基于RS与GIS技术闽江流域森林资源利用评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要借助遥感和地理信息系统及其它集成技术,收集并处理闽江流域自然条件和社会经济状况以及相关资料信息,对福建省闽江流域森林生产力空间分异及分区状况、森林立地类型的划分、森林资源的可利用数量、自然品质等方面进行专题分析研究,在此基础上对闽江流域森林资源利用的适宜度进行评价和调整,为闽江流域森林资源合理利用提供决策和技术支持。主要研究结果:
     (1)对森林类型信息提取通过建立专家分类知识库,选取适当的光谱阈值,结合分层分类法对闽江流域森林类型进行划分。对光谱值比较接近的森林类型采用监督分类方法实现专题信息的提取,对局部区域采用人机交互目视解译,以提高分类精度。
     (2)本研究以反距离权重插值法(IDW)对降雨线的进行内插处理,获取闽江流域各季度的降雨量,温度因子栅格空间数据库采用泛克里格插值获得,经模外检验精度较高,总体精度都达到95%以上。
     (3)选用中式通用土壤流失方程式进行闽江流域水土流失定量评价,运用ArcGIS和ERDAS的空间数据管理和分析功能分别生成降水侵蚀力R因子栅格专题图、土壤可蚀性K因子栅格专题图、地形因子LS因子栅格专题图、植被管理C因子专题图,侵蚀防治措施P因子专题图,再通过ERDAS将各因子图叠加连乘,获得闽江流域的土壤侵蚀模型,生成闽江流域土壤侵蚀模数图。
     (4)依据国家及福建省的生态公益林区划标准,采用3S技术在遥感影像图上区划出了闽江流域生态公益林基础上区划出了闽江流域商品林。
     (5)以闽江流域林地1981~2005年平均温度、平均降水量栅格数据库及主要土壤质量因子栅格数据库为基础,建立森林气候生产力、森林生产力和林木产量栅格数据库,运用ERDAS建模功能生成闽江流域林地森林气候生产力、森林生产力、林木产量分布图。通过对各生产力空间分异及分区分析,全流域各生产力类型以高、中生产力面积占绝对优势,总体空间分布上大致呈从东南向西北略有递增的趋势,中部和西北部较高,东南和西部相对较低的状态。
     (6)本研究借助RS和GIS技术,根据森林立地类型分类的原则,选择土壤有机质含量、土层厚度、坡向和土壤侵蚀模数作为闽江流域森林立地类型划分的主导因子,通过ERDAS建模功能实现主导因子的图形空间叠加分析获得多立地因子综合叠加类型图,利用计算机实现立地类型的自动分类及编号。分类结果闽江流域共划分为88种立地类型,其中以极丰富有机质中土层阴坡微度侵蚀土类型面积占明显优势,其次依次为极丰富有机质中土层阳坡微度侵蚀土、丰富有机质中土层阴坡微度侵蚀土和丰富有机质中土层阳坡微度侵蚀土,一般有机质薄/厚土层阴/阳坡强度侵蚀土立地类型为最少,面积均在20hm~2以下。
     (7)以少量地面样地对应的遥感和GIS信息为基础,建立以象元为单位的含定性变量的蓄积估测方程,可用于预报森林总蓄积。
     (8)本研究采用主成分分析、相关分析和因子分析结合理论分析有效地筛选了包含地面曲率、林地利用率和年均气温等在内的39个森林资源利用适宜度评价指标,构建了评价指标体系。
     (9)本研究选用灰色关联度分析确定森林资源利用适宜度评价指标权重,按加权求和方法计算各评价单元的总分值通过遥感处理软件建模功能实现闽江流域森林资源利用适宜度评价得分,经模糊聚类获得闽江流域森林资源利用适宜度评价等级分布图。
By collecting and treating the natural, social and economic conditions as well as other related information based on RS, GIS and other integrated technology. Analyzing the variance and division status of forest productivity, division of forest site, available quantities and natural quality of forest resources in Minjiang watershed. On the above researches, the evaluation was launched to the utilization suitability and adjusting of forest resources, which provided the stagy and technology about reasonably utilizing the forest resources in Minjiang watershed. The main research results were as followed:
    (1) Extracting the thematic information of forest types by established the knowledge base of expert classification, select appropriate spectral threshold and combine the stratified classification to plot the forest types in Minjiang watershed. Extracting thematic information was realized for the forest types with adjacent spectrum by the supervised classification and the interactive visualization interpretation was adopted to improve the classified precision for the partial region.
