电力市场环境下水电系统的优化调度及风险管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力工业的市场化改革在世界范围内不断推进,打破了传统的垂直垄断管理模式,发电公司、供电公司及电力用户将以独立的市场参与者成为电力市场中的主体。在市场环境下,水电系统作为独立的发电商,其优化调度管理模式发生了本质性的转变。水电厂商可参与多种交易途径以获得收益,其将以市场交易为中心,以电价为决策导向,以追求自身发电收益最大化为目标,这使得水电系统的优化调度问题面临着新的内容与挑战。同时,在市场环境下,水电系统所面临的径流和电价的随机性,也使得水电厂商在市场交易中面临着很大的收益风险,迫切需要进行风险管理以保障其在市场交易中的利益。
     本文结合国家自然科学基金重点项目“市场条件下流域梯级水电能源联合优化运行和管理的先进理论与方法”,重点研究充分考虑径流和电价随机性的水电系统的优化调度问题及相应的市场交易策略,融入风险管理方法,建立相应的考虑风险的优化调度模型,以实现收益最大化与风险最小化间的平衡。主要研究内容如下:
     (1)详细介绍随机线性规划的模型建立、求解及模型优越性评估指标的计算。以场景树模型作为随机线性规划模型的输入,提出并具体实现基于时间序列模型及启发式方法的场景构建方法。针对随机线性规划模型求解困难的问题,以概率距离度量场景缩减前后随机数据过程的近似程度,具体分析快速后向场景缩减技术的设计原理与实现,在尽量减少场景数量的同时,保持随机变量场景树模型的重要特征,进一步扩展了随机线性规划方法的应用范围。
     (2)提出一种新型的基于随机线性规划的水电站中长期合约电量决策模型,充分考虑径流和电价的随机性对收益的显著影响。该模型以基于不同场景构建方法得到的场景树模型表示径流和电价的随机性,将远期合约决策与日前市场交易决策视为随机规划框架下的不同阶段决策。通过与预测值模型的比较分析,随机线性规划模型由于充分考虑了随机性的影响保证了其收益的优越性;通过与不同决策模式下的随机规划模型比较分析,两种模型对水电站远期合约决策及收益影响的相似性进一步验证了随机线性规划模型的有效性。
     (3)提出一种新型的基于随机线性规划的水电站组合交易决策模型,解决如何利用有限的发电资源合理参与多个市场的交易以获得考虑随机性影响的期望收益最大化的问题。基于组合交易策略与发电调度策略的紧密联系,将组合交易决策及发电补偿决策视为随机规划框架下的不同阶段决策。通过构建不同的场景树模型来表示径流和电价的随机性,验证不同的场景树模型输入虽然对组合交易决策有影响,但并不影响整个随机线性规划模型的有效性。对组合交易决策的VaR风险评估表明,灵活的组合交易决策能够带来更多收益,同时,也面临收益风险,进一步进行风险管理具有重要意义。
     (4)对电力市场环境下的风险管理方法及其应用进行总结分析,进而提出在确定性框架下把对电价风险的考虑融入水电站短期优化调度问题中进行求解,分别提出基于期望收益-VaR风险效用模型以及基于场景收益风险惩罚或风险约束的水电站优化调度模型,对不同风险管理方法下的期望收益与风险间的平衡问题进行分析。针对模型的求解,在遗传算法框架下融入改进的快速进化算法的进化机制及竞争选择机制,在进化过程中结合惩罚机制与修复机制,提出基于改进的快速进化算法和遗传算法的IFEP-GA混合优化算法作为上述两种模型的求解方法。并对电价风险的考虑对进化算法的影响加以分析,为水电站在市场竞争中选择合理的风险水平及相应的水电站短期优化调度提供决策支持。
     (5)基于以VaR作为风险测度与日前市场交易紧密相关的特性,提出将VaR风险惩罚项、组合交易决策及发电补偿决策作为随机规划框架下不同阶段的决策,建立随机规划框架下的期望收益- VaR风险效用模型。通过不同风险因子下模型的求解,得到期望收益与风险间的有效前沿曲线,对应得到不同风险水平下的水电站组合交易决策;通过对组合交易决策以不同的风险测度方法进行风险分析,为水电站进一步选择其合理的风险水平提供决策依据。
     (6)基于随机规划框架下的风险测度与随机性建模及市场交易策略的紧密相关性,提出以Semi-Variance风险测度,将场景树模型中各场景电价与期望电价间的差额在日前市场交易中反映为相应的风险,进而在随机规划框架下建立考虑风险的水电站组合交易策略模型。模型将随机性建模与风险建模相结合,能够充分反映随机性的影响,实现了对风险的有效管理,进而能够得到不同风险水平下的水电站组合交易决策。
     通过对水电系统优化调度问题及其市场交易优化问题的应用研究,验证了本文所提出的优化方法和所建立的数学模型的有效性,为水电站在市场环境下进行合理的市场交易提供决策依据,并为其所面临的收益最大化和风险最小化间的平衡问题提供有效的解决途径。
The electricity industry throughout the world, which has long been dominated by vertically integrated utilities, is underlying enormous changes. Restructuring has necessitated the decomposition of the three components of electric power industry: generation, transmission and distribution. In deregulated markets, hydropower producers are regarded as independent generating companies, and the management model of optimal scheduling has been greatly changed. The diversity of trading types provides hydropower producer more options to sell their generation products among multiple markets. With the sole objective of maximizing revenues, hydropower producers concern the power exchange in electricity market, and trading decisions are made with the center of market price. All these changes bring new field and challenge to hydroelectric scheduling. Furthermore, a major concern for hydropower producers in restructured market is the profit uncertainty caused by uncertainty in inflows and market prices, and introducing risk management to guarantee the market trade revenue has become an urgent need for hydropower producers.
