改性粘土矿物去除硝酸根离子的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水是地质环境的重要组成部分,是我国北方地区主要的饮用水源。随着我国城市化、工业化进程加快,地下水环境质量恶化,环境污染问题日益突出,处理地下水中硝酸根离子污染问题已经迫在眉睫。目前,我国处理地下水污染尤其是硝酸根离子污染主要的方式包括PRB技术、抽取-处理方法等,这些处理方法在一定程度上缓解了硝酸根离子的污染,在某些特定的区域具有较好的应用。但是,随着我国地下水污染加重,这些方法已经无法承担如此繁重的处理任务,经济方面亦不可行。粘土矿物在地质环境中是广泛存在的,几乎所有的粘土矿物含有结构铁,并且其结构铁可以通过自然环境微生物或者化学还原剂还原为结构二价亚铁,此结构二价亚铁又可氧化为结构三价铁。在结构铁的氧化还原过程中,粘土矿物的结构不会改变,结构铁的空间位置也不会改变,因此可以作为可再生资源加以利用。本文通过对这种潜在的可再生资源进行系列合适的处理措施,探讨了其在处理地下水硝酸根离子方面所具有的潜能。
     土壤中的无机矿化氮可以通过淋洗进入地下水,造成地下水硝酸根离子污染。本文利用加速扩散法测定土壤中的无机矿化氮,对比了KCl提取法与CaCl2淋洗法在测定矿化氮时的效率,发现KCl提取法要明显优于CaCl2淋洗法,为更加准确地测定土壤无机矿化氮提供了依据,为后续研究提供了技术基础。本文详细介绍了粘土矿物结构三价铁的还原方法,结构三价铁在还原后其结构二价亚铁十分容易发生再氧化,如何保持还原态结构二价亚铁的含量,成为研究难题,本文采用CALE洗涤系统可以在无氧环境下洗涤还原态粘土矿物,洗涤过程中,结构二价亚铁不会发生再氧化,同时还讨论了利用带有手套的气密箱可以很好的在较长时间内保存还原态粘土矿物,为试验研究提供了统一的试验初始条件,为长期研究提供了基础。天然氧化态粘土矿物和还原态粘土矿物与水体硝酸根离子几乎没有任何反应,本文研究发现天然粘土矿物与硝酸根离子之间存在的库伦斥力是阻碍结构铁还原硝酸根离子的一大障碍,本文利用聚合阳离子交换粘土矿物层间阳离子所得到的改性粘土矿物可以克服库伦斥力,对地下水中硝酸根离子具有很强的吸附效用,同时还可以降解硝酸根离子至具有较小危害的硝族产物,如氮气。利用改性后的粘土矿物去除硝酸根离子,为我国地下水污染尤其是硝酸根离子污染的处理技术提供了新的研究方向。同时还讨论了在自然环境中,微生物还原粘土矿物结构铁的现象是普遍存在的,对其反应机理进行了探讨,并对反应条件进行了归纳研究,明确了利用还原态粘土矿物还原降解硝酸根离子在实际环境中发生的可能性。最后,对本文进行了归纳总结,以及为以后的研究方向与研究要点进行了展望。
Groundwater is an important part of geo-environment and major source of drinking water in north China. With the rapid urbanization and industrialization in China, the environmental quality of groundwater is exacerbated, and environmental pollution has become an increasingly striking issue. Therefore, treatment of nitrate pollution to groundwater has become extremely imminent. Currently in China, The major remediation methods of groundwater pollution, especially nitrate pollution include Permeable Reactive Barriers, Extraction and Processing method, etc. These methods can relieve the nitrate pollution to some extent, and has been applied effectively in some certain areas. However, as the pollution of groundwater aggravates, these above-mentioned methods turn out to be not enough capable and economic. Clays minerals widely exist in geo-environment, and almost all clay minerals contain structural iron, which can be reduced to ferrous iron by microorganism and chemical methods. During the iron reduction, the structure of clay minerals stays unchanged, so does the spatial position of the structural iron in clay minerals. The structural iron can thus be utilized as a renewable resource. In this paper this potential renewable resource was treated properbly. its potential ability to remediate groundwater nitrate pollution was investigated.