    (2) In this study adopting the inverse distance weighted (IDW) to deal with the rain gauge by interpolation, obtaining the rain capacity in every quarter in Minjiang watershed. Kriging interpolation was employed to get the spatial date base of temperature factor and the overall precision reached 95% by external module examination.
    (3) The soil erosion module was obtained and the modulus figure was generated in Minjiang watershed by choosing universal water and soil loss equation to quantitatively evaluate the soil and water losses in Minjiang watershed, applying the spatial data management and analysis function of ARCGIS and ERDAS to respectively create the special grid figure of R factor of erosive force of rainfall, K. factor of soil erosion and LS factor of topographic feature, the spatial figure of R factor, C factor of plant management, P factor of erosive prevention measure, as well as using ERDAS to superimposing multiplication continuously.
    (4) According to the regionalizing standard of ecological forest of nation and Fujian province, on the whole the ecological forest in Minjiang watershed was regionalized based on RS image by employing geomatics. Founded on the mask works of ecological forest, the commercial forest was regionalized in Minjiang watershed.
    (5) This study constructed the grid data base of forest climate productivity, forest productivity and forest yield founded on the many years average temperature and rainfall data in each county and city in Minjiang watershed. The distribution map of forest climate productivity, forest productivity and forest yield in Minjiang watershed was generated by ERDAS model. Through analyzed the variance and division of all productivity, the result showed the middle and high type area occupied absolute superiority. The overall spatial distribution of them presented the slightly increasing trend from southeast to northwest in general and it was higher in middle and northwest parts and relative lower in southeast and west parts.
    (6) With the aid of RS-GIS and according to the rule of forest site classification, choosing the soil organic matter content, soil layer thickness, aspect and soil erosion modulus as the leading factor of the forest site types classification in Minjiang watershed, sequentially, the superimposing analysis on the figure space was realized, the superimposing synthesis map of multi-site-factors was obtained and the auto-classification and number to site types were implemented with the computer by the modeling function of ERDAS soft. From the result of classification, we partitioned the Minjiang watershed into 88 site types. Among them, the area of the slightly eroded middle thickness layer soil types of shady slope with extreme rich organic matter accounted for the obvious superiority, then in turn that of the slightly eroded middle thickness layer soil types of sun slope with extreme rich organic matter, the slightly eroded middle thickness layer soil types of shady slope with rich organic matter and the slightly eroded middle thick layer soil types of sun slope with rich organic matter. Generally that was the least area in the barren organic matter, thick layer with strongly eroded soil in shady or sun slopes, the all areas were under 20hm~2.
    (7) Based on the RS and GIS information corresponding with a few sample plots, the estimating equations of forest stock including qualitative variable with pixel unit was set up to forecast the total stock effectively.
    (8) The principal components analysis, relative analysis and factor analysis were combined with theory analysis to effectively select 39 expedient degree evaluation indexes of forest resources including the land surface curve, forested land utilization and average annual temperature, which were constructed assessment index system.
    (9) The analysis on gray correlative degree was adopted to determine the expedient degree evaluation index weight of forest resources utilization, and the total values of each appraised unit were calculated according to the weighting summation method. For the expedient degree evaluation of forest resources in Minjiang watershed, the scores were achieved by the modeling function of RS software and the rank distribution figure were obtained by fuzzy clustering analysis.
引文
[1] 白淑英,张树文,宝音,等.遥感和GIS在土地适宜性评价研究中的应用—以呼和浩特武川县为例[J].水土保持学报,2003,17(6):18-22.
    [2] 蔡崇法,丁树文.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报,2000,14(2):19-24.
    [3] 曹榕彬.基于GIS技术的福建省林地适宜性评价[D].福建农林大学,硕士学位论文(2005).
    [4] 陈楚,关泽群,张鹏林,等.利用RS和GIS的森林蓄积量偏最小二乘估测研究[J].湖北林业科技,2004,(4):25-28.
