绿色发电调度模式和模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发电调度模式是随着电力技术的进步、电力工业及其体制的变革乃至资源与环境约束的渐强而与时俱进的。本文针对绿色经济发展而带来的电力系统节能减排和可再生能源大规模并网发电等要求,提出了绿色发电调度模式的概念,系统地分析了绿色发电调度模式的内涵和外延、关键要素以及实现途径和方法,全面、深入地研究绿色发电调度的演化模式及相应的发电调度优化模型。
     (1)以全面提升节能效益为基本出发点,研究区内以及跨地区节能发电调度的模式和模型。提出了节能发电调度模式下优化旋转备用计划的原则和模型,考虑机组组合、经济负荷分配、环保约束等因素,建立了较完备的区内节能发电调度的目发电计划模型。算例分析表明,相比于平均分配负荷调度方式,本文提出的调度模型和按设计能耗调度均可以显著降低系统能耗;并且,由于考虑了不同类型发电机组、同类型的发电机组之间煤耗曲线存在的差异,采用了更准确的耗量特性函数建模,相比于按设计能耗调度方式,本文提出的模型更节能。针对在多个地区之间开展节能优化调度的问题,考虑与现行调度管理体制衔接,提出了基于固定边界循环迭代模式的层级协调运作机制,采用序列无约束的二次罚函数法建立了节能发电调度跨地区的解耦模型,通过IEEE30节点验证了该协调机制的优越性。
     (2)在总结分析含风电系统并网的发电调度应对策略和国外实践经验的基础上,提出含风电系统的三种可能的发电调度模式。即,与常规火电机组配合、与储能设备配合和融入用电调度,并分别建立了优化调度模型。通过算例分析表明,采用与常规火电机组配合模式是短期内解决风电并网保障电力平衡的最直接有效模式;当规模化吸纳风电并网后,单纯采用该模式则不能满足系统旋转备用容量的需求而潜在弃风的风险,应当辅以更灵活多样的配合模式,例如实施与储能设备的配合模式。在蓄能技术没有突破或电力系统中的集中储能能力不足的情况下,必须借助需求侧管理来保障风电的充分利用,因而提出融入用电调度的配合模式,通过实施发用电一体化调度,提高整个系统运行的经济性。
     (3)研究准市场化的发电调度模式和模型。基于帕累托改进的经济学理论,结合我国电力体制现状,提出并设计了准市场化的发电调度模式,该模式基于两部制上网电价,兼顾节能、减排和经济目标,具有理论基础和实际可操作性。建立了适应准市场化模式的电量电价调度模型,并进一步考虑发电外部性问题,将发电环境成本融入到模型中。实际算例分析表明,准市场化模式具有目前发电计划和系统潮流不确定性较小,市场价格相对平稳,能够实现电力系统降低能耗等优越性,可为我国实现节能、经济等多目标的优化发电调度模式提供科学依据和参考方案。
     本文提出的绿色发电调度模式、模型及其实现途径,为当前电力系统运行实现节能减排目标提供有价值的参考方案,同时也为设计和引领未来发电调度模式提供理论指导,不仅具有学术价值,而且对改进发电调度方式、促进电力工业与经济社会和谐发展、实现绿色经济发展具有实践价值。
The development of generation dispatch mode is relevant to the power technology advancement, reforming for power industry, as well as increasing resources and environmental constrains. To meet the demand of energy saving, emission reduction, the optimization of resource distribution and the large-scale renewable power integration, green Generation dispatch mode is proposed in this paper. Focusing on the promotion of green generation dispatch, this paper is intended to provide a comprehensive and in-depth analysis of the evolutional mode and model of green generation dispatch through analyses on the connotation and extension, key elements of and the approach to green generation dispatch.
     First, the energy-saving generation dispatch mode and model including the Internal and across areas were studied in accordance with the benefits optimization. Comprehensively considering the unit commitment, economical load allocation, spinning reserve scheduling and emission reduction constraints, the two models with the target of energy-saving were established. The practical case study showed that compared to the average allocation dispatch mode, the mode in this paper and the mode according to designed consumption rate were both better. What is more, due to the advanced modeling technology introducing in this paper which accurately considering the coal consumption curve differences between the multi-type power units, the results of the model will be better than the designed consumption rate mode. In another aspects, in order to promote the optimal energy-saving dispatch, the area for implementing this mode would be widened. The hierarchy dispatch coordination operation based on fix-bound iteration was put forward and the area coordination center and sub-areas model were also established based on the quadratic penalty function method of SUMT. IEEE30 case demonstrated the superiority of this coordination mechanism.
