保水剂对松苗抗旱及与抗松树枯梢病关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以湿地松和火炬松幼苗为实验对象,探讨了科瀚98、黑金子和Stocksorb 400k三种保水剂在水分胁迫下对松苗的活性氧代谢,水分代谢和生长发育的影响以及与抗松树枯梢病关系的研究。测定和比较了三种保水剂的吸水保水性能。同时,有针对性地选用了光合增产宝、水杨酸、硼酸钠和“福来兮”生防制剂等进行防治松树枯梢病的试验,比较了多种防治措施的防治效果。主要研究结果如下:
     1 保水剂吸水速度快,在形成凝胶状后不易消解,较稳定。水的纯度越高吸水倍率越大,在蒸馏水中的吸水倍率明显高于在自来水的吸水倍率。溶液pH值大于或小于7都明显降低保水剂的吸水能力。保水剂的吸水能力随溶液盐浓度的升高而显著下降,当盐浓度高于0.5%时,保水剂几乎不再吸水而失去吸水性能。钙离子对三种保水剂吸水能力的影响又大于钾离子的影响。三种保水剂的吸水能力是:科瀚98>黑金子>Stocksorb 400k。
      2 保水剂可有效抑制土壤水分蒸发,使土壤在较长时间内维持较高的土壤含水量。三种保水剂中,以科瀚98抑制土壤蒸发的效果较好。室内和室外实验都表明,保水剂可降低土壤容重,增加土壤总孔隙度和毛管孔隙度,进而改善土壤通透性和物理结构。
     3 保水剂对火炬松盆栽苗的实验表明,保水剂能明显减轻水分胁迫对松苗造成的危害。水分胁迫下保水剂处理的松苗水分亏损较小,叶片相对含水量明显高于对照;MDA和游离脯氨酸的含量及上升幅度都低于对照;而SOD和POD活性在整个变化过程中都不同程度的高于对照。其中科瀚98处理的松苗其叶片相对含水量较其它两种保水剂处理高。接种松枯梢病原菌后,保水剂处理的松苗其发病率和发病程度都明显低于对照。
     4 科瀚98处理湿地松苗的实验表明,水分胁迫下施用保水剂能明显降低水分胁迫的程度,促进松苗的高、径生长及增加根和地上部的干物质重,胁迫越重,保水剂处理与对照差异越显著。与对照相比,保水剂处理的松苗其茎水势增幅达0.27 MPa~0.87MPa。而松苗的根干重,地上重,根系长、苗高和径粗分别高出对照10.2%~75.7%,8.8%~66.9%,1.1%~30.8%,4.8%~17.9%,8.2%~29.2%。根冠比也显著增大。
     5 “福来兮”微生态剂对松树枯梢病有较好的防治效果,接种病原菌后松苗基本不发病。而硼酸钠、水杨酸和光合增产宝对松树枯梢病的防治效果不理想。
Under water stress, the experiment studied the effect of three polymers(Kehan98, Heijinzi, Stocksorb 400k) on the physio-biochemical changes(active oxygen metabolism, water metabolism, growth) of pine seedlings(Pinw.s taeda, P. eliottii), and on the resistence to Sphaeropsis sapinea of P. eliottii after inoculation. Meanwhile the properties of water-absorption and water-retention of three polymers were researched in lab and field experiments. The control experiment against S. sapinea was conducted in P. taeda treated with different medicine, including Zenchanbao, salicylic acid, Na2B4O7 10H2O and Fulaixi. The results are as follows:
    1 Three polymers absorbed water quickly and did not decomposed easily after becoming gelatinous. Water purity degree affected the water-absorption ability. The water is more pure, the water-absorption magnification is higher. The order of the water-absorption ability of three polymers in two types of water is: distilled water > running water. With the increasing solution concentration, the water-absorption ability declined markedly. When the concentration of solution was above 0.5%, the water-absorption ability did not show further. The influence of Ca2+ was higher than K+. When the pH of solution was either higher or lower than 7, water-absorption ability declined. In three polymers, Kehan98 showed best performance, Heijinzi is next and Stocksorb 400k last.