    [5] 陈利军,刘高焕,冯剑峰.运用遥感估算中国陆地植被净第一性生产力(英文)[J].植物学报,2001,43(11):1191-1198.
    [6] 陈平留,王红春.森林资源评价与森林资源资产评估辨析[J].林业资源管理,1998,(6):12-15.
    [7] 陈松林.基于GIS的荒地资源适宜性评价[J].福建地理,2001,16(1):35-37.
    [8] 陈志伟,陈永宝,郭志民.植被因子算式在土壤侵蚀定量监测中的应用研究[J].福建水土保持,2000,12(3):42-46.
    [9] 程煜,洪伟,吴承祯,等.闽北马尾松人工林密度效应蓄积量改进模型[J].河南农业大学学报,2002,36(2):147-150.
    [10] 戴全厚,刘明义,王跃邦等.东北低山丘陵区土地适宜性评价与潜力分析[J].水土保持通报,2003,23(1):27-31.
    [11] 邓立斌,李际平.基于人工神经网络的杉木可变密度蓄积量收获预估模型[J].西北林学院学报,2002,17(4):87-89.
    [12] 杜文峰,王凤臻,李庆.提高郁闭度调查精度的几点建议[J].林业资源管理,1999,(3):62-64.
    [13] 樊良新,刘悦翠.基于GIS的晋西王家沟小流域造林立地条件类型划分研究[J].西北林学院学报,2006,21(3):184-188.
    [14] 冯剑峰,刘高焕,陈述彭,等.陆地生态系统第一性生产力过程模型研究综述[J].自然资源学报,2004,19(3):369-378.
    [15] 冯仲科,余新晓.森林资源与生态环境3S技术应用基础研究[J].北京林业大学学报,2003,25(1):99-99,73.
    [16] 高科,梁荣,任于幽.半干旱丘陵沟壑区宜林地资源适宜性评价研究—以凉城县为例[J].内蒙古农业大学学报,2005,26(2):1-4.
    [17] 高琼,喻梅,张新时.中国东北样带对全球变化响应的动态模拟—个遥感信息驱动的区域植被模型[J].植物学报,1997,39(9):800-810.
    [18] 郭正刚,吴秉礼.灰色系统理论在林分蓄积量预测中的应用[J].甘肃农业大学学报,1999,34(2):171-174.
    [19] 郭志华,彭少麟,王伯荪.基于GIS和RS的广东陆地植被生产力及其时空格局[J].生态学报,2001,21(9):1444-1450.
    [20] 郭志华,彭少麟,王伯荪.基于NOAA-AVHRR NDVI和GIS的广东植被光能利用率及其时空格局[J].植物学报,2001,43(8):857-862.
    [21] 国家环保总局自然保护司编著.中国生态环境补偿费的理论与实践[M].北京:中国环境科学出版社,1995:50-87.
    [22] 国务院.关于进一步做好退耕还林还草试点工作的若干意见[J].中国林业,2000(10):3-4.
    [23] 郝占庆,于德永,熊在平,等.长白山典型林区森林资源利用适宜性分析[J].应用生态学报,2004,15(10):1755-1759.
    [24] 何智英,俞新妥.顺昌县高阳乡虎头山杉木丰产林调查研究报告[J].福建林学院学报,1987,7(3):1-11.
    [25] 洪华生,杨远,黄金良.基于GIS和USLE的下庄小流域土壤侵蚀量预测研究[J].厦门大学学报(自然科学版),2005,44(5):675-679.
    [26] 洪伟,吴承祯,彭赛芬.福建省森林植被潜在生产力的估算及其分析[J].农业系统科学与综合研究,1999,15(1):48-53.
    [27] 侯长谋,杨燕琼,黄平,等.基于RS、GIS的马尾松林分蓄积量判读模型研究[J].林业资源管理,2002(5):55-58.
    [28] 胡宝清.土地资源适宜性评价方法与应用[J].广西师院学报(自然科学版),1999,16(1):24-32.
    [29] 黄平,杨燕琼,侯长谋.基于RS.GIS的杉木林分蓄积量判读模型研究[J].中南林业调查规划,2003,22(1):25-27.
    [30] 黄荣光.生态林经营若干问题的探讨[J].林业勘察设计(福建),2004,(1):58-60.