     Second, embedding the new energy power dispatch mode and model were studied and designed. On the basis of analyzing wind power connecting grid strategy and practices and experiences, three possible dispatch mode with wind power were deeply studied and put forward. That is, cooperating with convention thermal units, the energy-store facilities and bringing in the DSM. The simple case showed that it would be the most the direct method under the cooperating with convention thermal units while would be failed after the amount of wind power connecting into the grid in a result of facing the risk of discarding wind power due to lack of negative spinning reserve. Thus, it had better combine with other methods, such as cooperating with the energy-store facilities. Whatever, without rich energy-stores, it will be necessary to take the high-efficient mode into the considerations. Bringing in the user resources dispatch mode to implement the whole the dispatch will be realizing the optimization of resource distribution and promoting the economy.
     Finally, the quasi marketization mode and model were also studied and designed. Implementing generation dispatch mode according to the market competition results will gain the both targets of energy-saving and reducing the purchasing costs and maximizing social welfare. Based on the theory of short-term marginal cost pricing and inspired by cost-based power pool in South Korea, this paper establishes a quasi marketization model of generation dispatch, taking into consideration the current electricity system in China. Adopting the two-part electricity price, day-ahead exchange scheduling is formed according to energy price checked by government. The quasi marketization model was also established and furthermore embedded the environmental cost into this model. Practical case demonstrates the superiority of quasi marketization model of generation dispatch. The superiority might contains minimizing the uncertainty of power flow and generation scheduling, stable market price, reducing energy consumption and so on.
     The research results of the dissertation enrich and develop the green generation dispatch mode theory; It is significant to shed light on the future researches on the optimization of generation dispatch.
引文
[1]国家能源局发展规划司.能源规划数据手册[M].北京:中国电力出版社,2009:198-200.
    [2]范必.改进现行发电调度方式可以大幅度降低全国能源消耗[R].北京:国务院研究室送阅件总1489号,2006:1-4.
    [3]国务院发展改革委员会.可再生能源中长期发展规划[S].北京:国务院发展改革委员会,2007:30-32.
    [4]胡鞍钢,鄢一龙.中国走向2015[M].浙江:浙江人民出版社,2010:134-155.
    [5]李仁君.微观经济学[M].北京:人民大学出版社,2005:5-10.
    [6]于尔铿.现代电力系统经济调度[M].北京:水利电力出版社,1986:21-25.
    [7]国家电力监管委员会.欧洲,澳洲电力市场改革[M].北京:中国电力出版社,2006: 125-245.
    [8]国家电力监管委员会.美国电力市场改革[M].北京:中国电力出版社,2006:103-194.
    [9]国家电力监管委员会.南美洲,亚洲,非洲各国电力市场改革[M].北京:中国水利水电出版社,2006:62-73.
    [10]杨君昌,曾军平.公共定价理论[M].上海:上海财经大学出版社,2002:50-55.
    [11]张粒子,谢国辉,黄仁辉,等.我国后续电力市场化改革路径构想[M].华北电力大学学报(自然科学版),2008,35(6):17-20.
    [12]国务院办公厅.关于转发发展改革委等部门节能发电调度办法(试行)的通知[S].北京:国务院办公厅,2007:3-6.
    [13]赵一农.我国实行节能发电调度的研究与建议[D].北京:清华大学,2007:30-42.
    [14]尚金成,周劫英,程满.兼顾安全与经济的电力系统优化调度协调理论[J].电力系统及其自动化,2007,31(6):28-33.
    [15]叶彬,张鹏翔,赵波,等.多目标混合进化算法及其在经济调度中的应用[J].电力系统及其自动化学报,2007,19(2):66-71.
    [16]张国立,庚银,谢宏,等.多目标加权模糊经济调度模型[J].华北电力大学学报(自然科学版),2004,31(2):48-52.
    [17]耿建,高宗和,张显.节能电力市场设计初探[J].电力系统及其自动化,2007,31(19):18-21.
    [18]胥传普,杨立兵,刘福斌.关于节能降耗与电力市场联合实施方案的探讨[J].电力系统及其自动化,2008,31(23):99-102.
