002,34-59.
    7.贾永红.人工神经网络在多源遥感影像分类中的应用[J].测绘通报,2000,7:7-8.
    8.江东,王乃斌,杨小唤,刘红辉.NDVI曲线与农作物长势的时序互动规律.生态学报,2002,22(2):247-252.
    9.李本纲,陶澍.AVHRR NDVI与气候因子的相关分析[J].生态学报,2000,20(5):898-902.
    10.李俊祥,达良俊,王玉洁,宋永昌.基于NOAA-AVHRR数据的中国东部地区植被遥感分类研究[J].植物生态学报,2005,29(3):436-443.
    11.李培军,黄颖端.运用多层次迭代方法进行遥感数据的土地覆盖分类[J].自然科学进展,2004,14(5):588-592.
    12.李晓兵,陈云浩,张云霞,范一大,周涛,谢锋.气候变化对中国北方荒漠草原植被的影响[J].地球科学进展,2002,17(2):254-261.
    13.李晓兵,史培军.基于NOAA/AVHRR数据的中国主要植被类型NDVI变化规律研究[J].植物学报,1999,41(3):314-324.
    14.李晓兵,陈云浩,张云霞,范一大,周涛,谢锋.气候变化对中国北方荒漠草原植被的影响[J].地球科学进展,2002,17(2):254-262.
    15.刘纪远,刘明亮,庄大方,张增祥,邓祥征.中国近期土地利用变化的空间格局分析[J].中国科学(D辑),2002,32(12):1030-1040.
    16.卢玲,李新,董庆罕.SPOT4-VEGETATION中国西北地区土地覆盖制图与验证[J].遥感学报,2003,7(3):214-221.
    17.骆成风.中国土地覆盖分类与变化监测遥感研究.博士学位论文,2005
    18.钱进,方明,黄长芳,汪更文,高继莲.宣城地区土地适宜性评价研究.安徽农业科学,2000,28(4):479-481.
    19.盛永伟,陈维英,肖乾广,郭亮.利用气象卫星植被指数进行我国植被的宏观分类[J].科学通报,1995,40(1):68-71.
    20.王乃斌.1996.中国小麦遥感估产动态监测与估产.北京:中国科学技术出版社,1-305.
    21.王圆圆,李京.遥感影像土地利用/覆盖分类方法研究综述[J].遥感信息,2004,1:53-60.
    22.王正兴,刘闯,HU ETE A Ifredo.植被指数研究进展:从AVHRR—NDVI到MODIS—EVI.生态学报,2003,23(5):979-987.
    23.温刚,符宗斌.利用气象卫星遥感数据确定气候过渡带和植被过渡带[J].大气科学,2004(3):324-331.
    24.吴炳方,张峰,刘成林,张磊,罗治敏.农作物长势综合遥感监测方法[J].遥感学报,2004,8(6):498-514.
    25.吴炳方.全国农情监测与估产的运行化遥感方法[J].地理学报,2000,55(1):25-35.
    26.吴炳方.中国农情遥感速报系统[J].遥感学报,2004,8(6):202-205.
    27.肖乾广.用NOAA气象卫星的定量资料计算冬小麦种植面积的两种方法[J].环境遥感,1989,4(3):91-96.
    28.熊利亚,主编.中国农作物遥感动态监测与估产.北京:中国科学技术出版社,1996.
    29.辛景峰,宇振荣,P.M.Driessen.利用NOAA NDVI数据集监测冬小麦生育期的研究[J].遥感学报,2001,5(6):442-448.
    30.徐希孺.混合像元的因子分析法及其在大面积冬小麦种植面积估算的应用[J].科学通报,1990,35:16-20.
    31.徐希孺.混合像元的因子分析法及其在大面积冬小麦种植面积估算的应用.科学通报[J],1990,35:16-20.
    32.杨邦杰,裴志远,周清波,刘海启.我国农情遥感监测关键技术研究进展[J].农业工程学报,2002,18(3):191-194.
    33.张峰,吴炳方,刘成林,罗治敏.利用时序植被指数监测作物物候的方法研究[J].农业工程学报,2004,20(1):154-159.
    34.张军,葛剑平,国庆喜.中国东北地区主要植被类型NDⅥ变化与气候因子的关系[J].生态学报,2001,21(4):522-527.
    35.赵茂盛,符淙斌,延晓东,温刚.应用遥感数据研究中国植被生态系统与气候的关系[J].地理学报,2001,56(3):295-288.
    36.赵艳霞,周秀骥,梁顺林.遥感信息与作物生长模式的结合方法和应用[J].自然灾害学报,2005,14(1):103-109.
    37.赵英时.遥感应用分析原理与方法.北京:科学出版社,2004.
    38.中国科学院空间科学技术中心.中国地球资源光谱信息资料汇编,北京:能源出版社,1978,623-1035.
    39.中华人民共和国农业部,中国农业统计资料.北京:中国农业出版社,2005.
    40.周清波.国内外农情遥感现状与发展趋势[J].中国农业资源与区划,2004,25(5):9-14.
    41. Aarron Moody D M J. Land-surface phcnologics from AVHRR using the discrete fourier transform. Rcmotc Sensing of Environment, 2001, 75: 305-323.
    42. Baret F, Guyot G. Potentials and limits of vcgetation indices for LAI and APAR assessment. Remote Sensing of Environment, 1991, 35: 161-173.
    43. Benedetti R, Rossini P. On thc use of NDVI profiles as a tool for agricultural statistics: the case of wheat yields estimate and forecast in Emilia Romagna. Remote Sensing of Environment, 1993, 45: 311-326.
    44. Boegh E, Soegaard H, Hanan N, Kabat P, Lesch L. A remote sensing study of the NDVI-T_s relationship and the transpiration from spare vegetation in the Sahel based on high-resolution satellite data. Remote Sensing of Environment, 1999, 70: 224-240.
    45. Carlson T N, Ripley D A. On the relation between NDVI, Fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 1997, 62:241-252.
    