    [31] 黄晓玲.建始县森林资源评价与发展对策[J].湖北林业科技,2006,(3):57-59.
    [32] 黄炎和.闽南地区的土壤侵蚀与治理[M].中国农业出版社.2002.
    [33] 柯金虎,朴世龙,方精云.长江流域植被净第一性生产力及其时空格局研究[J].植物生态学报,2003,27(6):764-770.
    [34] 赖挺.四川巨桉人工林立地分类研究(D).硕士学位论文(2005).
    [35] 李崇贵,蔡体久.森林郁闭度对蓄积量估测的影响规律[J].东北林业大学学报.2006,34(1):15-17.
    [36] 李崇贵,石强,赵宪文,等.用岭估计研究以RS和GIS为基础的森林郁闭度估测[J].林业科学,2001(5):24-30.
    [37] 李崇贵,赵宪文.以遥感和地理信息系统为基础的森林蓄积LS估计自变量选择研究[J].遥感学报,2001,5(4):277-281.
    [38] 李德民,杜景林.试用油松人工林径阶冠幅面积曲线法求算林分郁闭度[J].辽宁林业科技,1996,(5):19-21.
    [39] 李迪强,孙成永,张时新.中国潜在植被净第一生产力的分布与模拟[J].植物学报,1998,40(6):560-566.
    [40] 李贵才.基于MODIS数据和光能利用率模型的中国陆地净初级生产力估算研究(D).博士学位论文(2004).
    [41] 李京,陈晋,袁清.应用NOAA/AVHRR遥感资料对大面积草场进行产草量定量估算的方法研究.自然资源学报,1994,9(4):365-374.
    [42] 廖顺宝,李泽辉.气温数据栅格化中的几个具体问题[J].气象科技,2004,32(5):352-356.
    [43] 林春芳.卫星像片估测森林蓄积量的方法初探[J].林业科技,2000,25(5)15-17.
    [44] 林杰等,陈平留,黄健儿.福建南平溪后安曹下杉木丰产林生长调查研究.福建林学院学报,1984,4(1):9-19.
    [45] 林业部调查设计局.长白山森林调查报告(数表、林型、土壤卷).1955.
    [46] 林业部调查设计局.长白山西南部次生林立地分类及经营技术调查报告.1963.
    [47] 林业部调查设计局.大兴安岭森林综合调查报告(数表、林型、土壤卷).1954.
    [48] 刘大伟,孙国清,庞勇,等.利用LANDSATTM数据对森林郁闭度进行遥感分级估测[J].应用技术,2006,(1):41-43.
    [49] 刘洪杰.Miami模型的生态学应用.生态科学.1997,16(1):52-56.
    [50] 刘健.基于3S技术闽江流域生态公益林体系高效空间配置研究(D).北京林业大学,博士学位论文(2006).
    [51] 刘文凤.浅谈射洪县森林资源的开发利用[J].四川林勘设计,2005,(3):33-35.
    [52] 刘伍,李满春,刘永学,等.基于矢栅混合数据模型的土地适宜性评价研究[J].长江流域资源与环境,2006,15(3):320-324.
    [53] 龙花楼.土地利用转型—土地利用/覆被变化综合研究的新途径[J].地理与地理信息科学,2003,19(1):88-90.
    [54] 南方十四省(区)杉协组.杉木产区立地类型划分的研究[J].林业科学,1981,17:37-45.
    [55] 南方十四省(区)杉协组.杉木立地条件的系统研究及应用[J].林业科学,1983,19:46-254.
    [56] 潘湘海,李淑梅.塞罕坝机械林场立地类型划分的研究[J].河北林业科技,2000,(3):4-5.
    [57] 朴世龙,方精云.1982-1999年青藏高原植被净第一性生产力及其时空变化[J].自然资源学报,2002,17(3):373-380.
    [58] 钱进,方明,黄长芳,等.宣城地区土地适宜性评价研究[J].安徽农业科学,2000,28(4):479-481.
    [59] 曲飞.应用MODIS遥感信息评估华北平原植被净第一性生产力(NPP)(D).硕士学位论文(2004).