     Soil mineralized nitrogen could get into the groundwater through leaching, causing groundwater nitrate pollution. This paper used accelerated diffusion methods to determine soil mineralized nitrogen, and compared the efficiency of KC1extraction method and CaCl2leaching method. Results showed that KC1extraction method has a better efficiency than CaCl2leaching method in leach soil mineralized nitrogen This result provides a basis to measure the soil mineralized nitrogen accurately, and also provides a foundation for the follow-up studies.In this paper, the method for reduction of the structural iron in clay minerals was fully introduced. The structural Fe(Ⅱ) can re-oxidize easily, how to prevent this re-oxidization and keep the content of the structural Fe(Ⅱ) came to be difficult. This paper used Controlled Atmosphere Liquid Exchange (CALE) system to wash the reduced clay minerals under anoxic environment. During the washing process, no structural Fe(II) was re-oxidized. A glove box, used for long-term storage of reduced clay minerals, was also discussed in this paper. These results provided a unified starting condition for clay minerals study, and offered a foundation for long-term studies. Oxidized and reduced natural clay minerals showed no reaction toward nitrate in water. The Coulomb repulsion between negative charged natural clay minerals and negative charged nitrate ion is an immense obstacle to the nitrate reduction. This research aimed at using polymer cations to intercalate into the interlayer of clay minerals and exchange with cations, so that the polymer-modified clay minerals can overcome the Coulomb repulsion, act strong adsorption to nitrate and degrade nitrate to other less hazardous nitrate group products, N2as an example. The polymer-modified clay minerals may inspire a new research trend in the field of groundwater pollution treatment, especially nitrate pollution treatment. The fact that microorganisms can reduce structural iron in clay minerals are ubiquitous in nature was also discussed. This paper also discussed the mechanism of microbial reduction of structural iron, and summarized the reaction conditions, which make it clear that this microbial reduced clay minerals reduce nitrate in nature can be occurred. At last, some important conclusions were summarized, and also give out fews outlooks about research direction and key points for the future studies.
引文
[1]朱兆良,邢光熹.氮循环:维系地球生命生生不息的一个自然过程.北京:清华大学出版社:暨南大学出版社,2002
    [2]张弛,李生秀,王长春.氮素在地球生物中的分布及循环.西北农业大学学报,1995,23(1):93-97.
    [3]吴启祥.地球上氮素含量及其分布.土壤肥料,1982,1:34.
    [4]曲向荣,刘宝勇,王新,黄丽荣.环境生态学.北京:清华大学出版社,2012
    [5]徐清平.氮循环与固氮.中学生物学,2005,21(3):11-13.
    [6]李建勇,龚继明.植物硝酸根信号感受与传导途径.植物生理学报,2011,47(2):111-118.
    [7]Capri, E., M. Civita, et al. (2009). "Assessment of nitrate contamination risk:The Italian experience." Journal of Geochemical Exploration 102(2):71-86.
    [8]Fan, A. M. and V. E. Steinberg (1996). "Health implications of nitrate and nitrite in drinking water: An update on methemoglobinemia occurrence and reproductive and developmental toxicity." Regulatory Toxicology and Pharmacology 23(1):35-43.
    [9]Kapoor, A. and T. Viraraghavan (1997). "Nitrate removal from drinking water-Review." Journal of Environmental Engineering-Asce 123(4):371-380.
    [10]Moralessuarezvarela, M. M., A. Llopisgonzalez, et al. (1995). "Impact of Nitrates in Drinking-Water on Cancer Mortality in Valencia, Spain." European Journal of Epidemiology 11(1): 15-21.
    [11]Suvanto, E. and M. L. Pohjola (1995). "Nitrates in drinking water and methemoglobin in blood." Kemia-Kemi 22(5):400-401.
    [12]Ward, M. H., T. M. deKok, et al. (2005). "Workgroup report:Drinking-water nitrate and health-recent findings and research needs." Environmental Health Perspectives 113(11):1607-1614.
    [13]Ward, M. H., S. D. Mark, et al. (1995). "Risk of Non-Hodgkins-Lymphoma and Drinking-Water Nitrate." American Journal of Epidemiology 141(11):S32-S32.
    [14]白晓慧,王宝贞,聂梅生.饮用水中硝酸盐污染及其去除技术.污染防治技术,1998,11(4):215-218.
    [15]王玉和.浅谈地下水污染.地下水.200426(4):294-296.
    [16]ShaoTing, D. U., Y. Zhang, et al. (2007). "Accumulation of nitrate in vegetables and its possible implications to human health." Agricultural Sciences in China 6(10):1246-1255.
    [17]应亮.饮用水中的硝酸盐对健康的影响.净水技术2000,18(1):47-49.
    [18]Foley, A. R. (1951). "Cyanosis in infants, or blue babies; disease caused by the ingestion of nitrates." L'union medicale du Canada 80(9):1069-1070.
    [19]Knobeloch, L., B. Salna, et al. (2000). "Blue babies and nitrate-contaminated well water." Environmental Health Perspectives 108(7):675-678.
    [20]O'Mahony, M. T. (2010). "Nitrate:public health concerns-from blue babies to sea lettuce." Irish Journal of Medical Science 179:444-444.
    [21]Watanabe, S. (2008). "Three current problems with nitrates:environment, blue baby syndrome, poisoning of domestic animals." Journal of Veterinary Medicine, Japan 61(11):917-930.