    2 Three polymers can reduce effectively the soil water evaporation, making soil maintain much amount of water in longer period contrary to the control. Among them, Kehan98 is better. The experiments in either field or lab both indicated that the application of polymers could increase soil moisture content, enhance the moisture-preserved capacity of treated soil. When being treatd with polymers, the soil bulk density declined with the decrement of 3.9%-13.8 %; but the soil air porosity increased with the increment of 52.7 %-63.8 %; the total soil porosity improved markedly, and the increment could up to 95.7%; but the soil capillary porosity had a little increase. Obviously, the application of polymers to soil was a good method to improve the physical characteristics of soil.
    3 In the Loblolly pine potted experiment, the application of polymers could obviously alleviate the damage to pine seedlings caused by water stress. Compared with the control, RWC and contents of MDA and free proline of the polymer-treated pine seedlings under water stress, all were obviously lower, but activities of SOD and POD were higher in whole variety process. Among them, Kehan98 polymer show better performance than the other two polymers. After
    
    
    inoculatin, the pine seedlings without polymer treatment all died because of S. sapinea infections or water deficit, but those treated with polymers only have slightly damage.
    4 Under water stress, the application of Kehan98 polymer could markedly reduce the degree of water stress and heighten water potential of stem with an increment of 0.27 MPa ~0.87MPa; and promote the growth of the seedlings of P. taeda, as a result of significant increasing plant height(4.8%~17.9%), stem width(8.2%~29.2%), the root length(l.l%~30.8%), dry material weght of root (10.2%~75.7%), and dry material weght of stem and leaves (8.8%~66.9%).
    5 In the control experiment, Fulaixi show good resistence to S. sapinea, the incidence of desease is very low. But ZenchanBao, salicylic acid and Na2B4O7 10H2O all had no control effects on die-back of pines.
引文
[1]吴小芹.全球松树枯梢病发生状况与防治策略[J].世界林业研究1992,12(1):16~21
    [2]梁子超,祁惠芳.马尾松枯梢病的研究[J].植物病理学报,1980,10(2):119~123
    [3]李传道.森林病害流行与防治[M].北京:中国林业出版社,1995
    [4]吴景社.国外节水农业技术现状与发展趋势[J].世界农业,1994,(1):36~38.
    [5]马天新,庞中存,陆秀珍.土壤保水剂在我省旱作农业上的应用展望[J].甘肃农业科技,1997,(12):31~32.
    [6]王一鸣.保水剂在我国农业中的试验研究与应用[J].中国农业气象,2000,21(1):49~56
    [7]蔡典雄,赵兴宝.浅谈保水剂在南方果树区的应用及前景[J].中国南方果树.2000,29(2):50
    [8]吴德瑜.保水剂在农业上的应用进展[J].作物杂志,1990,(1):22~23
    [9]邹新禧编著.超强吸水剂[M].北京:化学工业出版社,1991
    [10]王晗生,王青宁.保水剂农用抗旱增效研究现状[J].干旱地区农业研究,2001,19(4):38~45
    [11]王斌瑞,贺康宁,史长青.保水剂在造林绿化中的应用[J].中国水土保持,2000,(4):22~24.
    [12]土壤保水聚合物研究会著,路远译.土壤保水剂在沙漠地区的应用[J].世界沙漠研究,1993,(2):37~46
    [13]李长荣,邢玉芬,朱健康等.高吸水性树脂与肥料相互作用的研究[J].北京农业大学学报,1989,(2):187~192
    [14]川岛和夫著,姚德兴译.农用土壤改良剂——新型保水剂[J].土壤学进展,1986,(3):49~52
    [15]李景生,黄韵珠.土壤保水剂的吸水保水性能研究动态[J].中国沙漠,1996,(1):86~91.
    [16]张秉刚,卓慕宁,黄湘兰.淀粉高吸水剂在农业上的应用初报[J].广东农业科学,1986,(1):29~33.
    [17]蔡典雄,王百田,杨培岭等.保水剂在林果业中的推广及应用[J].中国水土保持,2001,(5):16~18
    [18]寇权,张积祥,脱忠平.不同处理对土壤含水量及冬小麦产量的影响[J].土壤侵蚀与水土保持学报,1996,5(5):106~108
    [19]陈桂波,朱宗恩,王艳玲.坡地果树覆地膜施保水剂保水丰产技术试验研究[J].吉林水利.1998,(4):28~29
    [20]浅野次郎著,白志华译.高吸水性树脂在农业中的应用[J].国外农业科技,1986,(8):8~9.