    46. Chen j, Jonsson P, Tamura M, Gu Z, Matsushita B, Eklundh L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sensing of Environment, 2004, 91:332-344.
    47. Chmielewski F M, Muller A, Bruns E. Climate change and trends in phenology of fruit trees and field crops in Germany, 1961-2000. Agricultural and forest meteorology, 2003,121:69-78.
    48. Cihlar J, Ly H, Li Z, Chen J, Pokrant H, Huang F. Multitemporal, multichannel AVHRR data sets for land biosphere studies: artifacts and corrections. Remote Sensing of Environment, 1997, 60:35-57.
    49. Cihlar J. Land cover mapping of large areas from satellites: status and research priorities. International Journal of Remote Sensing, 2000, 21:1093-1113.
    50. Clevers J. G. P. W., Buker C, Leeuwen H. J. C. van, Bouman B. A. M.. A framework for monitoring crop growth by combining directional and spectral remote sensing information. Remote Sensing of Environment, 1994,50:161-170.
    51. Conxita Royo, Ricardo Blanco. Growth analysis of five spring and five winter Triticale genotypes. Agronomy Journal, 1999, 91:305-311.
    52. Doraiswamy P et al. Application of MODIS derived parameters for regional yield assessment [A].Guido D'Uso. Remote Sensing for Agriculture, Ecosystems, and Hydrology III, Proceedings of SPIE, 2002, Vol. 4542.
    53. Duchemin B, Goubier J, Courrier G. Monitoring phenological key stages and cycle duration of temperate deciduous forest ecosystems with NOAA/AVHRR data. Remote Sensing of Environment, 1999, 67:68-82.
    54. Duchemin B, Guyon D, Lagouarde J P. Potential and limits of NOAA-AVHRR temporal composite data for phenology and water stress monitoring of temperate forest ecosystems. International Journal of Remote Sensing, 1999, 20:895-917.
    55. Eastman J R, Fulk M. Long time series evaluation using standardized principal components. P E & Remote Sensing, 1993,53:1649-1658.
    56. Fires R S D, Hansen M, Townsheng R G, Sohlberg R. Global land cover classification at 8km spatial resolution: the use of training data derived from Landsat imagery in decision tree classification. International Journal of Remote Sensing, 1998,19:3141-3168.
    57. Fischer A, Kergoat L, Dedieu G. Coupling satellite data with vegetation functional models: review of different approaches and perspectives suggested by the assimilation strategy. Remote Sensing Reviews, 1997,15:283-303.
    58. Fischer A. A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters. Remote Sensing of Environment, 1994,48:220-230.
    59. Fung T, Ledrew E. Application of principal components analysis to change detection. P E & Remote Sensing, 1987,53:1649-1658.
    60. Gallo K P, Flesh T K. Large area crop monitoring with the NOAA AVHRR: Estimating the silking stage of corn development. Remote Sensing of Environment, 1989,27:73-80.
    61. Gao X, Huete A, Ni W, Miura T. Optical biophysical relationships of vegetation spectra without background contamination. Remote Sensing of Environment, 2000,74:609-620.
    62. Genovese G, Vignolles C, Negre T, et al. A methodology for a combined use of Normalized Difference Vegetation Index and CORINE land cover data for crop yield monitoring and forecasting [A]. A case study on Spain [C]. Agronomie, 2001,21(1):91-111.
    63. Goel S, Bhargava B, Madria S K. An adaptable constrained locking protocol for high data contention environments: correctness and performance. Information and Software Technology, 2000, (42): 599-608.
    64. Goward S N, Markham B, Dye D G, Dulancy W, Yang A J. Normalized difference vegetation index measurements from the Advanced Very High Resolution Radiometer. Remote Sensing of Environment, 1991, 35:257-277.
    65. Guerschman J P, Paruelo J M, Dibella C, Giallorenzi M C, Pacin F. Land cover classification in the Argentine Pampas using multi-temporal Landsat TM data. International Journal of Remote Sensing, 2003, 17:3381-3402.
    66. Hu B N, Lucht W, Strahler A H, Schaaf C B, Smith M. Surface albedos and angle-corrected NDVI from AVHRR observation of South America. Remote Sensing of Environment, 2000, 71:119-132.
    67. Huete A R, Liu H Q, Batchily K. A comparison of vegetation indices over global set of TM images for EOS MODIS. Remote Sensing of Environment, 1997, 3:440-451.
    68. Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 2002, 83:195-213.
    69. Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 2002, 83:195-213.
    70. Huete A. A soil adjusted vegetation index (SAVI). Remote Sensing of Environment, 1988, 25:295-309.
    71. Jakubauskas M E, Legates D R, Kastens J H. Crop identification using harmonic analysis of time-series AVHRR NDVI data. Computers and Electronics in Agriculture, 2002,37:127-139.
    72. Jonsson P, Eklundh L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40:1824-1832.
    73. Jonsson P, Eklundh L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40:1824-1832.
    74. Kaufman Y J, Tanre D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sensing, 1992,30:261-270.
    75. Kogan F N. Application of vegetatioon index and bright temperature for drought detection. Advanced in Space Research, 1995.
    76. Lambin E F, Strahler A H. Change-vector analysis in multitemporal space: a tool to detect and categorize land-cover change processes using high temporal-resolution satellite data. Remote Sensing of Environment, 1994, 48:231-244.
    77. Liu H Q, Huete A R. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transaction Geoscience Remote Sensing, 1995, 33:457-465.
    78. LLOYD D. A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. International Journal of Remote Sensing, 1990,11:2269-2279.
    79. Lloyd D. A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. International Journal of Remote Sensing, 1990,11:2269-2279.