    [22]Kostraba, J. N., E. C. Gay, et al. (1992). "Nitrate Levels in Community Drinking Waters and Risk of Iddm-an Ecological Analysis." Diabetes Care 15(11):1505-1508.
    [23]Milstien, S., N. Sakai, et al. (1994). "Cerebrospinal-Fluid Nitrite/Nitrate Levels In Neurologic Diseases." Journal ofNeurochemistry 63(3):1178-1180.
    [24]Nakamura, Y, A. J. Moss, et al. (1999). "Long-term nitrate use may be deleterious in ischemic heart disease:A study using the databases from two large-scale postinfarction studies." American Heart Journal 138(3):577-585.
    [25]Newcombe, J., P. Glynn, et al. (1982). "The Immunological Identification of Brain Proteins on Cellulose Nitrate in Human Demyelinating Disease." Journal ofNeurochemistry 38(1):267-274.
    [26]Parslow, R. C., G. R. Law, et al. (1996). "Childhood IDDM is linked to nitrate levels in drinking water." Diabetologia 39:54-54.
    [27]Davison, K. L., W. Hansel, et al. (1964). "Nitrate Toxicity in Dairy Heifers .I. Effects on Reproduction Growth Lactation+Vitamin A Nutrition." Journal of Dairy Science 47(10):1065-&.
    [28]徐芳香,陆雍森.我国地下水中硝酸盐污染防治及水源保护区划分.污染防治技术,1999,12(1):20-23.
    [29]Bruningfann, C. S. and J. B. Kaneene (1993). "The Effects of Nitrate, Nitrite, and N-Nitroso Compounds on Animal Health." Veterinary and Human Toxicology 35(3):237-253.
    [30]Jungersten, L., A. Edlund, et al. (1993). "Plasma nitrate as an index of immune system activation in animals and man." Journal of clinical & laboratory immunology 40(1):1-4.
    [31]Ridder, W. E. and F. W. Oehme (1974). "Nitrates as an Environmental, Animal, and Human Hazard." Clinical Toxicology 7(2):145-159.
    [32]'Wilson, J. K. (1943). "Nitrate in plants:Its relation to fertilizer injury, changes during silage making, and indirect toxicity to animals." Jour Amer Soc Agron 35((4)):279-290.
    [33]Wright, M. J. and K. L. Davison (1964). "Nitrate accumulation in crops and nitrate poisoning in animals." Advance Agron 16:197-247.
    [34]Marrett, L. E. and M. L. Sunde (1968). "Use of Turkey Poults and Chickens as Test Animals for Nitrate and Nitrite Toxicity." Poultry Science 47(2):511-&.
    [35]童桂华.去除地下水硝酸盐 PRB 介质试验研究—离子交换树脂的选择与电再生.2008,中国海洋大学硕士研究生学位论文.
    [36]Brownell, C. L. (1980). "Water-Quality Requirements for lst-Feeding in Marine Fish Larvae.1. Ammonia, Nitrite, and Nitrate." Journal of Experimental Marine Biology and Ecology 44(2-3): 269-283.
    [37]Pierce, R. H., J. M. Weeks, et al. (1993). "Nitrate toxicity to five species of marine fish." Journal of the World Aquaculture Society 24(1):105-107.
    [38]Shimura, R., Y X. Ma, et al. (2004). "Nitrate toxicity on visceral organs of Medaka fish, Oryzias latipes:aiming to raise fish from egg to egg in space." Uchu Seibutsu Kagaku 18(1):7-12.
    [39]Tilak, K. S., S. J. Lakshmi, et al. (2002). "The toxicity of ammonia, nitrite and nitrate to the fish, Catla catla (Hamilton)." Journal of Environmental Biology 23(2):147-149.
    [40]Westin, D. T. (1974). "Nitrate and Nitrite Toxicity to Salmonoid Fishes." Progressive Fish-Culturist 36(2):86-89.
    [41]余瑞兰聂湘平,魏泰莉,郭叶华,赖子尼,冯志荣.分子氨和亚硝酸盐对鱼类的危害及其对策.中国水产科学,1999,6(3):73-77.
    [42]臧家业.东海北部海水中硝酸盐(NO3-N)的分布及其成因.黄渤海海洋,1999,17(3):50-56.
    [43]Kladivko, E. J., J. R. Frankenberger, et al. (2004). "Nitrate leaching to subsurface drains as affected by drain spacing and changes in crop production system." Journal of Environmental Quality 33(5): 1803-1813.
    [44]Saradambal, K. V. and M. S. Naik (1977). "Effect of Blight Disease on Nitrate Reductase in Paddy Plants." Indian Journal of Biochemistry & Biophysics 14(1):46-47.