    [21]王九龄,孙健.华北石质低山阳坡应用吸水剂抗旱造林试验初报[J].林业科技通讯,1984,(11):16~20.
    [22]何腾兵,田仁国,陈焰等.高吸水剂对土壤物理性质的影响[J].耕作与栽培,1996,(6):46~48.
    [23]东先旺,高瞻,位东斌.保水剂在日本农业中的利用[J].山东农业科技,1988,(1):52~53.
    [24]逢焕成,隋方功,蒋家慧.高分子吸水剂的吸水保水性能与增产效果的研究[J].莱阳农学院学报,1992,(1):41~44.
    [25]王砚田,华孟,赵小雯等.高吸水性树脂对土壤物理性状的影响[J].北京农业大学学报,1990,16(2):181~187
    [26]何腾兵,易萱蓉,蔡是华等.高吸水剂的吸水能力及其对土壤水分物理性质的影响[J].耕作与栽培,1996,(5):57~59.
    [27]张富仓,康绍忠.BP保水剂及其对土壤与作物的效应[J].农业工程学报,1999(5):74~78.
    [28]胡芬,姜雁北.高吸水剂KH841在旱地农业中的应用[J].干旱地区农业研究,1994,12(4):83~86.
    [29]殷志刚,黄强.田间施用保水剂后土壤溶液盐分含量变化[J].新疆农业科学,2001,38(3):135~137
    [30]彭毓华.超吸水树脂——农用新型保水剂[J].山西化工,1988,(4)
    [31]Johnson MS. The effects of gelforming polyacrylamides on moisture storage in sand soils[J]. J. Sci. Food Agric, 1984, 35: 1196~1200
    [32]邢海洪,李桂花,孟庆梅.保水剂载内吸农药防治杨十星吉丁初报[J].中国森林病虫.2001,(增刊):52
    
    
    [33]北京农业大学树脂应用协作组.高吸水性树脂在农业上的应用基础研究[J].北京农业大学学报,1989,15(1):37
    [34]赵越,杨振国.不同保水剂对土壤持水特性的研究[J].青海农林科技,2001,3:6~7
    [35]黄占斌,万会娥,邓西平等.保水剂在改良土壤和作物抗旱节水中的效应[J].土壤侵蚀与水土保持学报,1999,5(5):52~55
    [36]Al-Harbi AR. Effect ancy of a Hydrophilic Polymer Declines with Time in Greenhouse Experiments[J]. Hort Sci. 1991, 34 (2): 223~224
    [37]宁作斌,王宏霞,周世新等.高效营养保水剂的研究与应用[J].北方园艺,2001,4:11~12
    [38]毛秀齐,张永杰,张永生等.油松林用保水剂包衣种子飞播造林试验报告[J].河南林业科技,2000,20(4) 13~14
    [39]张福芬.植物抗旱拌种蘸根保水剂(凝胶型)田间效果试验[J].北方果树,2002(3):42
    [40]冯金朝,赵金龙,胡英娣等.土壤保水剂对沙地农作物生长的影响[J].干旱地区农业研究,1993,11(2):36~40
    [41]李淑珍,冯孝严,温树英.保水剂在果树上应用试验初报[J].北方果树,1992,(3):11~15
    [42]魏新田,马英周,魏秀山等.流体播种技术在油菜生产上的应用[J].河南农业科学,1996,(12):7~9
    [43]杨瑞长,乔卫亚,陈敬荣等.超吸水剂在食用菌栽培中的应用途径[J].上海农业科技,1989,(3):27~36
    [44]史兰波,李云荫.保水剂在节水农业中的应用[J].生态农业研究,1993,(2):89~93.
    [45]刘效瑞,伍克俊,王景才等.土壤保水剂对农作物的增产增收效果[J].干旱地区农业研究,1993,11(2):32~35.