     With the support of NSFC project“advanced theory and methodology of river basin cascade hydroelectric energy joint optimal operation and management in electricity market”, this paper concerns hydroelectric scheduling problem and corresponding market trade strategy considering the uncertainty in inflows and market prices. Furthermore, risk management methods is incorporated, and risk-constrained optimal scheduling model is formulated to obtain the tradeoff between maximum of revenue and minimum of risk. The main research contents of this paper are listed as the following:
     (1) Stochastic linear programming model is introduced in detail, including the construction of model, solution method and the calculation of advantage measure. Scenario tree model is recognized as input of stochastic linear programming model, and its constructing techniques based on time series method and heuristic method are proposed and realized. Concerning the solution difficulty of stochastic linear programming model, a probability metric is used to control the goodness-of-fit of the approximations of the random data process. The design principle and technical realization of fast backward scenario reduction is further illustrated. The number of scenarios is endeavored to be reduced while still retaining the essential features of the scenario tree, which extends the application of stochastic linear programming.
     (2) A new model for medium term forward contracting determination is proposed based on stochastic linear programming, which considers the uncertainty in inflows and market prices simultaneously with scenario tree model based on different constructing methods. Forward contracting decisions and day-ahead market trading decisions are recognized as different decisions of different stages in a stochastic programming framework. Through the comparison with expected value model, the advantage of higher revenue is guaranteed for considering the influence of uncertainty; through the comparison with a different stochastic programming model, the similarity of influence on forward contract decisions and revenue further verifies the availability of the proposed stochastic linear programming model.
     (3) A new model for portfolio decisions is proposed based on stochastic linear programming, which considers hydropower scheduling and multi-market trading decisions under uncertainty in inflows and market prices. Portfolio decisions and recourse decisions of generation scheduling are recognized as different decisions of different stages in a stochastic programming framework, and uncertainty is modeled with different scenario tree model, which will result in different portfolio decisions, but would have no influence on entire stochastic linear programming model. The risk assessment on portfolio decisions shows that more revenue is guaranteed through the flexible portfolio decisions. However, portfolio decisions also face great risk, which demonstrates the necessary of risk management.
     (4) Based on the summary on methods and application of risk management in deregulated market, the deterministic models incorporating price risk into short-term hydropower scheduling problem are proposed, which are expected revenue-VaR risk utility model and integrating scenario risk penalty or risk constraint model. To solve the above models, IFEP-GA hybrid optimization algorithm is proposed, which integrates evolutionary mechanism and competition selection mechanism of IFEP algorithm in GA framework, and penalty mechanism and repair mechanism are combined in the evolutionary process. The considering of price risk on evolution algorithm is analyzed, which provide hydropower producer proper risk level and corresponding short-term optimal scheduling.
     (5) For the close relation between VaR risk measure and day-ahead spot market trade, a new expected revenue-VaR risk utility model based on stochastic programming is proposed. The solution of different risk factors provides the efficient frontier between the expected revenue and risk. Furthermore, risk will be different under different risk measures, which further provide the decision base for proper risk level.
     (6) For the close relation between risk measures, model of uncertainty and market trading strategy based on stochastic programming, Semi-Variance risk measure is proposed, which reflects the risk from the difference between price scenario and expected price in a scenario tree model, and a new risk-constrained portfolio management model is constructed, in which uncertainty model and risk model is combined. The influence of uncertainty is reflected and risk is effectively managed, and corresponding flexible portfolio decisions under different risk levels can be obtained.
     With the application of hydropower scheduling problem and optimization of multi-market trade strategy, the proposed optimization algorithm and mathematical models are verified effectively, which provide decision base for proper trade strategy in deregulated market and effective solution for tradeoff between maximum revenue and minimum risk.
引文
[1] Shahidehpour M, Yamin H, Li Z. Market operations in electric power systems: forecasting, scheduling, and risk management[M]. New York: Wiley, 2002.
    [2]王丽萍,张玉山,李继清,等.市场环境下水电系统短期预发电计划问题研究[J].水电自动化与大坝监测, 2004, 28(5): 1-3.
    [3] Gardner J, Hobbs W, Lee F N, et al. Summary of the panel session "coordination Between Short-TermOperation Scheduling and Annual Resource Allocations"[J]. IEEE Transactions on Power Systems, 1995, 10(4): 1879-1889.
    [4] Yeh W W G. Reservoir management and operations models: A state-of-the-art review[J]. Water resources research, 1985, 21(12): 1797-1818.
    [5] Labadie J W. Optimal operation of multireservoir systems: State-of-the-art review[J]. Journal of Water Resources Planning and Management, 2004, 130(2): 93-111.
    [6]张玉山,李继清,纪昌明,等.市场环境下水电运营方式的探讨[J].水电自动化与大坝监测, 2003, 27(5): 8-10.
    [7]何莉.水电厂参与市场竞价问题研究[D].武汉:华中科技大学, 2007.
    [8]曾勇红,王锡凡.电力市场下水电厂竞价综述[J].电力自动化设备, 2006, 26(10): 101-105.
    [9]曾勇红.仿射尺度算法及其在水电系统优化调度中的应用研究[D].武汉:华中科技大学, 2004.
    [10]王金文.仿单纯形法及其在短期水电系统发电调度中的应用[D].武汉:华中科技大学, 2003.
    [11] Karmarkar N. A new polynomial-time algorithm for linear programming[J]. Combinatorica, 1984, 4(4): 373-395.
    [12] Sherkat V R, Moslehi K, Lo E O, et al. Modular and flexible software for medium and short-term hydrothermal scheduling[J]. IEEE Transactions on Power Systems, 1988, 3(3): 1390-1396.
    [13] Christoforidis M, Aganagic M, Awobamise B, et al. Long-term/mid-term resource optimization of a hydrodominant power system using interior point method[J]. IEEE Transactions on Power Systems, 1996, 11(1): 287-294.
    [14] Ponnambalam K, Quintana V H, Vannelli A. A fast algorithm for power system optimization problems using an interior point method[J]. IEEE Transactions on Power Systems, 1992, 7(2): 892-899.