    [45]任祖淦,邱孝煊蔡元呈,李贞合王琳.化学氮肥对蔬菜硝酸盐污染影响的研究.中国环境科学,1997,17(4):326-329.
    [46]WHO (1996). "Guidelines for drinking-water quality. Health criteria and other supporting information 2nd edition." edited by W. H. Organization, Geneva.
    [47]WHO. Guidelines for drinking water quality. Recommendations 1984, vol.2, Geneva:290-292.
    [48]EPA (1986) Quality criteria for water. edited by U. E. P. Agency, Washington,DC.
    [49]EPA(1989).National Primary and Secondary Drinking water Regulations; Proposed Rule, Fed.Reg.,54:22077.
    [50]European Community, Council directive of July 1980 relating to the quality of water intended for human consumption, official J. European Community, Brussels, Belgium,1980,23(L229):11-29.
    [51]胡国臣,张清敏,王忠等.地下水硝酸盐氮污染防治研究.农业环境保护,1999,18(5):228-230.
    [52]朱济成.关于地下水硝酸盐污染原因的探讨.北京地质,1995,2:20-26.
    [53]冯锦霞,朱建军,陈立.我国地下水硝酸盐污染防治及评价预测方法.地下水,2006,28(4):58-62.
    [54]陈建耀,王亚,张洪波,赵新峰.地下水硝酸盐污染研究综述.地理科学研究,2006,25(1):34-44.
    [55]Fennessy, M. S. and J. K. Cronk (1997). "The effectiveness and restoration potential of riparian ecotones for the management of nonpoint source pollution, particularly nitrate." Critical Reviews in Environmental Science and Technology 27(4):285-317.
    [56]Kaneyasu, N., H. Yoshikado, et al. (1999). "Chemical forms and sources of extremely high nitrate and chloride in winter aerosol pollution in the Kanto Plain of Japan." Atmospheric Environment 33(11): 1745-1756.
    [57]Liu, G. D., W. L. Wu, et al. (2005). "Regional differentiation of non-point source pollution of agriculture-derived nitrate nitrogen in groundwater in northern China" Agriculture Ecosystems & Environment 107(2-3):211-220.
    [58]Park, R. J., D. J. Jacob, et al. (2004). "Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States:Implications for policy." Journal of Geophysical Research-Atmospheres 109(D15).
    [59]Strebel, O., W. H. M. Duynisveld, et al. (1989). "Nitrate Pollution of Groundwater in Western-Europe." Agriculture Ecosystems & Environment 26(3-4):189-214.
    [60]Zhang, W. L., Z. X. Tian, et al. (1996). "Nitrate pollution of groundwater in northern China." Agriculture Ecosystems & Environment 59(3):223-231.
    [61]BijaySingh, YadvinderSingh, et al. (1995). "Fertilizer-N use efficiency and nitrate pollution of groundwater in developing countries." Journal of Contaminant Hydrology 20(3-4):167-184.
    [62]Burford, J. F. and B. Pain (1974). Agricultural Fertilizers Slurry Disposal and Nitrate Pollution of Ground Waters.
    [63]Embleton, T. W. and W. W. Jones (1978). Nitrogen Fertilizer Management Programs Nitrate Pollution Potential and Orange Productivity.
    [64]Koo, R. C. J. (1978). Critique of Nitrogen Fertilizer Management Programs Nitrate Pollution Potential and Orange Productivity.
    [65]张维理,田哲旭,张宁,李晓齐.我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报,1995,1(2):80-87.
    [66]孙彭力,王慧君.氮素化肥的环境污染.环境污染与防治,1995,17(1):38-41.
    [67]谢红梅,朱波.农田非电源污染研究进展.生态环境2003,12(3):349-352.
    [68]曹仁林,贾晓葵.我国集约化农业中氮污染问题及防治对策.土壤肥料,2001,3:3-6.
    [69]史静,张乃明,褚素贞等.滇池流域地下水硝酸盐污染特征及影响因素研究.农业环境科学学报,200524(S):103-107.
    [70]巩建华,柯尊伟,李季.河北省藁城市蔬菜植区化肥施用与地下水硝酸盐污染研究.农村生态环境2004,20(1):56-59.
    [71]Brito, J. M. C., D. Ferreira, et al. (1999). Soil pollution by nitrates using sewage sludge and mineral fertilizers.
    [72]Corredor, J. E. and J. M. Morell (1994). "Nitrate Depuration of Secondary Sewage Effluents in Mangrove Sediments." Estuaries 17(1B):295-300.
    [73]陈景春,刘诗云,彭绪亚.重庆长寿湖农村生活污水污染及综合防治对策研究,农业环境与发展,2008,6:94-98.