    [46]朱显谟.黄土高原土壤与农业[M].北京:农业出版社,1989
    [47]赫延龄,张东向,郑蔚虹.保水剂结合矿质元素对水稻幼苗生长发育的影响[J].西北植物学报,1997,(1):124~127
    [48]陈岩,张希财.保水剂拌种对玉米苗期性状的影响[J].辽宁农业科学,1994,(4):40~56
    [49]康玲玲,魏义长.PAMN保水剂施用量与施用方法对作物出苗率的影响[J].河南农业科学,1998
    [50]何景峰,唐德瑞,李根前等.SA型高效保水剂对造林成活率及苗木生长的影响[J].陕西林业科技,1994,(3):76~78
    [51]黄福林.保水剂对冀北防护林主要造林树种成活率的影响.河北林业科技,2001,(3):15~16
    [52]韩清瑞,罗永全,方成梁.保水剂和抗旱剂对小麦生长发育的影响[J].北京农业科学,1991,(1):35~48.
    [53]高宝岩,吕伟,张余良等.几种主要农作物应用保水剂效应的初步研究[J].天津农林科技,1999,4:4~6
    [54]刘俊渤,华萱.超强吸水性树脂在玉米大豆种植上的应用研究[J].吉林农业大学学报,1996(3):50~52
    [55]马友华,王广海,程焱等.多功能保水剂对作物抗旱效应的初步研究[J].安徽农业大学学报,2001,28(2):129~132
    [56]李元芳,宁国赞,刘惠琴等.吸水剂及其在牧草上的应用[J].中国草地,1990,(3):72~74
    [57]安渊,王育青,闫志坚等.保水剂、稀土、根瘤菌对补播沙打旺的作用规律及其施用技术[J].中国草地,1993,(2):39~43
    [58]黄凤球,杨光立,黄承武等.化学节水技术在农业上的应用效果研究[J].水土保持研究,1996,(3):118~124
    [59]孙进,徐阳春,沈其荣等.施用保水剂和稻草覆盖对作物和土壤的效应[J].应用生态学报,2001,12(5):731~734
    [60]姜凤岐,杨瑞英,林鹤鸣.抗旱保湿综合措施对造林成活率的影响[J].林业科技通讯,1988,(3):
    
    23~27
    [61]姚洪林,和子杰,齐凯.提高沙地含水量的研究[J].干旱区资源与环境,1992,(6):73~79
    [62]尉庆丰,张英利,臧延生.土壤-植物体系中综合保水技术的增产效应[J].干旱地区农业研究,1993,11(1):24~27
    [63]王迪海,唐德瑞,张葳.黄土丘陵沟壑区抗旱造林综合措施试验[J].陕西林业科技,1998,(2):9~10,19
    [64]褚达华,田大增,张立言等.IAC~13高保水剂保土改土效应的研究[J].河北农业大学学报,1988,11(3):1~7
    [65]王万里.植物对水分胁迫的反应[A].植物生理学专题讲座——纪念罗宗洛教授[C].北京:科学出版社,1987
    [66]R.海蒂弗斯,P.H.威廉斯主编,朱有釭,刘维志,程志明等译.植物病理生理学[M].北京:农业出版社,1991
    [67]郭连生.运用PV技术对华北常见造林树种耐旱性评价的研究[J].内蒙古林学院学报.1998,(3):1~8
    [68]程瑞平,束怀端,顾曼如.水分胁迫对果树生长和叶中矿质元素含量的影响[J].植物生理学通讯,1992,28(1):32~34
    [69]曲桂敏,李兴国,赵飞等.水分胁迫对苹果叶片和新根显微结构的影响[J].园艺学报,1999,26(3):147~151
    [70]Begg, J. E. In: N.C. Turner & P.G.Kramer (eds.).Adaptation of Plants to Water and High Temperature Stress[J]. Wiley & Sons. New York, 1980, 33~42
    [71]汤章城.植物对水分胁迫的反应和适应 Ⅱ植物对干旱的反应和适应性[J].植物生理学通讯,1983(4):1~7
    [72]李吉跃.太行山区主要造林树种耐旱特性的研究[D].北京林业大学博士论文,1990,1~105
    [73]李吉跃.太行山区主要造林树种耐旱特性的研究(Ⅰ)——叶解剖构造及叶子运动与脱落[J].北京林业大学学报,1991,13(增刊1):1~9
    [74]Kramer, P.J. Plant and Soil Water Relationships: A Modem Synthesis[J]. McGraw-Hill, New York, 1983. 482.