    [19]傅书逷,王海宁.关于节能减排与电力市场结合[J].电力系统及其自动化,2008,32(6):31-34.
    [20]尚金成.兼顾市场机制与政府宏观调控的节能发电调度模式及运作机制[J].电网技术,2007,31(24):55-62.
    [21]尚金成.兼顾市场机制的主要节能发电调度模式比较研究[J].电网技术,2008,32(4):78-85.
    [22]黎灿兵,康重庆,夏清,等.发电权交易及其机理分析[J].电力系统自动化,2003,27(6): 13-18.
    [23]王雁凌,张粒子,杨以涵.基于水火置换的发电权调节市场[J].中国电机工程学报,2006,26(5):131-136.
    [24]李彩华,郭志忠.最优潮流发展[J].继电器,2002,30(1):1-6.
    [25]王超,张晓明,唐茂林,等.四川电网节能减排发电实时调度优化模型[J].电力系统自动化,2008,32(4):89-92.
    [26]张宁,陈慧坤,骆晓明,等.广东电网节能发电调度计划模型与算法[J].电网技术,2008,32(23):7-12.
    [27]施建华,谭素梅.节能发电调度发电计划编制算法[J].电力系统自动化,2008,32(24):48-51.
    [28]陈之栩,谢开,张晶,等.电网安全节能发电日前调度优化模型及算法[J].电力系统自动化,2009,33(1):10-13.
    [29]喻洁,季晓明,夏安邦.基于节能环保的水火电多目标调度策略[J].电力系统保护与控制,2009,37(1):24-27.
    [30]陈皓勇,张森林,张尧.区域电力市场环境下节能发电调度方式[J].电网技术,2008,32(24):16-21.
    [31]谭忠富,陈广娟,赵建保,等.以节能调度为导向的发电侧和售电侧峰谷分时电价联合优化模型[J].中国电机工程学报,2009,29(1):55-62.
    [32]王锡凡,王秀丽,陈皓勇.电力市场基础[M].西安:西安交通大学出版社,2003:11-20.
    [33]Xie Guohui, Zhang Lizi, Zhang Le. Research on the mechanism of power supply and distribution market scale evolution based on dissipative structure[J].China International Conference on Electricity Distribution.China Guangzhou 2008,12(24): 67-73.
    [34]谭伦农,张保会.市场环境下的事故备用容量[J].中国电机工程学报,2002,22(11),54-58.
    [35]王建学,王锡凡,张显.电力市场中弹性运行备用研究[J].中国电机工程学报,2005,25(18):20-27.
    [36]何永秀,黄文杰,谭忠富,等.电力备用市场化运营需求研究[J].中国电机工程学报,2004,24(3):46-50.
    [37]陈志姚,刘有飞,倪以信,等.电力市场环境下备用容量的集中和分散优化决策[J].电力系统自动化,2004,28(22),5-12.
    [38]杨梓俊,丁明,孙听.电力市场下综合考虑系统可靠性和旋转备用效益的机组组 合[J].电网技术,2003,27(6):13-18.
    [39]丁明,齐先军,安玲.旋转备用市场中考虑可靠性的多目标分层决策[J].电力系统自动化,2007,31(13),17-22.
    [40]张国全,王秀丽,王锡凡.电力市场中旋转备用的效益和成本分析[J].电力系统自动化,2000,11(21),14-18.
    [41]Chung L T, Shmuel S O, Alva J S, et al. Price based adaptive spinning reserve requirements in power system scheduling[J]. Electrical Power and Energy System, 1999,21(34):137-145.
    [42]Meadhbh Flynn, Sheridan W Paul, Joseph D, et al. Reliability and reserve in competitive electricity market scheduling[J]. IEEE Transactions on Power Systems. 2001,16(1):78-87.
    [43]Aganagic M, Abdul K H, Waight J G Spot Pricing of Capacities for Generation and Transmission of Reserve in an Extended Poolco model[J]. IEEE Transactions on Power Systems,1998,13(3):1128-1135.
    [44]Tong Wu, Mark Rothleder, Ziad Alaywan, et al. Pricing Energy and Ancillary Services in Integrated Market Systems by an Optimal Power Flow[J]. IEEE Transactions on power systems,2004,19(1):339-347.
    [45]Senjyu T, Shimabukuro K, Uezato K, Funabshi T. A fast technique for unit commitment problem by extended priority list[J]. IEEE Transactions on Power Systems,2003,12:882-888.