    [74]冯绍元,黄冠华.讨论水环境中氮污染行为.灌溉排水,1997,16(2):34-36.
    [75]Emmanuel, E., M. G. Pierre, et al. (2009). "Groundwater contamination by microbiological and chemical substances released from hospital wastewater:Health risk assessment for drinking water consumers." Environment International 35(4):718-726.
    [76]王斌,韩安岗,周苏宁.工业废水污染农村浅层地下水案件处理中的问题分析.职业与健康,2005,21(10):1560.
    [77]韩建英,李笑梅.含铬工业废水对地下水及饮用水致突变性的影响,环境与健康杂志,204,21(2):99-100.
    [78]Vijendra, S., S. K. Sharma, et al. (2006). "Evaluation of physico-chemical parameters and suitability of industrial wastewater and ground water for irrigation." Environment and Ecology 24S(Special 3A): 915-919.
    [79]Morsy, W. and Z. El-Fakharany (2012). "Predicting the impact of surface wastewater on groundwater quality in Quesna industrial area." The Journal of American Science 8(4):772-781.
    [80]Torssander, P., C. M. Morth, et al. (2006). "Chemistry and sulfur isotope investigation of industrial wastewater contamination into groundwater aquifers, Pitea County, N. Sweden." Journal of Geochemical Exploration 88(1-3):64-67.
    [81]Steindorf, K., B. Schlehofer, et al. (1994). "Nitrate in Drinking-Water-A Case-Control Study on Primary Brain-Tumors with an Embedded Drinking-Water Survey in Germany." International Journal of Epidemiology 23(3):451-457.
    [82]姜桂华,王文科,杨晓婷,李永涛.关中盆地潜水硝酸盐污染分析及防治对策.水资源保护,2002,2:6-8.
    [83]Haruvy, N., A. Hadas, et al. (2000). "Cost assessment of averting groundwater pollution." Water Science and Technology 42(1-2):135-140.
    [84]Bouwer, H. (2000). "Groundwater problems caused by irrigation with sewage effluent" Journal of Environmental Health 63(3):17-20.
    [85]Fleige, H., M. Renger, et al. (1980). "Nitrogen Leaching and Groundwater Pollution by Sprinkling Irrigation of Sewage-Sludge on Arable Land." Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 143(5):569-580.
    [86]Gwenzi, W. and R. Munondo (2008). "Long-term impacts of pasture irrigation with treated sewage effluent on shallow groundwater quality." Water Science and Technology 58(12):2443-2452.
    [87]Lucas. J. L. and G. M. Reeves (1981). "An Investigation into High Nitrate tIn Groundwater and Land Irrigation of Sewage." Water Science and Technology 13(6):81-88.
    [88]Ronen, D. and M. Magaritz (1991). Groundwater quality as affected by managerial decisions in agricultural areas:effect of land development and irrigation with sewage effluents.
    [89]Rapti-Caputo, D., F. Sdao, et al. (2006). "Pollution risk assessment based on hydrogeological data and management of solid waste landfills." Engineering Geology 85(1-2):122-131.
    [90]Schiopu, A.-M., I. Apostol, et al. (2007). "Solid waste in Romania:Management, treatment and pollution prevention practices." Environmental Engineering and Management Journal 6(5):451-465.
    [91]Fadlelmawla, A., M. Al-Senafy, et al. (2006). "Groundwater quality alterations in the vicinity of liquid and solid waste landfills in Kuwait." Kuwait Journal of Science & Engineering 33(1):83-99.
    [92]Mikac, N., B. Cosovic, et al. (1998). "Assessment of groundwater contamination in the vicinity of a municipal solid waste landfill (Zagreb, Croatia)." Water Science and Technology 37(8):37-44.
    [93]Mor, S., K. Ravindra, et al. (2006). "Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site." Environmental Monitoring and Assessment 118(1-3): 435456.
    [94]Rajkumar, N., T. Subramani, et al. (2010). "Groundwater contamination due to municipal solid waste disposal-a GIS based study in Erode city." International Journal of Environmental Sciences 1(1): 39-55.
    [95]Udom, G. J. and E. O. Esu (2005). "A preliminary assessment of the impact of solid wastes on soils and groundwater system in parts of Port Harcourt City and its environs, rivers state, Nigeria" Global Journal of Environmental Sciences 4(1):23-30.
    [96]郭永海.王志明,刘淑芬,李平.石家庄市地下水污染特征及其与超量开采的关系,铀矿地 质,2005,21(2):123-127.
    [97]Serrat, P. and J. L. Lenoble (2007). "Groundwater overexploitation in Roussillon floodplain:A major problem for the future." Houille Blanche-Revue Internationale De L Eau(3):71-78.
    [98]高阳俊,张乃明.滇池流域地下水硝酸盐污染现状分析.云南地理环境研究,2003,15(4):39-42.