    [60] 史志华,蔡崇法,丁树文,等.基于GIS和RUSLE的小流域农地水土保持规划研究[J].农业工程学报,2002,18(4):172-175.
    [61] 宋新民.用点抽样和乘积估计值法测定林分蓄积量[J].林业科学研究,1994,7(4):460-463.
    [62] 孙海平.浙江大鹿山森林植物资源及发展利用[J].浙江林学院学报,2000,17(4):373-377.
    [63] 孙睿,朱启疆.中国陆地植被净第一性生产力及季节变化研究[J].地理学报,2000,(01):38-47.
    [64] 孙雪文,高德武,李日新,等.ARCVIEW GIS支持下的林地郁闭度的快速精确测定方法[J].期黑龙江水专学报,2005,32(3):89-90.
    [65] 谭炳香,李增元,陈尔学,等.Hyperion高光谱数据森林郁闭度定量估测研究[J].北京大业大学学报,2006,28(3):95-101.
    [66] 唐克丽,贺秀斌.黄土高原全新世黄土-古土壤演替及气候演变的再研讨[J].第四纪研究,2004,24(2):129-139.
    [67] 田国良.呼伦贝尔草原的太阳分光辐射能和光合能力.地理学报,1980,35(1):76-82.
    [68] 童庆禧,丁志,郑兰芬.应用NOAA卫星图像资料估算草场生物量方法的初步研究.自然资源学报,1986,1(2):87-95.
    [69] 王长科,高光辰.山东省森林资源现状及其永续利用对策[J].烟台师范学院学报(自然科学版),1999,15(3):225-229.
    [70] 王雅琴.长春市林木资源开发利用及综合评价[J].长春大学学报,2004,14(2):75-77.
    [71] 王迎,李建华,王利,等.五种森林蓄积量调查方法的比较[J].山东林业科技,1997,(增刊):64-65.
    [72] 王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999.
    [73] 文正敏.广西巴马县土地适宜性评价模式探讨[J].桂林工学院学报,2001,21(4):377-381.
    [74] 伍世代.GIS支持的福清市多目标土地适宜性评价[J].福建师范大学学报(自然科学版),2000,16(3):92-96.
    [75] 肖乾广,陈维英,盛永伟,等.用NOAA气象卫星的AVHRR遥感资料估算中国的第一性生产力.植物学报,1996,38(1):35-39.
    [76] 谢树春,赵玲.基于GIS的湘中紫色土匠陵地区土地适宜性评价[J].经济地理,2005,25(1):101-105.
    [77] 邢世和.基于GIS福建省林地适宜性评价研究(D).福建农林大学,博士学位论文(2006).
    [78] 邢世和编著.土地资源与利用规划[M].厦门:厦门大学出版社,2000,21-23.
    [79] 熊奎山.人工同龄纯林理论郁闭度测定计算的研究[J].甘肃林业科技,1999,24(3):1-6.
    [80] 徐希孺,金丽芳,赁常恭,等.利用NOAA/CCT估算内蒙古草场产草量的原理的方法.地理学报,1985,40(4):335-345.
    [81] 阎淑君,洪伟,吴承祯,等.自然植被净第一生产力模型的改进[J].江西农业大学学报,2001,23(2):248-252.
    [82] 杨双保,潘德乾.小陇山林区森林立地类型划分与林地质量评价的研究[J].甘肃林业科技,2000,25(4):21-27.
    [83] 杨晓松.运用数量化方法估测普洱县森林蓄积量[J].林业调查规划,2002,3(1):49-51.
    [84] 于德永,潘耀忠,姜萍,等.东亚地区植被净第一性生产力对气候变化的时空响应[J].北京林业大学学报,2005,S(2):103-10.
    [85] 于婧,周勇,周清波,等.基于GIS和模糊数学方法的多方案下农用土地多宜性评价[J].农业工程学报,2005,21(增刊):183-187.
    [86] 于政中.森林经理学[M].北京:中国林业出版社,2000,126-127.
    [87] 余坤勇,林芳,刘健,等.基于RS的闽江流域马尾松林分蓄积量估测模型研究[J].福建林业科技,2006,33(1):6-20.
    [88] 余其芬,唐德瑞,董有福.基于遥感与地理信息系统的森林立地分类研究[J].西北林学院学报,2003,18(2):87-90.