    [46]Srinivasan D, Chazelas J. A priority list-based evolutionary algorithm to solve large scale unit commitment problem[C]. New York,2004,32(12):1746-1751.
    [47]Snyder W L, Dpowell H, Rayburn C. Dynamic programming approach to unit commitment[J]. IEEE Transactions on Power Systems,1987,2(2):339-350.
    [48]Pang C K, Sheble G B, Albuyyeh F. Evaluation of dynamic programming based method and multiple area representation for thermal unit commitment[J]. IEEE Transactions on PAS,1981,100(3):1212-1218.
    [49]Redondo N J, Edondo, Conejo A J. Short term hydro thermal coordination by Lagrangian relaxation[J]. IEEE Trans. Power Syst,1999,14(2):89-95.
    [50]Borghettia A, Frangioni A, Lacalandra F. Lagrangian heuristic on disaggregate buddle methods for hydrothermal unit commitment[J]. IEEE Transaction on Power Systems, 2003,18(1):313-323.
    [51]Weerakorn, Ongsakul, Nit P. Unit commitment by enhanced adaptive lagrangian relaxation[J]. IEEE Trans on Power Systems,2004,19(2):620-628.
    [52]Juste K A, Ktta H, Tanaka E, et al. An evolutionary programming solution to the unit commitment problem[J]. IEEE Transaction on Power Syst,1999,14(23):1452-1459.
    [53]Senjyu T, Yamashiro A, Uezato K, et al. A unit commitment problem by using genetic algorithm based on characteristic classification[J]. IEEE Power Eng. Singapore, 2002,12(56):58-63.
    [54]Streiffert D, Philbrick R, Ott A. A mixed integer programming solution for market clearing and reliability analysis[C]. New York,2005,21(67):2724-2731.
    [55]Damousist G, Bakirtzis A G, Dokopoulos P S, et al. A solution to the unit commitment problem using integer coded genetic algorithm[J]. IEEE Transaction on Power Systems,2004,19(2):1165-1172.
    [56]Habibollahzadeh H, Bubenko J A. Application of decomposition techniques to short-term operation planning of hydrothermal power system[J]. IEEE Trans on PWRS,1986,1(1):319-328.
    [57]Borghettia A, Dambrosio C, Lodia A, et al. An MILP approach for short term hydro scheduling and unit commitment with head dependent reservoir[J]. IEEE Transactions on Power Systems,2008,23(3):1115-1124.
    [58]骆济寿.电路方法及母线成本微增率在电力系统经济调度中的应用[J].中国电机工程学报,1984,4(4):1-8.
    [59]于志钢,于尔铿,白晓民.网络规划算法的约束经济调度[J].中国电机工程学报,1989,9(3):9-15.
    [60]张小平,陈朝晖.基于内点法的安全约束经济调度[J].电力系统自动化,1997,21(6):27-54.
    [61]Irisarri G, Kimball L M, Clements K A, et al. Economic Dispatch with Network and Ramping Constrained via Interior Point Methods[J]. IEEE Trans on Power Systems, 1998,13(1):120-128.
    [62]郭志东,徐国禹.用二次规划法解算互联系统经济调度[J].电力系统自动化,1998,22(1):40-44.
    [63]Yuan J, Zhang L. Real time Economic Dispatch with Line Flow and Emission Constraints Using Quadratic Programming[J]. IEEETrans on Power Systems,1998, 13(5):320-325.
    [64]Mota P R, Quintana V H. A Penalty Function Linear Programming Method for Solving Power System Constrained Economic Operation Problems[J]. IEEE Transactions on Power Apparatus and Systems,1984,103(6):1414-1442.
    [65]Han X S, Gooi H B, Kirschen D S. Dynamic Economic Dispatch:Feasible and Optimal Solutions[J]. IEEE Trans on Power Systems,2001,16(1):22-28.
    [66]Barcelo W R, Rastgoufard P. Dynamic Economic Dispatch Using the Extended Security Constrained Economic Dispatch Algorithm[J]. IEEE Trans on Power Systems,1997,12(2):961-967.
    [67]Barcelo W R, Rastgoufard P. Control Area Performance Improvement by Extended Security Constrained Economic Dispatch Algorithm[J]. IEEE Trans on Power Systems,1997,12(1):120-128.