    [99]冷家峰,崔丽英,肖美丽.济南市地下水硝酸盐污染研究.农村生态环境,1998,14(1):55-57.
    [100]赵同科,张成军,杜连凤,刘宝存,安志装.环渤海七省(市)地下水硝酸盐含量调查.农业环境科学学报,2007,26(2):779-783.
    [101]中国地下水信息网.我国主要城市和地区地下水水情通报[EB/OI]. http://219.142.70.139/dxs/HyPre/HydPre_2009.htm.2010,5.
    [102]陈秀成,曹瑞钰.地下水污染治理技术的进展.中国给水排水.2001,17(40):23-26.
    [103]Meinardi, C. R., A. H. W. Beusen, et al. (1995). "Vulnerability to Diffuse Pollution and Average Nitrate Contamination of European Soils and Groundwater." Water Science and Technology 31(8): 159-165.
    [104]Spalding, R. F. and M. E. Exner (1993). "Occurrence of Nitrate in Groundwater-A Review." Journal of Environmental Quality 22(3):392-402.
    [105]Burden, R. J. (1982). "Nitrate Contamination of New-Zealand Aquifers-A Review." New Zealand Journal of Science 25(3):205-220.
    [106]Costa, J. L., H. Massone, et al. (2002). "Nitrate contamination of a rural aquifer and accumulation in the unsaturated zone." Agricultural Water Management 57(1):33-47.
    [107]Bemhard, C., R. Carbiener, et al. (1992). "Nitrate Pollution of Groundwater in the Alsatian Plain (France)-A Multidisciplinary Study of an Agricultural Area - The Central Ried of the Ill River." Environmental Geology and Water Sciences 20(2):125-137.
    [108]张文渊.对地下水污染的根源及其治理浅析.地下水,1999,21(3):109-111.
    [109]李君,常莉.我国城市地下水污染状况与治理对策.开封大学学报,2006,20(4):89-91.
    [110]王任超,凌璐璐.浅议地下水污染的原因及治理.黑龙江科技信息,2009,28:218.
    [111]崔祥琨,孙坤.地下水污染与预防.科技信息,2009,25:341,331.
    [112]Kronzucker, H. J., M. Y. Siddiqi, et al. (1997). "Conifer root discrimination against soil nitrate and the ecology of forest succession." Nature 385(6611):59-61.
    [113]Stark, J. M. and S. C. Hart (1997). "High rates of nitrification and nitrate turnover in undisturbed coniferous forests." Nature 385(6611):61-64.
    [114]Becquer, T., D. Merlet, et al. (1990). "Nitrification and Nitrate Uptake-Leaching Balance in a Declined Forest Ecosystem in Eastern France." Plant and Soil 125(1):95-107.
    [115]Bernhardt, E. S., R. O. Hall, et al. (2002). "Whole-system estimates of nitrification and nitrate uptake in streams of the Hubbard Brook Experimental Forest." Ecosystems 5(5):419-430.
    [116]Spoelstra, J., S. L. Schiff, et al. (2007). "The isotopic composition of nitrate produced from nitrification in a hardwood forest floor." Geochimica Et Cosmochimica Acta 71(15):3757-3771.
    [117]Jaynes, D. B. and I. S. Colvin (2006). "Corn yield and nitrate loss in subsurface drainage from midseason nitrogen fertilizer application." Agronomy Journal 98(6):1479-1487.
    [118]Jaynes, D. B., T. S. Colvin, et al. (2001). "Nitrate loss in subsurface drainage as affected by nitrogen fertilizer rate." Journal of Environmental Quality 30(4):1305-1314.
    [119]Wang, Q., F. Li, et al. (2010). "Effects of irrigation and nitrogen application rates on nitrate nitrogen distribution and fertilizer nitrogen loss, wheat yield and nitrogen uptake on a recently reclaimed sandy farmland." Plant and Soil 337(1-2):325-339.
    [120]Attenberger, E., K. Moritz, et al. (2002). "Groundwater resources in Bavarian forest areas-Quality monitoring and protection approach." Houille Blanche-Revue Internationale De L Eau(3):85-89.
    [121]Bommes, C. (2001). Groundwater protection in catchment areas with intensive agriculture in Northern Germany.
    [122]Mueller-Thomsen, U., K. Mueller, et al. (1998). "Experimental soil studies to estimate the nitrate load of the groundwater in the water protection areas of the Island Fohr." Zeitschrift fuer Kulturtechnik und Landentwicklung 39(4):169-174.
    [123]Vejre, H., J. P. Vesterager, et al. (2011). "Stakeholder and expert-guided scenarios for agriculture and landscape development in a groundwater protection area" Journal of Environmental Planning and Management 54(9):1169-1187.