    [15] Hernandez H M, Diaz J A, Sanchex G A, et al. Operations planning of Colombian hydro-thermal interconnected system[J]. IEEE Transactions on Power Systems, 1991, 6(2): 778-786.
    [16] Tong S K, Shahidehpour S M. An innovative approach to generations scheduling in large-scale hydro-thermal power systems with fuel constrained units[J]. IEEE Transactions on Power Systems, 1990, 5(2): 665-673.
    [17] Piekutowski M R, Litwinowicz T, Frowd R J. Optimal short-term scheduling for a large-scale cascaded hydro system[J]. IEEE Transactions on Power Systems, 1994, 9(2): 805-811.
    [18] Shawwash Z K, Siu T K, Russell S. The B.C. Hydro short term hydro scheduling optimization model[J]. IEEE Transactions on Power Systems, 2000, 15(3): 1125-1131.
    [19]叶秉如.水资源系统优化规划和调度[M].北京:中国水利水电出版社, 1999.
    [20]李钰心.水电站经济运行[M].北京:中国电力出版社, 1999.
    [21]张勇传.水电站经济运行原理[M].北京:中国水利水电出版社, 1998.
    [22] Siu T K, Nash G A, Shawwash Z K, et al. A practical hydro, dynamic unit commitment and loading model[J]. IEEE Transactions on Power Systems, 2001, 16(2): 301-306.
    [23] Arce A, Ohishi T, Soares S. Optimal dispatch of generating units of the Itaipu hydroelectric plant[J]. IEEE Transactions on power systems, 2002, 17(1): 154-158.
    [24] Guan X, Luh P B, Yan H, et al. Optimization-based scheduling of hydrothermal power systems with pumped-storage units[J]. IEEE Transactions on Power Systems, 1994, 9(2): 1023-1031.
    [25] Guan X, Luh P B, Zhang L, et al. Nonlinear approximation method in Lagrangian relaxation-based algorithms for hydrothermal scheduling[J]. IEEE Transactions on Power Systems, 1995, 10(2): 772-778.
    [26] Guan X, Ni E, Li R, et al. An optimization-based algorithm for scheduling hydrothermal power systems with cascaded reservoirs and discrete hydro constraints[J]. IEEE Transactions on Power Systems, 1997, 12(4): 1775-1780.
    [27] Trott W J, Yeh W. Optimization of multiple reservoir system[J]. Journal of the Hydraulics Division, 1973, 99(10): 1865-1884.
    [28] Murray D M, Yakowitz S J. Constrained differential dynamic programming and its application to multireservoir control[J]. Water Resources Research, 1979, 15(5): 1017-1027.
    [29] Turgeon A. Optimal short-term hydro scheduling from the principle of progressive optimality[J]. Water resources research, 1981, 17(3): 481-486.
    [30] Tang J, Luh P B. Hydrothermal scheduling via extended differential dynamic programming and mixed coordination[J]. IEEE Transactions on Power Systems, 1995, 10(4): 2021-2028.
    [31] Zaghlool M F, Trutt F C. Efficient methods for optimal scheduling of fixed head hydrothermal power systems[J]. IEEE Transactions on Power Systems, 1988, 3(1): 24-30.
    [32] Johannesen A, Gjelsvik A, Fosso O B, et al. Optimal short term hydro scheduling including security constraints[J]. IEEE Transactions on Power Systems, 1991, 6(2): 576-583.
    [33] El-Hawary M E, Mbamalu G A N. Hydro-thermal stochastic optimal power dispatch: a Newton's based approach[J]. IEE Proceedings C. Generation, Transmission and Distribution, 1990, 137(3): 213-224.
    [34] Chen C L, Chen N. Direct search method for solving economic dispatch problem considering transmission capacity constraints[J]. IEEE transactions on power systems, 2001, 16(4): 764-769.
    [35] Wakamori F, Masui S, Morita K, et al. Layered network model approach to optimal daily hydro scheduling[J]. IEEE Transactions on Power Apparatus and Systems, 1982, PAS-101(9): 3310-3314.
    [36] Wei H, Sasaki H, Kubokawa J. A decoupled solution of hydro-thermal optimal power flow problem bymeans of interior point method and network programming[J]. IEEE Transactions on power Systems, 1998, 13(2): 286-293.
    [37] Li C, Jap P J, Streiffert D L. Implementation of network flow programming to the hydrothermal coordination in an energy management system[J]. IEEE Transactions on Power Systems, 1993, 8(3): 1045-1053.
    [38] Oliveira G G, Soares S, Fac E E, et al. A second order network flow algorithm for hydrothermal scheduling[J]. IEEE Transactions on Power Systems, 1995, 10(3): 1635-1641.
    [39] Heredia F J, Nabona N. Optimum short-term hydrothermal scheduling with spinning reserve through network flows[J]. IEEE Transactions on Power Systems, 1995, 10(3): 1642-1651.
    [40] Nilsson O, Sjelvgren D. Mixed-integer programming applied to short-term planning of a hydro-thermal system[J]. IEEE Transactions on Power Systems, 1996, 11(1): 281-286.
    [41] Nilsson O, Sjelvgren D. Variable splitting applied to modelling of start-up costs in short term hydro generation scheduling[J]. IEEE Transactions on Power Systems, 1997, 12(2): 770-775.
    [42] Nilsson O, Soder L, Sjelvgren D. Integer modelling of spinning reserve requirements in short term scheduling of hydro systems[J]. IEEE Transactions on Power Systems, 1998, 13(3): 959-964.
    [43] Yu Z, Sparrow F T, Bowen B, et al. On convexity issues of short-term hydrothermal scheduling[J]. International Journal of Electrical Power and Energy Systems, 2000, 22(6): 451-457.
    [44] Chang G W, Aganagic M, Waight J G, et al. Experiences with mixed integer linear programming based approacheson short-term hydro scheduling[J]. IEEE Transactions on power systems, 2001, 16(4): 743-749.