    80. Los S O, Justice C O, Tucker C J. A global 1 by 1 degree NDVI data set for climate studies derived from the GIMMS continental NDVI data. International Journal of Remote Sensing, 1994,15:3493-3518.
    81. Moulin S, Bondeau A, Delecolle R. Combining agricultural crop models and satellite observation from field to regional scales. International Journal of Remote Sensing, 1998,1006:1021.
    82. Moulin S, Kergoat L, Viovy N. Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements. Journal of Climate, 1997, 1143:1170
    83. Myneni R B, Keeling C D, Tucker C J, Asrar G, Nemani R R. Increased plant growth in the northern high latitudes from 1981-1991. Nature, 1997, 386:698-702.
    84. Narren R P. Operational interpretation of AVHRR vegetation indices for world crop information. Photogrammetric Engineering and Remote Sensing, 1998, 54:55-59.
    85. Nemani R, Running S. Land cover characterization using multitemporal red, near-IR and thermal-IR data from NOAA/AVHRR. Ecological Applications, 1997,7:79-90.
    86. Olsson L, Eklundh L. Fourier Series for analysis of temporal sequence of satellite sensor imagery. International Journal of Remote Sensing, 1994, 15:3735-3741.
    87. Plummer S E. Perspectives on combining ecological process models and remotely sensed data. Ecological Modelling, 2000,129:169-186.
    88. Prince S D. A model of regional primary production for use with coarse resolution satellite data. International Journal of Remote Sensing, 1991, 12:1313-1330.
    89. Qi J. A modified soil adjusted vegetation index. Remote Sensing of Environment, 1994,48:119-126.
    90. Rasmus F, Sandholt I, Michael S R. Earth observation of vegetation Status in a semi-arid environment: comparison of Terra MODIS and NOAA AVHRR satellite data[A]. Preceding of IGARSS[C]. 2002,4(1):2205-2207.
    91. Reed B C, Brown J F. Issues in characterizing phenology from satellite observations, Proceedings of the Internaltional Workshop: Use of earth observation data for phenological monitoring, Joint Research Center, Italy, 2002.
    92. Reed B C, Brown J F, Vanderzee D, Loveland T R, Merchant J W, Ohlen D O. Measuring phenological variability from satellite imagery. Journal of Vegetation Science, 1994,5:703-714.
    93. Running S W, Loveland T R, Pierce L L, Nemani R R, Hunt E R. A remote sensing based vegetation classification logic for global land cover analysis. Remote Sensing of Environment, 1995, 51:39-48.
    94. Sakamoto T, Yokozawa M, Toritani H, Shibayama M, Ishitsuka N, Ohno H. A crop phenology detecting method using time-series MODIS data. Remote Sensing of Environment, 2005, 96:366-374.
    95. Schimel D S, Participants V, Braswell B H. Cotinental scale variability in ecosystem processes: models, data and the role of disturbance. Ecological Monographs, 1997, 67:251-271.
    96. Schwariz M D, Reed B C. Surface phenology and satellite sensor-derived onset of greenness: an initial comparison. International Journal of Remote Sensing, 1999, 20:3451-3457.
    97. Schwartz M D, Reed B C, White M A. Surface phenology and satellite sensor-derived onset of greenness in the conterminous USA. International Journal of Climatology, 2002, 22:1793-1805.
    98. Schwartz M. D.. Green-wave phenology. J. Nature, 1998, 394:839-840.
    99. Schwartz M. D.. Advancing to full bloom: planning phenological research for the 21st century. International Journal of Remote Sensing, 1999, 42,113-118.
    100.Sivertsen T H, Nejedlik P, Oger R, Sigvald R. The phenology of crops and the development of pests and diseases. The operational applications of meteorology to agriculture, including horticulture, 1999.
    101.Stolz & Roswitha. A fuzzy approach for improving landcover classications by integrating remote sensing and GIS data. Progress in environmental remote sensing research and applications rotterdam, 1996.
    102.Sun J. Dynamic monitoring and yield estimation of crops by mainly using the remote sensing technique in China. Photogramm. Eng. Remote Sens., 2000, 66:645-650.
    103.Teillet P M, Saleous N EL, Hansen M C. An valuation of the global 1-km AVHRR land dataset. International Journal of Remote Sensing, 2000, 21:1987-2021.
    104.Teng W L. AVHRR monitoring of U.S. crops during the 1988 drought. Engineering and Remote Sensing, 1990,56:1143-1146.
    105.Townshend J R G, Justice C O, Kalb V. Characterization and classification of South American land cover types using satellite data. International Journal of Remote Sensing, 1987, 7:1395-1416.
    106.Townshend J, Justice C, U W, Gurney C. Global land cover classification by remote sensing: present capabilities and future possibilities. Remote Sensing of Environment, 1991, 35:243-256.
    107.Townshend J, Justice C. Towards operational monitoring of terrestrial systems by moderate-resolution remote sensing. Remote Sensing of Environment, 2002, 83:351-359.
    108.Toshihiro Sakamoto, Masayuki Yokozawa, Hitoshi Toritani, Michio Shibayama, Naoki Ishitsuka, Hiroyuki Ohno. A crop phenology detection method using time series MODIS data. Remote Sensing of Environment, 2005, 96:366-374.
    109.Tucker C J, Elgin J H, Mcmurtrey J. Monitoring corn and soybean crop development with hand-held radiometer spectral data. Remote Sensing of Environment, 1979, 8:237-248.
    110.Turne M D, Congalton R G. Classification of multi-temporal SPOT-XS satellite data for mapping rice field on a West African floodplain. International Journal of Remote Sensing, 1998,19:21-41.
    111.Verstraete M M, Pinty B. Designing optional spectral indexes for remote sensing applications. IEEE Transaction on Geoscience Remote Sensing, 1996, 34:1254-1265.
    