    [75]Larcher, W.Physiological Plant Ecology. 2nd ed.Springer-Verlag, Berlin and New York, 1980. 303
    [76]Kramer, P.J. & T.T. Kozlowaki. Physiology of Woody Plants. Academic Press. New York, 1979
    [77]Krummerow, J. In: N.C. Turner & P.J. Krammer (eds.). Adaptation of Plants to Water and High Temperature Stress. Wiley & Sones, New York. 1980. 57~733
    [78]Jones, M.M.,N.C.Turner & C.B.Osmond. In:The Physiology and Biochemistry of Drought Resistance in Plants (Paleg, L.G & D.Aspinall eds.). Sydney: Academic Press, 1981.15~37
    [79]关义新,戴俊英.水分胁迫下植物叶片光合的气孔与非气孔限制[J] 植物生理学通讯,1995,31(4):293~297
    [80]罗淑平.玉米抗旱性及鉴定指标的相关关系[J].干旱地区农业研究,1990,8(3):72~78.
    [81]王畅,林秋萍.夏玉米的干旱适应性及其生理机制的研究[J].华北农学报,1990,5(4):54~60
    [82]李吉跃.植物耐旱性及其机理[J].北京林业大学学报,1991,13(3):92~99
    [83]Hinckley, T. M. et al. In: T.T. Kozlowski (ed.). Water Deficits and Plant Growth. Vol Ⅵ. Woody Plant Communities. Academic Press, 1981, 153~208
    [84]赵雪宇,张学英.轻度水分胁迫下草酶叶片渗透性、弹性及冠层结构变化[J].北方园艺,1995,103(4):56~57
    [85]潘瑞炽,董愚得编著.植物生理学[M].北京:高等教育出版社,1995
    [86]柴丽娜,路苹,王金淑.干旱胁迫冬小麦幼苗根冠比的动态变化与品种抗旱性关系的研究[J].北京农学院学报,1996,11(2):19~23
    
    
    [87]Gowing D T. et al. A positive root-sourced signal as an indicator of soil drying in apple [J]. Exp Bot. 1990, 41: 1535~1540
    [88]于海秋,武志海,沈秀瑛等.水分胁迫下玉米叶片气孔密度、大小及显微结构的变化[J].吉林农业大学学报,2003,25(3):239~242
    [89]Kramer PJ. Water Relation of Plants[J]. New York, Academic Press, 1985, 5
    [90]张喜英.叶水势反映冬小麦和夏玉米水分亏缺程度的试验(简报)[J].植物生理学通讯,1997,33(4):249~253
    [91]曹铁森,许明宪.水分胁迫对梨幼树中水势的影响[J].西北农业大学学报,1992,20(1):91~94
    [92]杜英章,王凯辉.苹果苗木水势对旱地定植成活率的影响[J].干旱地区农业研究,1999,17(4):71~75
    [93]Bethlen falvay G J. et al. Glycine-Glomus-Bradyrhizobium symbiosis x. Relationships between leaf gas exchange and plant and soil status in nodulated, mycorrhizal soybean under drought stress [J]. Plant Physiol, 1990, 94:723~728
    [94]杨朝选,焦国利,郑先波.重水分胁迫下苹果树茎、叶水势的变化[J].果树学报,2002,19(2):71~74
    [95]Turner. N.C., et al., 1978. Aust. J. Plant Physilo. 5: 79 and Sionit. N., and P.J. Kramer. 1977 Agron, J. Plant Physilo. 69:274
    [96]Jones, M.M., and H.M. Rawson. Physiol. Plant. 1979, 45:103
    [97]苏梦云.杉木幼苗在渗透胁迫下脯氨酸积累及Ca的调节作用研究[J].林业科学研究,2003,16(3):335~338
    [98]Ito.N..日本作物学会纪事[C].1972,41(1):32~37
    [99]Seitz, E.W. and R.M. Hochster. Life Sci. 1964, 3:1033~1037
    [100]Godzik. S. and H.F.Linskens. Environment Pollution. 1974, 7:25~38
    [101]曹仪植.水分胁迫下植物体内游离脯氨酸的积累及ABA在其中的作用[J].植物生理学报,1985,11(1):9~16
    [102]关义新,戴俊英,陈军等.土壤干旱下玉米叶片游离脯氨酸的累积及其与抗旱性的关系[J].玉米科学,1996,1(1):43~46
    [103]翁森红,赵来喜.干旱处理下豆科牧草在三个生长期游离脯氨酸积累动态[J].四川草原.1997,3:20~23
    [104]高玉葆,任安芝,刘峰等.黑麦草叶内游离脯氨酸含量对于不同类型和强度的水分胁迫的生理生态响应[J].植物生态学报,1999,23(3)193~204.