    [68]石立宝,徐国禹.遗传算法在有功安全经济调度中的应用[J].电力系统自动化, 1997,21(6):42-44.
    [69]曹一家.并行遗传算法在电力系统经济调度中的应用—迁移策略对算法性能的影响[J].电力系统自动化,2002,26(13):20-24.
    [70]Sheble G B, Brittig K. Refined Genetic Algorithm Economic Dispatch Example[J]. IEEE Trans on PowerSystems,1995,10(1):1010-1017.
    [71]Walters D C, Sheble G B. Genetic Algorithm Solution of Economic Dispatch with Valve Point Loading[J]. IEEE Trans on Power System,1993,8(3):876-881.
    [72]赵波.应用粒子群优化算法求解市场环境下的电力系统动态经济调度问题[J].继电器,2004,32(21):1-5.
    [73]叶彬,张鹏翔,赵波,等.多目标混合进化算法及其在经济调度中的应用[J].电力系统自动化,19(2):66-72.
    [74]邱家驹,蔡雯,于渤.基于大系统分解-协调理论的电力系统经济调度分布式算法[J].中国电机工程学报,34(14):30-34.
    [75]王兴,宋永华,卢强.多区域输电阻塞管理的拉格朗日松弛分解算法[J].电力系统及其自动化,2002,26(13):8-13.
    [76]刘科研,盛万兴,李运华.跨地区的直流最优潮流分解算法研究[J].中国电机工程学报,2006,26(12):21-25.
    [77]张海波,张伯明,孙宏斌.基于异步迭代的多区域互联系统动态潮流分解协调计算[J].电力系统自动化,2003,27(24):1-6.
    [78]程新功,厉吉文,曹立霞,等.基于电网分区的多目标分布式并行无功优化研究[J].中国电机工程学报,2003,23(10):109-113.
    [79]Wang X, Song Y H, Lu Q. Lagrangian decomposition approach to active power congestion management across interconnected regions[C].IEE Proceedings on Generation, Transmission and Distribution,2001,148(5):497-503.
    [80]Bakirtzis A G, Biskas P N. A decentralized solution to the DC-OPF of interconnected power systems[J]. IEEE Transaction on Power System,2003,18(3):1007-1013.
    [81]Conejo A J, Aguado J A. Multi area coordinated decentralized DC optimal power flow[J]. IEEE Trans.on Power Systems,1998,13(4):1272-1278.
    [82]Biskas P N, Bakirtzis A G. A decentralized implementation of DC optimal power flow on a network of computers[J]. IEEE Transaction On Power Systems,2004,26(13): 8-13.
    [83]夏清,张伯明,康重庆,等.电力系统短期安全经济调度新算法[J].电网技术,1997,21(11):61-69.
    [84]韩学山,柳焯.考虑机组爬坡速度和网络安全约束的经济调度解耦算法[J].电力系统自动化,2002,26(13):32-37.
    [85]史保壮,Jason M D, Richard P.风电并网技术的新进展[J].电力设备,2008,11(2):22-26.
    [86]迟永宁,李群英.大规模风电并网引起的电力系统运行与稳定问题及对策[J].电 力设备,2008,11(3):33-37.
    [87]李义岩.基于PSCAD风电并网无功补偿研究[J].低压电器,2009,19(2):13-16
    [88]孟详星,王宏.大规模风电并网条件下的电力系统调度[J].东北电力大学学报(自然科学版),2009,1(5):43-47.
    [89]颜巧燕,温步瀛,江岳文.风电并网后系统备用容量需求分析[J].电力与电工2009,2(10):32-35.
    [90]胡明.阿尔伯塔风电并网对系统运行的影响和对策[J].电力技术经济,2008,2(13):53-57.
    [91]王丽婕,冬雷,廖晓钟.基于小波分析的风电场短期发电功率预测[J].中国电机工程学报,2009,29(28):30-33.
    [92]戚双斌,王维庆,张新燕.基于支持向量机的风速与风功率预测方法研究[J].华东电力,2009,37(9):1600-1603.
    [93]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5.
    [94]Pinson P, Katiniotakis G N. Wind power forecasting using fuzzy neural networks enhanced with on-line prediction risk assessmen[J]. IEEE Bologna Power Technical Conference,2003,34(90):64-71.
    [95]Alexiadis M C, Dokopoulos P S, Sahsamanoglou H S. Wind speed and power forecasting based on spatial correlation models[J]. IEEE Transactions on Energy Conversion,1999,14(3):836-842.