    112.Villegas D, Aparicio N, Blanco R, Royo C. Biomass accumulation and main stem elongation of durum wheat grown under Mediterranean conditions. Annals of Botany, 2001.
    
    113.Vina A, Gitelson A A, Rundqist D C, Keydan G, Leavit B, Schepcrs J. Monitoring maize (Zea mays L.) phenology with remote sensing. Agronomy journal 2004, 96:1139-1147.
    
    114.Viovy N, Arino O, Belward A. The Best Index Slope Extraction (BISE): A method for reducing noise in NDVI time-series. International Journal of Remote Sensing, 1992,13:1585-1590.
    
    115.White M A, Thornton P E, Running S W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles, 1997,11:217-234.
    
    116.Wiegand C L, Rechardson A L, Escobar D E. Vegetaion indices in crop assessments. Remote Sensing of Environment 1991,35:105-119.
    
    117.Wolter P T, Mladenoff D J, Host G E, Crow T R. Improved forest classification in the Northern Lake states using multi-temporal Landsat image. Photogrammetric Engineering and Remote Sensing, 1995,61:1129-1143.
    118.Zhang X, Mark A F, Crystal B S, Alan H S, John C F H, Gao F, Bradley C R, Alfredo H. Monitoring vegetation phrenology using MODS. Remote Sensing of Environment, 2003, 84:471-475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700