    [45] Li C, Svoboda A J, Tseng C L, et al. Hydro unit commitment in hydro-thermal optimization[J]. IEEE Transactions on power systems, 1997, 12(2): 764-769.
    [46] Ni E, Guan X, Li R. Scheduling hydrothermal power systems with cascaded and head-dependentreservoirs[J]. IEEE Transactions on power systems, 1999, 14(3): 1127-1132.
    [47] Yan H, Luh P B, Guan X, et al. Scheduling of hydrothermal power systems[J]. IEEE Transactions on power systems, 1993, 8(3): 1358-1365.
    [48] Redondo N J, Conejo A J. Short-term hydro-thermal coordination by Lagrangian relaxation: solution of the dual problem[J]. IEEE Transactions on Power Systems, 1999, 14(1): 89-95.
    [49] Zhang D, Luh P B, Zhang Y. A bundle method for hydrothermal scheduling[J]. IEEE Transactions on Power Systems, 1999, 14(4): 1355-1361.
    [50] Li C, Johnson R B, Svoboda A J, et al. A robust unit commitment algorithm for hydro-thermal optimization[J]. IEEE Transactions on Power Systems, 1998, 13(3): 1051-1056.
    [51] Guan X, Zhai Q, Papalexopoulos A. Optimization based methods for unit commitment: Lagrangian relaxation versus general mixed integer programming[C]. IEEE Power Engineering Society General Meeting, 2003, 13-17.
    [52] Li T, Shahidehpour M. Price-based unit commitment: a case of Lagrangian relaxation versus mixed integer programming[J]. IEEE Transactions on Power Systems, 2005, 20(4): 2015-2025.
    [53]张高峰.梯级水电系统短期优化调度与自动发电控制研究[D].武汉:华中科技大学, 2004.
    [54]王凌.智能优化算法及其应用[M].北京:清华大学出版社, 2001.
    [55] Werner T G, Verstege J F. An evolution strategy for short-term operation planning of hydrothermal power systems[J]. IEEE Transactions on Power Systems, 1999, 14(4): 1362-1368.
    [56] Leite P T, Carneiro A, Carvalho A. Energetic operation planning using genetic algorithms[J]. IEEE Transactions on Power Systems, 2002, 17(1): 173-179.
    [57] Chen P H, Chang H C. Genetic aided scheduling of hydraulically coupled plants in hydro-thermal coordination[J]. IEEE Transactions on Power Systems, 1996, 11(2): 975-981.
    [58] Chang H C, Chen P H. Hydrothermal generation scheduling package: a genetic basedapproach[J]. IEE Proceedings-Generation, Transmission and Distribution, 1998, 145(4): 451-457.
    [59] Rudolf A, Bayrleithner R. A genetic algorithm for solving the unit commitment problem of a hydro-thermal power system[J]. IEEE Transactions on Power Systems, 1999, 14(4): 1460-1468.
    [60] Wu Y G, Ho C Y, Wang D Y. A diploid genetic approach to short-term scheduling of hydro-thermal system[J]. IEEE Transactions on Power Systems, 2000, 15(4): 1268-1274.
    [61] Yang P C, Yang H T, Huang C L. Scheduling short-term hydrothermal generation using evolutionary programming techniques[J]. IEE Proceedings-Generation, Transmission and Distribution, 1996, 143(4): 371-376.
    [62] Hota P K, Chakrabarti R, Chattopadhyay P K. Short-term hydrothermal scheduling through evolutionary programming technique[J]. Electric Power Systems Research, 1999, 52(2): 189-196.
    [63] Sinha N, Chakrabarti R, Chattopadhyay P K. Fast evolutionary programming techniques forshort-term hydrothermal scheduling[J]. Electric Power Systems Research, 2003, 66(2): 97-103.
    [64] Wong K P, Wong Y W. Short-term hydrothermal scheduling part I. Simulated annealing approach[J]. IEE Proceedings-Generation, Transmission and Distribution, 1994, 141(5): 497-501.
    [65] Wong K P, Wong Y W. Short-term hydrothermal scheduling. II. Parallel simulated annealing approach[J]. IEE Proceedings-Generation, Transmission and Distribution, 1994, 141(5): 502-506.
    [66] Bai X, Shahidehpour S M. Hydro-thermal, scheduling by tabu search and decomposition method[J]. IEEE Transactions on Power Systems, 1996, 11(2): 968-974.
    [67] Mantawy A H, Soliman S A, El-Hawary M E. The long-term hydro-scheduling problem- a new algorithm[J]. Electric Power Systems Research, 2003, 64(1): 67-72.
    [68] Liang R H, Hsu Y Y. Scheduling of hydroelectric generations using artificial neural networks[J]. IEE Proceedings-Generation, Transmission and Distribution, 1994, 141(5): 452-458.
    [69] Liang R, Hsu Y. A hybrid artificial neural network--differential dynamic programming approach for short-term hydro scheduling[J]. Electric Power Systems Research, 1995, 33(2): 77-86.
    [70] Liang R H, Hsu Y Y. Short-term hydro-scheduling using Hopfield neural network[J]. IEE Proceedings-Generation, Transmission and Distribution, 1996, 143(3): 269-275.
    [71] Naresh R, Sharma J. Two-phase neural network based solution technique for short term hydrothermal scheduling[J]. IEE Proceedings-Generation, Transmission and Distribution, 1999, 146(6): 657-663.
    [72] Naresh R, Sharma J. Hydro system scheduling using ANN approach[J]. IEEE Transactions on power systems, 2000, 15(1): 388-395.
    [73] Naresh R, Sharma J. Short term hydro scheduling using two-phase neural network[J]. International Journal of Electrical Power and Energy Systems, 2002, 24(7): 583-590.
    [74] Huang S J. Enhancement of hydroelectric generation scheduling using ant colony system based optimization approaches[J]. IEEE Transaction on Energy Conversion, 2001, 16(3): 296-301.