    [96]Damousis I G, Dokopoulos P. A fuzzy expert system for the forecasting of wind speed and power generation in wind farms[C].22nd IEEE Power Engineering Society International Conference,2001,2(23):63-69.
    [97]周玮,彭岦,孙辉,等.含风电场的电力系统动态经济调度[J].中国电机工程学报,2009,29(25):13-18.
    [98]陈宁,于继来.基于电气剖分信息的风电系统有功调度与控制[J].中国电机工程学报,2008,28(16):51-58.
    [99]Bosch P P. Optimal dynamic dispatch owing to spinning reserve and power rate limits[J]. IEEE Transactions on Power Apparatus and Systems,1985,12(4):356-365.
    [100]Hetzer J, Yu D C. An economic dispatch model incorporating wind Power[J]. IEEE Transactions on Power Energy Conversion,2008,11(2):467-475.
    [101]谢国辉,张粒子,葛炬.节能发电调度旋转备用计划优化[J].电力系统自动化,2009,33(13):43-46.
    [102]谢国辉,张粒子,舒隽,等.求解跨地区经济调度的层级协调算法[J].电工技术学报,2010,25(5):23-38.
    [103]黄红选.数学规划[M].北京:清华大学出版社,2005:100-122.
    [104]黄海涛,郑华,张粒子.基于改进粒子群算法的可用输电能力研究[J].中国电机工程学报,2006,26(20):45-49.
    [105]王鹏,任冲,彭明侨.西北电网风电调度运行管理研究[J].电网与清洁能源,2009,25(11):80-84.
    [106]王海超,鲁宗相,周双喜.风电场发电容量可信度研究[J].中国电机工程学报,2005,25(10):103-107.
    [107]冯垛生,张淼,赵慧,等.太能源发电技术与应用[M].北京:人民邮电出版社,2009:29-32.
    [108]沈剑山.生物质能源沼气发电[M].北京:中国轻工业出版社,2009:67-97.
    [109]张军,李小春,等.国际能源战略与新能源技术进展[M].北京:科学出版社,2007:56-60.
    [110]林伯强.高级能源经济学[M].北京:中国财政经济出版社,2009:85-102.
    [111]国家电力监管委员会风电发展情况调研组.我国风电发展调研报告[R].北京:国家电力监管委员会,2009:1-21.
    [112]Hatziargyriou N, Contaxis G, Matos M, et al. Energy management and control of island power systems with increased penetration from renewable sources[J]. IEEE Power Engineering Society Winter Meeting,2002,67(56):335-339.
    [113]Doherty R, Malley M. Quantifying reserve demands due to increasing wind power penetration[J]. IEEE Bologna Power Technical Conference,2003,54(21):59-63.
    [114]范玉宏,张维,韩文长,等.区域间节能发电调度模式研究[J].电力系统保护与控制,2009,37(16):107-111.
    [115]张森林.考虑综合输电价格和环保折价修正的撮合交易数学模型研究[J].继电器,2007,35(24):61-65.
    [116]张森林.区域电力市场中的月度撮合交易竞价机制研究(二)考虑输电价格、输电损耗折价和环保因素的类PAB结算机制[J].继电器,2006,34(11):66-70.
    [117]谢国辉,张粒子,舒隽.准市场化的节能发电调度模式[J].电力系统自动化,2009,33(8):29-32.
    [118]葛亮,谢宇翔,李湘祁,等.与市场机制相协调的发电交易与调度的节能减排方法[J].电工技术学报,2009,24(8):167-173.
    [119]魏学好,李瑞庆,陈宇晨.具有节能减排内核的电力市场新模式[J].电力系统自动化,2009,33(15):24-29.
    [120]尚金成.基于节能减排的发电权交易理论及应用[J].电力系统自动化,2009,33(12):46-52.
    [121]王锡凡.分段竞价的电力市场.中国电机工程学报,2001,21(12):1-6.
    [122]Guohui Xie, lizi Zhang, Xiaoyu He. Research on the Model and Method for Energy-Saving Generation Dispatch[C]. The First International Conference on Sustainable Power Generation and Supply.Nanjing,2009,1(13):322-327.
    [123]谢国辉,张粒子,舒隽,等.基于分层分枝定界算法的机组组合[J].电力自动化设备,2009,29(12):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700