    [124]Shirazi, S. M., H. M. Imran, et al. (2012). "GIS-based DRASTIC method for groundwater vulnerability assessment:a review." Journal of Risk Research 15(8):991-1011.
    [125]Uhan, J., G. Vizintin, et al. (2011). "Groundwater nitrate vulnerability assessment in alluvial aquifer using process-based models and weights-of-evidence method:Lower Savinja Valley case study (Slovenia)." Environmental Earth Sciences 64(1):97-105.
    [126]Franco, J. and C. W. Cady (1997). "Preventing nitrate groundwater contamination in California:A nonregulatory approach." Journal of Production Agriculture 10(1):52-57.
    [127]Gamier. M., A. Lo Porto, et al. (1998). "Integrated use of GLEAMS and GIS to prevent groundwater pollution caused by agricultural disposal of animal waste." Environmental Management 22(5):747-756.
    [128]Tanow, A., M. Zonewa, et al. (1988). "Economic assessment of agro-technical measures to prevent nitrate pollution of groundwater." Internationale Zeitschrift der Landwirtschaft 32(3):216-217.
    [129]王黎,郑龙熙.地下水硝酸类氮污染的修复技术.生态学杂志,1999,18(4):52-56.
    [130]康彩霞,谢涛,朱琴.浅谈我国地下水氮污染及修复技术.科技传播,2010,16:77-78.
    [131]张文静,董维红,苏小四,柳富田.地下水污染修复技术综合评价,2006,22(5):1-4.
    [132]韩宁,魏连启,刘久荣,叶超,陈运法.地下水中常见无机污染物的原位治理技术,城市地质,2009,4(2):27-35.
    [133]Dorsheimer, W. T., C. B. Drewry, et al. (1997). "Removing nitrate from groundwater." Water-Engineering & Management 144(12):20-24.
    [134]Prasad, P. K. R., M. N. Priya, et al. (2005). "Nitrate removal from groundwater using electrolytic reduction method." Indian Journal of Chemical Technology 12(2):164-169.
    [135]Rautenbach, R. and W. Kopp (1985). "Nitrate Removal in Groundwater using Membrane Methods in Simultaneous Residue-Poor Treatment of Resulting Concentrates." Chemische Technik 37(9):397-397.
    [136]Sata, T., T. Yamaguchi, et al. (1995). "Anion-Exchange Membranes for Nitrate Ion Removal from Groundwater by Electrodialysis." Journal of the Chemical Society-Chemical Communications(11): 1153-1154.
    [137]Bi, J., C. Peng, et al. (2011). "Removal of nitrate from groundwater using the technology of electrodialysis and electrodeionization." Desalination and Water Treatment 34(1-3):394-401.
    [138]Bohdziewicz, J., M. Bodzek, et al. (1999). "The application of reverse osmosis and nanofiltration to the removal of nitrates from groundwater." Desalination 121(2):139-147.
    [139]Rautenbach, R., W. Kopp, et al. (1986). "Comparison of Reverse-Osmosis and Electrodialysis for Removalof Nitrate from Groundwater." Chemie Ingenieur Technik 58(12):938-945.
    [140]Baes, A. U., T. Okuda, et al. (1997). "Adsorption and ion exchange of some groundwater anion contaminants in an amine modified coconut coir." Water Science and Technology 35(7):89-95.
    [141]Liang, S., M. A. Mann, et al. (1999). "Nitrate removal from contaminated groundwater:An innovative approach to design of an ion exchange plant used data from bench-scale tests and computer models." American Water Works Association Journal 91 (2):90-91.
    [142]刘玉林,何杰,谢同凤.阴离子交换树脂法去除饮用水中硝酸盐的改进研究.净水技术,2002,21:30-32.
    [143]Wang, X., T. Li, et al. (2011). "Reducing nitrate in groundwater by stabilized iron nanoparticles and denitrifying bacteria" Journal of Agro-Environment Science 30(4):739-745.
    [144]Lee, G., S. Rho, et al. (2004). "Design considerations for groundwater remediation using reduced metals." Korean Journal of Chemical Engineering 21(3):621-628.
    [145]Lin, K.-S., N.-B. Chang, et al. (2008). "Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater." Science and Technology of Advanced Materials 9(2).
    [146]Mueller, N. C., J. Braun, et al. (2012). "Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe." Environmental Science and Pollution Research 19(2):550-558.
    [147]Choe, S., Y. Y. Chang, et al. (2000). "Kinetics of reductive denitrification by nanoscale zero-valent iron." Chemosphere 41(8):1307-1311.
    [148]Yang, G. C. C. and H. L. Lee (2005). "Chemical reduction of nitrate by nanosized iron:Kinetics and pathways." Water Research 39(5):884-894.