    [75] Yu B, Yuan X, Wang J. Short-term hydro-thermal scheduling using particle swarm optimization method[J]. Energy Conversion and Management, 2007, 48(7): 1902-1908.
    [76] Liang R H. A noise annealing neural network for hydroelectric generation scheduling with pumped-storage units[J]. IEEE Transactions on Power Systems, 2000, 15(3): 1008-1013.
    [77] Yin Wa Wong S. Hybrid simulated annealing/genetic algorithm approach to short-term hydro-thermal scheduling with multiple thermal plants[J]. International Journal of Electrical Power and Energy Systems, 2001, 23(7): 565-575.
    [78] Yuan X, Yuan Y, Zhang Y. A hybrid chaotic genetic algorithm for short-term hydro system scheduling[J]. Mathematics and Computers in Simulation, 2002, 59(4): 319-327.
    [79]李厚俊,全宏兴,余有胜,等.电力市场规则及水电竞价浅析[J].水电自动化与大坝监测,2007, 31(1): 6-8.
    [80]赵永龙,常晓青.电力市场模式下的水电调度探讨[J].中国电力, 2000, 33(11): 62-64.
    [81]曾鸣,栾凤奎,刘宝华,等.电力市场标准化方案中水电若干问题研究[J].水利水电技术, 2006, 37(10): 76-79.
    [82]李晓刚,言茂松,王珺珺.电力市场中水电的当量定价及其收支平衡分析[J].电力系统自动化, 2001(9): 1-5.
    [83]言茂松.当量电价体系及相关制度设计(三)水电上网的当量电价法[J].电力系统自动化, 2003, 27(11): 1-4.
    [84]温权,薛年华.华中电网弃水电价研究[J].电力系统自动化, 2001(7): 48-51.
    [85]王雁凌,张粒子,杨以涵.基于水火电置换的发电权调节市场[J].中国电机工程学报, 2006, 26(5): 131-136.
    [86]刘瑞丰,王秀丽,朱振青.水电厂参与市场竞争下的市场模拟及其市场势力削弱[J].电力系统自动化, 2004, 28(16): 21-24.
    [87] Bjorkvoll T, Fleten S E, Nowak M P, et al. Power generation planning and risk management in a liberalised market[C]. IEEE Porto Power Tech Proceedings, Porto, 2001.
    [88]丁军威,胡旸,夏清,等.竞价上网中的水电优化运行[J].电力系统自动化, 2002, 26(3): 19-23.
    [89]袁智强,侯志俭,蒋传文,等.水火电系统古诺模型的均衡分析[J].电力系统自动化, 2004, 28(4): 17-21.
    [90] Scott T J, Read E G. Modelling hydro reservoir operation in a deregulated electricity market[J]. International Transactions in Operational Research, 1996, 3(3-4): 243-253.
    [91] Pritchard G, Zakeri G. Market offering strategies for hydroelectric generators[J]. Operations Research, 2003, 51(4): 602-612.
    [92] Pritchard G, Philpott A B, Neame P J. Hydroelectric reservoir optimization in a pool market[J]. Mathematical Programming, 2005, 103(3): 445-461.
    [93]蔡兴国,林士颖,马平,等.电力市场中梯级水电站优化运行的研究[J].电网技术, 2003, 27(9): 6-9.
    [94]蔡兴国,林士颖,马平.现货交易中梯级水电站竞价上网的研究[J].中国电机工程学报, 2003, 23(8): 56-59.
    [95]刘嘉佳.电力市场环境下水电的优化调度和风险分析[D].成都:四川大学, 2007.
    [96]李郁侠,赵军科,王伟.电力市场环境下水电站中长期运行优化调度[J].西安理工大学学报, 2006, 22(3): 262-264.
    [97]王丽萍,张玉山,李继清,等.市场环境下水电系统短期预发电计划问题研究[J].水电自动化与大坝监测, 2004, 28(5): 1-3.
    [98]张玉山,李继清,纪昌明,等.市场环境下水电站厂内经济运行问题研究[J].水电自动化与大坝监测, 2004, 28(6): 1-3.
    [99]纪昌明,张玉山,李继清.市场环境下水电系统厂间经济运行问题研究[J].华北电力大学学报, 2005, 32(1): 99-102.
    [100] Nilsson O, Soder L, Sjelvgren D. Integer modelling of spinning reserve requirements in short termscheduling of hydro systems[J]. IEEE Transactions on Power Systems, 1998, 13(3): 959-964.
    [101] Olsson M, Soder L. Hydropower planning including trade-off between energy and reserve markets[C]. IEEE Bologna Power Tech Conference, Bologna, 2003.
    [102]朱承军,周建中.电力市场中梯级水电站组合交易策略研究[J].华东电力, 2006, 34(7): 10-14.
    [103] Fosso O B, Gjelsvik A, Haugstad A, et al. Generation scheduling in a deregulated system. The Norwegian case[J]. IEEE Transactions on power systems, 1999, 14(1): 75-81.
    [104] Conejo A J, Arroyo J M, Contreras J, et al. Self-scheduling of a hydro producer in a pool-based electricity market[J]. IEEE Transactions on power systems, 2002, 17(4): 1265-1272.
    [105] Kazempour S J, Moghaddam M P, Yousefi G R. Self-scheduling of a price-taker hydro producer in day-ahead energy and ancillary service markets[C]. IEEE Canada Electric Power Conference, 2008.
    [106] Zhang J L, Ponnambalam K. Hydro energy management optimization in a deregulated electricity market[J]. Optimization and Engineering, 2006, 7(1): 47-61.
    [107]张验科,王丽萍,李安强,等.水电厂竞价电量的风险分析模型及应用[J].水电自动化与大坝监测, 2006, 30(6): 27-30.
    [108]张显,王锡凡,王秀丽,等.水电厂电量不确定性风险的管理[J].中国电机工程学报, 2006, 26(2): 93-100.