    [89] 余松柏,叶金盛,王登峰,等.编制林分形高表估测林分蓄积量方法的研究[J].中南林业调查规划,2005,24(3):5-9.
    [90] 袁凯先,陈玉山,包盈智,等.森林蓄积量的遥感估测[J].林业资源管理,1996,(3):13-17.
    [91] 岳文泽,徐建华,徐丽华.基于地统计方法的气候要素空间插值研究[J].高原气象,2005,24(6):975-980.
    [92] 张杰,潘晓玲,高志强,等.基于遥感-生态过程的绿洲-荒漠生态系统净初级生产力估算[J].干旱区地理,2003,(02):95-101.
    [93] 张俊堂.林分蓄积量调查方法[J].辽宁林业科技,1997,(4):32-33.
    [94] 张娜,于贵瑞,于振良,等.基于3S技术的自然植被光能利用率的时空分布特征的模拟[J].植物生态学报,2003,27(3):325-336.
    [95] 张秋江,袁亚东,丛修宝.用遥感及实测回归估计森林蓄积量[J].东北林业大学学报,1997,25(2):19-24.
    [96] 张三焕,金爱芬,田允暂,等.图们江下游地区林地资源适宜性评价及持续利用.延边大学学报(自然科学版),2001,27(1):51-56.
    [97] 张铁砚.数学模型应用的研究—论立地指数曲线编制中数学模型的选择[J].辽宁林业勘测设计院,1980.
    [98] 张万儒.森林立地(译文集)[M].北京:《外国林业》编辑部,1988,8-59.
    [99] 张万儒主编.中国森林立地[M].北京:科学出版社,1997,5-56.
    [100] 张晓丽,游先祥.应用“3S”技术进行北京市森林立地分类和立地质量评价的研究[J].遥感学报,1998,2(4):292-295.
    [101] 张雅梅,何瑞珍,安裕伦,等.基于RS与GIS的森林立地分类研究[J].西北林学院学报,2005,20(4):147-152.
    [102] 赵彤堂,李凤鸣,刘清玉,等.几种测定郁闭度方法的比较[J].中南林业调查规划,1995,52(2):42-44.
    [103] 赵宪文,李崇贵,斯林,等.森林资源遥感估测的重要进展[J].中国工程科学,2001,3(8):15-25.
    [104] 赵宪文.林业遥感定量估测[M].北京:中国林业出版社,1997,134-136.
    [105] 郑小刚,于际茂,杜长友.土地开发整理项目中的土地适宜性评价——以河北省万全县郭磊庄镇土地开发整理项目区为例[J].资源·产业,2005,7(2):74-76.
    [106] 郑小贤.中国森林资源和林业生态建设工程[J].科学中国人,2003,(8):52-54.
    [107] 郑元润,周广胜.基于NDVI的中国天然森林植被净第一性生产力模型[J].植物生态学报,2000,24(1):9-12.
    [108] 周广胜,张新时.全球气候变化的中国自然植被的净第一性生产力研究[J].植物生态学报,1996,20(1):11-19.
    [109] 周广胜,张新时.自然植被净第一性生产力模型初探[J].植物生态学报.1995,19(3):193-200.
    [110] 朱志辉.自然植被净第一性生产力估计模型[J].科学通报.1993,38(15):1422-1426。
    [111] 庄晨辉,张惠光,徐文辉.福建省用材林林地分等技术研究[J].林业勘察设计(福建),2006,(1):1-6.
    [112] 邹亚荣,欧阳二明,陈炳贵.基于GIS的FUZZY在土地评价中的应用研究[J].国土与自然资源研究,2000,4(2):46-47。
    [113] A.D. McGuire, J.M. Melilio, L.A. Joyce, et al. inreractions between carbon and nitrogen dynamics in estimating net primary[J]. Global Biogeochemistry, 1992,6:101-124.
    [114] A. Haxeltine, I. C. Prentice. BIOME3 :An equilibrium terrestrial biosphere model based on ecophysiological constraints[J]. Global Biogeochemical Cycles, 1995, 10:693-709.