    [105]陈立松,刘星辉.作物抗旱鉴定指标种类及其综合评价[J].福建农业大学报.1997,26(1):48~55
    [106]Boggess. S.F., ETAL. Plant Physiol. 1976, 58: 398.
    [107]Stewart. C.R., and S.F.Boggess.Plant Physiol.1978, 61: 654.
    [108]Stewart. C.R. Plant Physiol. 1973, 51: 508.
    [109]王敬文,薛应龙.植物苯丙氨酸解氨酶的研究[J].植物生理学通讯.1981:(3):241~247
    [110]陈玉惠,翟志军,胡海燕等.水分胁迫下华山松抗腐烂病的研究[J].四川林业科技,2001,22(3):1~5
    [111]段焰青,陈善娜,叶辉等.云南松韧皮部接种纵坑切梢小蠹伴生真菌后几种酶活性的变化(简报)[J].植物生理学通讯,2000,36(4):327~330
    [112]刘建锋.水分胁迫与松树枯梢病(Sphaeropsis sapinea)发生的研究[D].南京:南京林业大学森林资源与环境学院,2001
    [113]阳传和,杨旺,周仲铭.树皮内酚类物质的含量及苯丙氨酸解氨酶的活性与杨树抗溃疡病的
    
    关系[J].林业科学,1989,25(4):311~316
    [114]蒋明义,荆家海,王韶糖.水分胁迫与植物膜脂过氧化[J].西北农业大学学报,1991,19(2):88~94
    [115]陈少裕,刘杰.水分胁迫对甘蔗叶片线粒体膜流动性的影响及其与膜质过氧化的关系[J].植物生理学报,1991,17(3):285~2892
    [116]宠士铨.植物逆境生理学基础[M].沈阳:东北林业大学出版社,1989
    [117]P.J.克雷默著.植物的水分关系[M].北京:科学出版社,1989
    [118]林永英.水分胁迫对青冈叶片活性氧的伤害[J].福建林学院学报,2002,22(1):1~3
    [119]李锦树,王洪春,王文英等.干旱对玉米叶片细胞透性及膜脂的影响[J].植物生理学报,1983,9(3):223~229
    [120]张敬贤,李俊明,崔四平等.玉米细胞保护酶活性对苗期干旱的反应[J].华北农学报,1990,5(增刊):19~23
    [121]王娟,李德全,谷令坤.不同抗旱性玉米幼苗根系抗氧化系统对水分胁迫的反应[J].西北植物学报,2002,22(2):285~290
    [122]孙会兰,佟代言.干旱对大豆膜脂过氧化、组织抗氧化的影响[J].河北农业大学学报.1991,14(4):
    [123]史兰波,李云荫.水分胁迫对冬小麦幼苗几种生理指标和叶绿体超微结构的影响(简报)[J].植物生理学通迅,1990(2):28~31
    [124]闫承仁.植物水分胁迫与活性氧保护酶研究进展[J].张家口农专学报.2002,18(2):18~22
    [125]BOWLER C. Superoxide dismutase and stress tolerance [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 83~116
    [126]SCANDALIOS J G. Oxygen stress and superoxide dismutase [J]. Plant Physiology, 1993, 7:7
    [127]ZHANG JX, KIRKHAM M B. Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species [J]. Plant cell physiology, 1994, 35(5): 785-791.
    [128]于同泉,刘宗萍,路萍等.水分胁迫小麦SOD、MDA动态变化与抗旱性的关系[J].北京农学院学报,1995,10(1):22~25
    [129]胥耀平,刘西平,付留记.不同pH、温度和水分胁迫对栾树SOD影响[J].西北林学院学报,1996,11(4):91~93
    [130]宋凤斌,李德全,张建华.植物叶片衰老与所化胁迫[J].植物学通报,1999,19(4):398~404
    [131]章崇玲,曾国平,陈建勋.干旱胁迫对菜苔叶片保护酶活性和膜脂过氧化的影响[J].植物资源与环境学报,2000,9(4):23~26
    [132]王俊刚,陈国仓,张承烈.水分胁迫对2种生态型芦苇(Phragmites communis)的可溶性蛋白含量、SOD、POD、CAT活性的影响[J].西北植物学报,2002,22(3):561~565
    [133]ZHANG JX, KIRKHAM M B. Antioxidant responses to drought in sunflower and sorghum seedlings [J]. New Phytology, 1996, 132: 361~373.