    [109]徐刚,马光文.计及电价风险的水电站短期优化调度[J].中国农村水利水电, 2006(1): 91-93.
    [110]马建军,伍永刚.能量市场和AGC市场中水电优化调度及风险评估[J].水电自动化与大坝监测, 2006, 30(4): 1-4.
    [111] Mo B, Gjelsvik A, Grundt A, et al. Integrated risk management of hydro power scheduling and contract management[J]. IEEE Transactions on Power Systems, 2001, 16(2): 216-221.
    [112] Shrestha G B, Pokharel B K, Lie T T, et al. Medium term power planning with bilateral contracts[J]. IEEE Transactions on Power Systems, 2005, 20(2): 627-633.
    [113] Garcia-Gonzalez J, Parrilla E, Mateo A. Risk-averse profit-based optimal scheduling of a hydro-chain in the day-ahead electricity market[J]. European Journal of Operational Research, 2007, 181(3): 1354-1369.
    [114] Cabero J, Baillo A, Cerisola S, et al. A medium-term integrated risk management model for a hydrothermal generation company[J]. IEEE Transactions on Power Systems, 2005, 20(3): 1379-1388.
    [115] Ferguson A R, Dantzig G B. The allocation of aircraft to routes-an example of linear programming under uncertain demand[J]. Management Science, 1956, 3(1): 45-73.
    [116] Charnes A, Cooper W W. Chance-constrained programming[J]. Management Science, 1959, 6(1): 73-79.
    [117]雷亚洲,王伟胜,印永华,等.基于机会约束规划的风电穿透功率极限计算[J].中国电机工程学报, 2002, 22(5): 32-35.
    [118]吴俊,李国杰,孙元章.基于随机规划的并网风电场最大注入功率计算[J].电网技术, 2007, 31(14): 16-19.
    [119]高春凤,江辉,彭建春.基于机会约束规划的发电商报价策略[J].电网技术, 2005, 29(19): 75-78.
    [120]杨宁,文福拴.基于机会约束规划的输电系统规划方法[J].电力系统自动化, 2004, 28(14): 23-27.
    [121]杨宁,文福拴.计及风险约束的多阶段输电系统规划方法[J].电力系统自动化, 2005, 29(4): 28-33.
    [122] Ozturk U A, Mazumdar M, Norman B A. A solution to the stochastic unit commitment problem using chance constrained programming[J]. IEEE Transactions on Power Systems, 2004, 19(3): 1589-1598.
    [123] Takriti S, Birge J R, Long E. A stochastic model for the unit commitment problem[J]. IEEE Transactions on Power Systems, 1996, 11(3): 1497-1508.
    [124] Takriti S, Krasenbrink B, Lilian S. Incorporating fuel constraints and electricity spot prices into the stochastic unit commitment problem[J]. Operations Research, 2000, 48(2): 268-280.
    [125] Carpentier P, Gohen G, Culioli J C, et al. Stochastic optimization of unit commitment: a new decompositionframework[J]. IEEE Transactions on Power Systems, 1996, 11(2): 1067-1073.
    [126] Wu L, Shahidehpour M, Li T. Stochastic security-constrained unit commitment[J]. IEEE Transactions on Power Systems, 2007, 22(2): 800-811.
    [127] Car?e C C, Ruszczyński A, Schultz R. Unit commitment under uncertainty via two-stage stochastic programming[C]. Proceedings of NOAS, 1997.
    [128] Nürnberg R, R?misch W. A two-stage planning model for power scheduling in a hydro-thermal system under uncertainty[J]. Optimization and Engineering, 2002, 3(4): 355-378.
    [129] Li T, Shahidehpour M, Li Z. Risk-constrained bidding strategy with stochastic unit commitment[J]. IEEE Transactions on Power Systems, 2007, 22(1): 449-458.
    [130] Li T, Shahidehpour M. Risk-Constrained generation asset arbitrage in power systems[J]. IEEE Transactions on Power Systems, 2007, 22(3): 1330-1339.
    [131] Reznicek K, Cheng T. Stochastic modeling of reservoir operations[J]. European Journal of Operational Research, 1991, 50(3): 235-248.
    [132] Jacobs J, Freeman G, Grygier J, et al. SOCRATES: A system for scheduling hydroelectric generation under uncertainty[J]. Annals of Operations Research, 1995, 59(1): 99-133.
    [133] Seifi A, Hipel K W. Interior-point method for reservoir operation with stochastic inflows[J]. Journal of Water Resources Planning and Management, 2001, 127(1): 48-57.
    [134] Revelle C, Joeres E, Kirby W. The linear decision rule in reservoir management and design. 1. Development of the stochastic model[J]. Water Resources Research, 1969, 5(4): 767-777.
    [135] Hogan A J, Morris J G, Thompson H E. Decision problems under risk and chance constrained programming: dilemmas in the transition[J]. Management Science, 1981, 27(6): 698-716.
    [136] Loucks D P, Stedinger J R, Haith D. Water resource systems, planning and analysis[M]. Englewood Cliffs, NJ, 1980.
    [137] Loucks D P, Dorfman P J. An evaluation of some linear decision rules in chance constrained models for reservoir planning and operation[J]. Water Resources Research, 1975, 11(6): 777-782.
    [138] Shapiro A. Stochastic programming approach to optimization under uncertainty[J]. Mathematical Programming, 2008, 112(1): 183-220.
    [139] Birge J R, Louveaux F. Introduction to stochastic programming[M]. New York: Springer, 1997.
    [140] Pereira M V F. Optimal stochastic operations scheduling of large hydroelectric systems.[J]. International Journal of Electrical Power & Energy Systems, 1989, 11(3): 161-169.
    [141] Mehrotra S. On the implementation of a primal-dual interior point method[J]. SIAM Journal on Optimization, 1992, 2: 575-601.
    [142] Zhang Y. Solving large-scale linear programs by interior-point methods under the MATLAB environment[J]. Optimization Methods and Software, 1998, 10(1): 1-31.