    [115] A. Ruimy, B. Saugier. Methodology for the estimation of terrestrial net primary production from remotely sensed data[J]. Journal of Geophysical Research, 1994,99(3):5263-5283.
    [116] C.S. Potter, J. Randerson, C.B. Field, et al. Terrestrial ecosystem production: a process model based on global satellite and surface data[J]. Global Biogeochemistry, 1993, (7):811-841.
    [117] Chapman, S.B.. Methods in Plant Ecology[M]. 1976.
    [118] D.R. Johnston, R.T. Breadlly. Forest management tables[J]. Commonwealth Forest Review, 1963,42(3),113.
    [119] D.D. Baldocehi. A lagrangian random walk model for simulating water vapor CO_2 and sensible heat flux densities and scalar profiles over and within a soybean canopy[J]. Bound Layer Meteorology, 1992,61:113-144.
    [120] F.I. Woodward, I.M. Smith, W.R. Emanuel. A global land primary productivity and phytogeography model[J]. Global Biogeochemical Cycles, 1995,9:471-490.
    [121] G. D. Farquhar, S. Von Caemmerer, J. A. Berry. A. biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Plantation, 1980,149:78-90.
    [122] H. leith, E. Box. Evapo transpiration and primary product ion [M]. In: Thornthwaite, W. (ed). Memorial Model. Publications in Climatology. C.W. thornthwaite Associates: New Jersey, 1972,37-46.
    [123] H. Lieth, Whittaker R. H (Eds). Primary Productivity of the Biosphere [J]. Ecological Studies, New York:Springer, 1975,14:352.
    [124] H. Lieth. Modeling the primry productivity of the world[J]. Nature and Resources. 1972, 8(2): 5-10.
    [125] I. C. Prentice, W. Cramer, S. P. Harrison, et al. A global biome model based on plant physiology and dominance[J]. Soil properties and climate. Biogeography, 1992,22:815-835.
    [126] J. L. Monteith. Solar radiation and productivity in tropical ecosystems [J]. Journal Applied Ecology, 1972, 9:747-766.
    [127] J.M.Norman. Scaling processed between leaf and canopy levels[M]. In: Ehleringer J. R., Field C. B. Scaling physiological Processes: Leaf to Globe. San Diego: Academic Press, 1993. 41-76.
    [128] J. M. Schoorl, A. Veldkamp, J. Bouma. The Evaluation on Suitability Of Land Resource[J]. Soil Science Society of America Journal, 2002, 66(5):1610-1620.
    [129] J. Raic, E. B. Rastetter, J. M. Melillo, etal. Potertial net primary productivity in South America: application of a global model[J]. Ecological Applicarion. 2001,1:399-429.
    [130] J. S. Amthor. Sealing CO2 photosynthesis relationships from the leaf to the canopy[J]. Photosynthesis Research, 1994, 39:321-350.
    [131] J.T.Bali, I. E. Woodrow. Model predicting stomata conductance and contribution to the control of photosynthesis under different environmental conditions[M]. In: Progress in Photosynthesis Research. Netherlands. Biggings: Martinus Nijh-off Publishers, 1987:221-224.
    [132] K. N. Johnson, J. Agee, BR. Beschta. The evaluation on land suitability[J]. Journal of Forestry. Bethesda, 199,97(5):6-7.
    [133] M. Heimann, C.D. keeling. A three-dimensional model of atmospheric CO_2 transport based on observed winds: 2 Model description and simulated tracer experiments [J]. In: D. H. Peterson(ed). Climate variability in the Pacific and the Western Americans. American Geophysical Union, 1989:237-275.
    [134] M. Jurdant. Biophysical land classification in Canada[M]. In Forest Soils and Forest Land Management in Canada. Laval University Press. Quebec, 1975, 485-495.
    [135] McCool D K.Foster G R, Mutchler C K, et al. Revised slope length factor for the universal soil loss equation[J]. Transaction of ASAE, 1989, 32:1571-1576.
    [136] N.Robin N. Thwaites, Brian K. Slater. Soil-landscape resource assessment for plantations-aconceptual framework towards an explicit multi-scale approach forest soils and ecosystem sustainability[J]. Soil Science Society of America Journal, 2001, 23(4):123-138.