    [134]吕长平,石雪晖,杨国顺等.水分胁迫对草莓叶片SOD活性以及MDA和Vc含量的影响[J].湖南农业大学学报,1996,22(5):451~455
    [135]姚允聪,曲泽洲,李树仁等.不同浇水处理过程中柿幼树SOD、CAT和脂质过氧化作用的变化[J].北京农学院学报,1994,9(1):22~27
    [136]万善霞,秦岭,于同泉等.水分胁迫对板栗幼苗过氧化物酶、超氧化物岐化酶活力及同工酶谱的影响[J].北京农学际学报,1997,12(3):20~24
    [137]MORAN J E BECANAM. ORMAETXE. Drought induces oxidative stress in pea plant [J]. Plant, 1994, 194: 346~352
    [138]HURNG W P. KAO C H. Effect of flooding on the activities of some enzymes of activated oxygen
    
    metabolism, the levels of antioxidants, and lipoid peroxidation in senscing tobaccl leaves [J]. Plant Growth Regulation, 1994, 39 (7): 634~640.
    [139]王宝山、赵思齐.干旱对小麦幼苗膜脂过氧化及保护酶的影响[J].山东师范大学学报(自然科学版)1987,2:29~39
    [140]王振镒,郭蔼光,罗淑平.水分胁迫对玉米SOD和POD活力及同工酶的影响[J].西北农业大学学报,1989,17:45~49
    [141]许长成,邹琦.大豆叶片旱促衰老及其与膜脂过氧化的关系[J].作物学报,1993,19(4):359~364.
    [142]熊正英,张志勤,王致远等.POD活性与抗旱性的关系[J].陕西西大学报(自然科学版),1995,23(4):63~66
    [143]唐薇,李维江,张冬梅等.干旱对转基因抗虫棉苗期叶片POD、MDA和光合速率的影响[J].中国棉花,2002,29(2):23~24
    [144]曲东,王保莉,山仑等.干旱条件下磷对玉米叶SOD和POD活性的影响[J].西北农业大学学报,1996,24(3):48~52
    [145]陈颖,谢寅峰,沈惠娟.银杏幼苗对水分胁迫的生理响应[J].南京林业大学学报(自然科学版).2002,26(2):55~58
    [146]植物生理学通讯编辑部主编.植物生理学专题讲座[C].北京:科学技术出版社,1987,357~369
    [147]Brauwers-C; Poppe-J; Hofte-M. Epidemiology of Sphaeropsis sapinea on Pinus sp. in Belgium. Proceedings of the 49th International symposium on crop protection, Gent, Belgium, 6 May, 1997, Part Ⅳ. Mededelingen-Faculteit-Landbouwkundige-en-Toegepaste-Biologische-Wetenschappen, Universiteit-Gent. 1997, 62: 3b, 893~901; 14ref.
    [148]Manion P D, Griffin O H. Resistance in aspen to Hypoxylon canker. In: Blanchette R A, Biggs A R (eds.). Defense Mechanisms of Woody Against Fungi. Berlin: Springer-Verlag, 1992, 308~320
    [149]叶建仁,吴小芹.树木抗病的生理生化学研究进展[J].林业科学研究,1996,9(3):311~317.
    [150]Wet-J-de; Wingfield-MJ; Coutinho-T; Wingfield-BD; de-Wet-J. Characterisation of the 'C' morphotype of the pine pathogen Sphaeropsis sapinea. Forest-Ecology-and-Management. 2002, 161: 1-3,181-188;23 ref
    [151]沈伯葵.江苏发生梢枯病[J].森林病虫通讯,1990,1:47
    [152]陈玉惠.松材线虫(Bursaphelenchus xylophilus)与寄主植物互作中的生理生化研究[D].南京:南京林业大学森林资源与环境学院,2002
    [153]Bachi-PR; Peterson-JL. Enhancement of Sphaeropsis sapinea stem invasion of pines by water deficits. Plant-Disease, 1985, 69: 9, 798~799; 1 tab.;9ref.