    [143] Dupacov J, Consigli G, Wallace S W. Scenarios for multistage stochastic programs[J]. Annals of Operations Research, 2000, 100(1): 25-53.
    [144] Nowak M P, R?isch W. Stochastic Lagrangian relaxation applied to power scheduling in a hydro-thermal system under uncertainty[J]. Annals of Operations Research, 2000, 100(1): 251-272.
    [145] Higle J L, Sen S. Stochastic decomposition: An algorithm for two-stage linear programs with recourse[J]. Mathematics of Operations Research, 1991, 16(16): 650-669.
    [146] Consigli G, Dempster M. Dynamic stochastic programmingfor asset-liability management[J]. Annals of Operations Research, 1998, 81(0): 131-162.
    [147] Shapiro A. Stochastic programming approach to optimization under uncertainty[J]. Mathematical Programming, 2008, 112(1): 183-220.
    [148] H?land K, Wallace S W. Generating scenario trees for multistage decision problems[J]. Management Science, 2001, 47(2): 295-307.
    [149] H?land K, Kaut M, Wallace S W. A heuristic for moment-matching scenario generation[J]. Computational Optimization and Applications, 2003, 24(2): 169-185.
    [150] Fleten S E, Wallace S W, Ziemba W T. Hedging electricity portfolios via stochastic programming[J]. IMA Volumes in Mathematics and its Applications, 2002, 128: 71-94.
    [151] Nogales F J, Contreras J, Conejo A J, et al. Forecasting next-day electricity prices by time series models[J]. IEEE Transactions on Power Systems, 2002, 17(2): 342-348.
    [152] Gross G, Galiana F D. Short-term load forecasting[J]. Proceedings of the IEEE, 1987, 75(12): 1558-1573.
    [153]刘晨辉.电力系统负荷预报理论与方法[M].哈尔滨:哈尔滨工业大学出版社, 1986.
    [154] Growe-Kuska N, Heitsch H, Romisch W. Scenario reduction and scenario tree construction for power management problems[J]. IEEE Bologna Power Tech Proceedings, Bologna, 2003.
    [155] Dupacova J, Growe-Kuska N, Romisch W. Scenario reduction in stochastic programming[J]. Mathematical Programming, 2002, 95(3): 493-512.
    [156] Liu Y, Guan X. Purchase allocation and demand bidding in electric power markets[J]. IEEE Transactions on Power Systems, 2003, 18(1): 106-112.
    [157]周明,聂艳丽,李庚银,等.电力市场下长期购电方案及风险评估[J].中国电机工程学报, 2006, 26(6): 116-122.
    [158]宋依群,倪以信,侯志俭,等.基于均衡分析的总统调合同电量比例研究[J].中国电机工程学报, 2004, 24(7): 64-67.
    [159]郭金,江伟,谭忠富.风险条件下供电公司最优购电问题研究[J].电网技术, 2004, 28(11): 18-22.
    [160]周明,李庚银,严正,等.考虑备用需求和风险的供电企业最优购电计划[J].电网技术, 2005, 29(3): 33-38.
    [161]张显,王锡凡,王建学,等.发电商长期电能分配策略研究[J].中国电机工程学报, 2005, 25(1): 6-12.
    [162] Liu M, Wu F F. Managing price risk in a multimarket environment[J]. IEEE Transactions on Power Systems, 2006, 21(4): 1512-1519.
    [163] Feng D, Gan D, Zhong J, et al. Supplier asset allocation in a pool-based electricity market[J]. IEEE Transactions on Power Systems, 2007, 22(3): 1129-1138.
    [164]刘敏,吴复立.电力市场环境下发电商电能分配策略研究[J].中国电机工程学报, 2008,28(25): 111-117.
    [165] Sherkat V R, Campo R, Moslehi K, et al. Stochastic long-term hydrothermal optimization for a multireservoir system[J]. IEEE Transactions on Power Apparatus and Systems, 1985, 104(8): 2040-2050.
    [166] Pereira M V F, Pinto L M V G. Stochastic optimization of a multireservoir hydroelectric system: A decomposition approach[J]. Water Resources Research, 1985, 21(6): 779-792.
    [167] Escudero L F, de La Fuente J L, Garcia C, et al. Hydropower generation management under uncertainty via scenario analysis and parallel computation[J]. IEEE Transactions on Power Systems, 1996, 11(2): 683-689.
    [168] Rotting T A, Gjelsvik A. Stochastic dual dynamic programming for seasonal scheduling in the Norwegian power system[J]. IEEE Transactions on Power Systems, 1992, 7(1): 273-279.
    [169] Conejo A J, Garcia-Bertrand R, Carrion M, et al. Optimal involvement in futures markets of a power producer[J]. IEEE Transactions on Power Systems, 2008, 23(2): 703-711.
    [170] Carrion M, Conejo A J, Arroyo J M. Forward contracting and selling price determination for a retailer[J]. IEEE Transactions on Power Systems, 2007, 22(4): 2105-2114.
    [171] Carrion M, Philpott A B, Conejo A J, et al. A stochastic programming approach to electric energy procurement for large consumers[J]. IEEE Transactions on Power Systems, 2007, 22(2): 744-754.
    [172]张显,王锡凡,陈皓勇,等.电力市场中的双边合同[J].电力自动化设备, 2003, 23(11): 77-86.
    [173] Kaye R J, Outhred H R, Bannister C H. Forward contracts for the operation of an electricity industry under spot pricing[J]. IEEE Transactions on Power Systems, 1990, 5(1): 46-52.
    [174] Gedra T W. Optional forward contracts for electric power markets[J]. IEEE Transactions on Power Systems, 1994, 9(4): 1766-1773.
    [175] El Khatib S, Galiana F D. Negotiating bilateral contracts in electricity markets[J]. IEEE Transactions on Power Systems, 2007, 22(2): 553.