    [137] P. G. Jarvis. The interpretation of the variations in water potential and stomatal conductance found in canopies in the field[J]. Philosophical Transactions of the Royal Society of London. Series B, 1976,273:593-610.
    [138] R. F. Daubenmire. The use of vegetation in assessing the productivity of forest land[J]. Bot Rev, 1976,42(2):115-143.
    [139] R. A. Leuning. Critical appraisal of a combined stomatal-photosynthesis model for C3 plant[J]. Cell Environment, 1995,18:339-355.
    [140] R. A. Leuning. Modeling stomatal behavior and photosynthesis of Eucalyptus grandees Australian[J]. Journal of plant physiology, 1990,17:159-175.
    [141] R. P. Neilson, D.Marks. A global perspective of regional vegetation and hydrologic sensitivities from climatic change[J]. Vegetation Science, 1994, 5:715-730.
    [142] Renard K G, et al. RUSLE revisited status and the future[J]. Soil and Water Conservation, 1994,49(3):213-220.
    [143] S. D. Prince, S. N. Gowatd. Global primary production: a remote sensing approach[J]. Journal of Biogeography, 1995,2:815-835.
    
    [144] S. H. Spurr, B. V. Barnes. Forest ecology[M]. John Wiley and Sons Press, 1980,297-336.
    [145] S. Kojima, G. J. Krumllik. Biogeoclimatic classification of forest in Alberta[J]. For. Chron, 1979, 55:130-132.
    [146] S. Running, J. C. Coughlan. A general model of forest ecosystem processes for regional applications:Hydrologic balance, canopy gas exchange and primary production processes[J]. Ecology Modeling, 1988,42:125-154.
    [147] S. Running, R. R. Nemani. Relation seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates [J]. Remote Sensing environment, 1988, 24:347-367.
    [148] S. W. Running, E. R. Jr. Hunt. Generalization of a forest ecosystem process model for other biomes[M]. Academic press. San Diego, 1993:141-158.
    [149] S.W. Running. Testing FOREST-BGC ecosystem process simulations across a climatic gradient in 0regon[J]. Ecology Application, 1994,4:238-247.
    [150] T. Ishida, Y. SasakiS, Itagaki. The Ltilzation and Exploitation of Uncultured Mountain Reources in Robsn County[J]. Soil Science Society of America Journal, 2003, 67(1):190-198.
    [151] T.R.Sinclair, C. E. Murphey, K. R. Knoer. Development and evaluation of simplified models simulating canopy photosynthesis and transpiration[J]. Applied. Ecology, 1976,13:813.
    [152] W. H. Carmen. Forest site quality evaluation in the United States[J]. Adv. Agron, 1975, 27:207-269.
    [153] W. J. Parton, D. S. Schimel, C. V. Cole, et al. Analysis of factors controlling soil organic matter levels in Great Planins grasslands[J]. Soil Science Society of America Journal, 1987, 51:173-1179.
    [154] W. Killiam. Site classification system used in forestry[J]. Processing of the Wordshop on Land Evaluation for orestry, 1981:134-151.
    [155] Wigley T. B., Thomas H. R.. Landscape-level effects of forest management on faunal diversity in Bottomland hardwoods[J]. For. Ecol. Manage, 1997, 90:141-154.
    [156] Wischmeier WH, et al. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning[M]. USDA, ARS, Agricultural Handbook, Washington D. C, 1978:537.
    [157] X.He, M. J. Vepraskas, R. W.. The utilization and exploitation of unused mountain resources in Robsn Country[J]. Soil Science Society of America Journal, 2003, 67(1): 190-198.
    [158] X. He, M. J. Vepraskas, R. W. Skaggs. The Suitability Assessment Of Land Resource[J]. Soil Science Society of America Journal, 2002,66(5):1722-1732.
    [159] Yu Qiang, Wang Tianduo. Physiological responses of C3 plant leaf to environmental factors based on combined photosynthesis, transpiration and stomatal conductance model[J]. Acta Botanica Sinica, 1998,40(8):740-754.
    [160] Z. Uchijima, H. Seino. Agroclimatic evaluation of net primary productivity of nature vegetation. (1)Chikugo model for evaluating net primary productivity[J]. Journal of Agriculture Meteorlogy, 1985,40:343-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700