    [154]Paoletti-E; Danti-R; Strati-S. Pre- and post-inoculation water stress affects Sphaeropsis sapinea canker length in Pinus halepensis seedlings. Forest-Pathology. 2001, 31: 4, 209~218; 35 ref.
    [155]Stanosz-GR; Blodgett-JT; Smith-DR; Kruger-EL Water stress and Sphaeropsis sapinea as a latent pathogen of red pine seedlings. New-Phytologist. 2001, 149: 3, 531~538; 55 ref.
    [156]Blodgett-JT; Stanosz-GR Monoterpene and phenolic compound concentrations in water-stressed red pine inoculated with Sphaeropsis sapinea. Phytopathology. 1998, 88: 3, 245~251; 41 ref.
    [157]Blodgett-JT; Kruger-EL; Stanosz-GR. Sphaeropsis sapinea and water stress in a red pine plantation in central Wisconsin. Phytopathology. 1997, 87: 4, 429~434; 37 ref.
    [158]Blodgett-JT; Kruger-EL; Stanosz-GR Effects of moderate water stress on disease development by Sphaeropsis sapinea on red pine. Phytopathology. 1997, 87: 4, 422~428; 33 ref.
    [159]Swart-WJ; Wingfield-MJ Seasonal response of Pinus radiata in South Africa to artificial inoculation with Sphaeropsis sapinea. Plant-Disease. 1991, 75: 10, 1031~1033; 31 ref.
    
    
    [160]吴小芹.中国松树枯梢病(Sphaeropsis sapinea)群体分化的研究[D].南京:南京林业大学森林资源与环境学院,1999
    [161]廖太林.松树枯梢病发生的主要诱因及区域性分布研究[D].南京:南京林业大学森林资源与环境学院,2000
    [162]Reglinski-T; Stavely-FJL; Taylor-Jr. Induction of phenylalanine ammonia lyase activity and control of Sphaeropsis sapinea infection in Pinus radiata by 5-chlorosalicylic acid. European-Journal-of-Forest-Pathology. 1998, 28: 3, 153~158; 20 ref.
    [163]肖谋树,邹文忠,袁嗣良等.国外松枯梢病防治试验[J].森林病虫通讯,1997,1:32~34
    [164]沈伯葵,姚景德,张明海等.松梢枯病防治技术的研究[J].林业科学研究,1993,6(4):409~41
    [165]杨斌,余静,朱向东等.甘肃黑蛋巢抗松梢枯病菌物质的分离纯化及抑菌活性[J].菌物系统,2002,21(3):388~393
    [166]Wingfield M J, Swart W J. Integrated managentent of forest tree disease in South Africa. Forest Ecology and Management, 1994, 65 (1): 11~16.
    [167]Swart W J, Donald D G and Theron JM. Screening of Pinus radiata pregenies for resistance to Sphaeropsis sapinea. South African Forestry Journal, 1996, 175: 15~18
    [168]Gerhold H D, Rhones H L and Wenner N G. Screening Pinussylvestris for resistance to Sphaeropsis sapinea. Sil-vae Genetica, 1994, 43 (5, 6): 333~338
    [169]中国科学院上上海植物生理研究所,上海市植物生理学会.现代植物生理学实验实验指南[M].北京:科学出版社,1999
    [170]Schickler H, Caspu H.Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of ther genus Alyssum[J]. Physiol plant, 1999, 1056:39~40
    [171]李靖,利容千,袁文静等.黄瓜感染霜霉病菌叶片中的一些酶活性的变化[J].植物病理学报,1991,21(4):277~282
    [172]李建武,萧能庚合编.生物化学实验原理和方法[M].北京:北京大学出版社,1998
    [173]White R F. Acetyla salicylic acid (Aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology[J]. 1979, 99:410~412
    [174]Gaffney T, et al. Requirement of salicylic acid for the induction of Systemic Acquired Resistance. Science[J]. 1993, 261: 754~756
    [175]万贤崇,沈伯葵.松梢枯病防治新技术及其机理研究[J].南京林业大学学报,1998,22(1):13~16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700