    [176]刘敏,吴复立.电力市场环境下发电公司风险管理框架[J].电力系统自动化, 2004, 28(13): 1-6.
    [177] Dahlgren R, Liu C C, Lawarree J. Risk assessment in energy trading[J]. IEEE Transactions on Power Systems, 2003, 18(2): 503-511.
    [178] Dahlgren R W, Liu C C, Lawarree J. Volatility in the California power market: source, methodology and recommendations[J]. IEE Proceedings-Generation, Transmission and Distribution, 2001, 148(2): 189-193.
    [179] Jorion P. Value at risk[M]. New York: McGraw-Hill, 2001.
    [180] Conejo A J, Nogales F J, Arroyo J M, et al. Risk-constrained self-scheduling of a thermal power producer[J]. IEEE Transactions on Power Systems, 2004, 19(3): 1569-1574.
    [181]林辉,何建敏. VaR在投资组合应用中存在的缺陷与CVaR模型[J].财贸经济, 2003(12): 46-49.
    [182] Artzner P, Delbaen F, Eber J, et al. Coherent measures of risk[J]. Mathematical Finance, 1999, 9(3): 203-228.
    [183] Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk[J]. Journal of Risk, 2000, 2(3): 21-42.
    [184]王壬,尚金成,冯旸,等.基于CVaR风险计量指标的发电商投标组合策略及模型[J].电力系统自动化, 2005, 28(14): 5-9.
    [185]王壬.电力市场风险管理理论及应用[D].武汉:华中科技大学, 2006.
    [186] Hull J C. Options, Futures, and Other Derivatives[M]. New Jersey: Princeton Hall, 2003.
    [187] Tanlapco E, Lawarree J, Liu C C. Hedging with futures contracts in a deregulated electricity industry[J]. IEEE Transactions on Power Systems, 2002, 17(3): 577-582.
    [188] Hogan W W. Contract networks for electric power transmission[J]. Journal of Regulatory Economics, 1992, 4(3): 211-242.
    [189]黎灿兵,康重庆,夏清,等.发电权交易及其机理分析[J].电力系统自动化, 2003, 27(6): 13-18.
    [190]高志华,任震,黄雯莹.电力市场中调峰权及其交易机制[J].中国电机工程学报, 2005, 25(5): 88-92.
    [191]马歆,蒋传文,侯志俭,等.基于摆动期权合约的发电商风险回避模型研究[J].继电器, 2004, 32(19): 1-4.
    [192]张少华,李渝曾,王长军,等.结合期权理论的双边可选择电力远期合同模型[J].电力系统自动化, 2001, 25(21): 28-32.
    [193] Denton M, Palmer A, Masiello R, et al. Managing market risk in energy[J]. IEEE transactions on power systems, 2003, 18(2): 494-502.
    [194] Collins R A. The economics of electricity hedging and a proposed modification for the futures contract for electricity[J]. IEEE Transactions on Power Systems, 2002, 17(1): 100-107.
    [195] Vehvil?inen I, Keppo J. Managing electricity market price risk[J]. European Journal of Operational Research, 2003, 145(1): 136-147.
    [196] Yu Z. Spatial Energy Market Risk Analysis Part I: An Introduction to Downside Risk Measures[C]. IEEE Power Engineering Society winter meeting, 2002, 28-32.
    [197] Yu Z. Spatial Energy Market Risk Analysis Part II: The Spatial Risk Model[C]. IEEE Power Engineering Society winter meeting, 2002, 33-37.
    [198]刘亚安,管晓宏.电力市场中购电商的市场分配问题研究[J].中国电机工程学报, 2001, 21(10): 20-30.
    [199]刘亚安,管晓宏.考虑风险因素的两市场购电优化分配问题[J].电力系统自动化, 2002, 26(9): 41-44.
    [200] Goldberg D E. Genetic algorithms in search, optimization and machine learning[M]. Reading, MA:Addison-Wesley, 1989.
    [201]王文川.水电系统中预报与调度的混合智能方法研究及应用[D].大连:大连理工大学, 2008.
    [202] Yamin H Y. Review on methods of generation scheduling in electric power systems[J]. Electric Power Systems Research, 2004, 69(2-3): 227-248.
    [203] Zoumas C E, Bakirtzis A G, Theocharis J B, et al. A genetic algorithm solution approach to the hydrothermal coordination problem[J]. IEEE Transactions on Power Systems, 2004, 19(3): 1356-1364.
    [204] Orero S O, Irving M R. A genetic algorithm modelling framework and solution technique for short term optimal hydrothermal scheduling[J]. IEEE Transactions on Power Systems, 1998, 13(2): 501-518.
    [205] Gil E, Bustos J, Rudnick H. Short-term hydrothermal generation scheduling model using a genetic algorithm[J]. IEEE Transactions on Power Systems, 2003, 18(4): 1256-1264.
    [206] Yao X, Liu Y. Fast evolutionary programming[C]. Fifth Annual Conference on Evolutionary Programming, Cambridge, MA: MIT Press, 1996, 451-460.
    [207] Yao X, Liu Y, Lin G. Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation, 1999, 3: 82-102.
    [208] Sinha N, Chakrabarti R, Chattopadhyay P K. Evolutionary programming techniques for economic load dispatch[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(1): 83-94.
    [209] Sinha N, Chakrabarti R, Chattopadhyay P K. Fast evolutionary programming techniques for short-term hydrothermal scheduling[J]. IEEE Transactions on Power Systems, 2003, 18(1): 214-220.
    [210]云庆夏.进化算法[M].北京:冶金工业出版社, 2000.
    [211] Bjorgan R, Liu C C, Lawarree J. Financial risk management in a competitive electricity market[J]. IEEE Transactions on power systems, 1999, 14(4): 1285-1291.
    [212] Xu J, Luh P B, White F B, et al. Power portfolio optimization in deregulated electricity markets with risk management[J]. IEEE Transactions on Power Systems, 2006, 21(4): 1653-1662.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700