    [149]Chen, Y. X., Y. Zhang, et al. (2004). "Hydrogen-based tubular catalytic membrane for removing nitrate from groundwater." Environmental Technology 25(2):227-234.
    [150]Luk, G. K. and W. C. Au-Yeung (2002). "Experimental investigation on the chemical reduction of nitrate from groundwater." Advances in Environmental Research 6(4):441-453.
    [151]Ramavandi. B., S. B. Mortazavi. et al. (2011). "Experimental Investigation of the Chemical Reduction of Nitrate in Water by Mg-O and Cu/Mg Bimetallic Particles in the Absence of Any Ph-Control Mechanism." Fresenius Environmental Bulletin 20(9A):2475-2484.
    [152]吴耀国,地下水环境中反硝化作用.环境污染治理技术与设备2002,3(3):27-31.
    [153]Abdelouas, A., L. J. Deng, et al. (1999). "In situ biological denitrification of groundwater." Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule a-Sciences De La Terre Et Des Planetes 328(3):161-166.
    [154]Mercado, A., M. Libhaber, et al. (1988). "Insitu Biological Groundwater Denitrification Concepts And Preliminary Field-Tests." Water Science and Technology 20(3):197-209.
    [155]Jokela, J. P. Y, R. H. Kettunen, et al. (2002). "Biological nitrogen removal from municipal landfill leachate:low-cost nitrification in biofilters and laboratory scale in-situ denitrification." Water Research 36(16):4079-4087.
    [156]Lemmer, H., A. Zaglauer, et al. (1998). In-situ detection of dominant denitrification populations for biological optimal operation of methanol-fed denitrification sand filters. [Munich Contributions to Wastewater Fishery and River Biology; Newest status in the in-situ characterization of microbial biocenoses in wastewater, surface waters, ground-, and dinking water]. W. Bayerisches Landesamt Fuer. 52:43-60.
    [157]Zibuschka, V. F. (1990). "Biological in Situ Denitrification Noesiwag Pilot Plant at Bisamberg Austria Microbiological Studies on Untreated and Treated Water." Oesterreichische Wasserwirtschaft 43(34):65-68.
    [158]张胜,张云,张凤娥,荆继红,侯宏冰.地下水NO3-污染的原位微生物修复技术试验研究.农业环境学学报,2004,23(6):1223-1227.
    [159]Schipper, L. A., G. F. Barkle, et al. (2004). "Hydraulic constraints on the performance of a groundwater denitrification wall for nitrate removal from shallow groundwater." Journal of Contaminant Hydrology 69(3-4):263-279.
    [160]Boussaid, F., G. Martin, et al. (1988). "Denitrification in situ of Groundwaters with Solid Carbon Matter." Environmental Technology Letters 9(8):803-816.
    [161]Aslan, S. and H. Cakici (2007). "Biological denitrification of drinking water in a slow sand filter." Journal of Hazardous Materials 148(1-2):253-258.
    [162]金赞芳,陈英旭,小仓纪雄.以棉花为碳源去除地下水硝酸盐的研究.农业环境科学学报,2004,23(3):512-515.
    [163]Rocca, C. d., V. Belgiorno, et al. (2007). "Heterotrophic/autotrophic denitrification (HAD) of drinking water:prospective use for permeable reactive barrier." Desalination 210(1--3):194-204.
    [164]Burgin, A. J., P. M. Groffman, et al. (2010). "Factors Regulating Denitrification in a Riparian Wetland." Soil Science Society of America Journal 74(5):1826-1833.
    [165]Fenton, O., M. G. Healy, et al. (2011). "Exploring the relationship between groundwater geochemical factors and denitrification potentials on a dairy farm in southeast Ireland." Ecological Engineering 37(9):1304-1313.
    [166]Isabel Arce, M., R. Gomez, et al. (2013). "Denitrification rates and controlling factors in two agriculturally influenced temporary Mediterranean saline streams." Hydrobiologia 700(1):169-185.
    [167]Jha, P. K. and M. Masao (2011). "Factors affecting denitrification rate in Barato lake, Hokkaido, Japan." Asian Journal of Water, Environment and Pollution 8(3):1-10.
    [168]Amha, Y. and H. Bohne (2011). "Denitrification from the horticultural peats:effects of pH, nitrogen, carbon, and moisture contents." Biology and Fertility of Soils 47(3):293-302.
    [169]Sun, P., Y. Zhuge, et al. (2012). "Soil pH was the main controlling factor of the denitrification rates and N-2/N2O emission ratios in forest and grassland soils along the Northeast China Transect (NECT)." Soil Science and Plant Nutrition 58(4):517-525.
    [170]Ge, S., Y. Peng, et al. (2012). "Nitrite accumulation under constant temperature in anoxic denitrification process:The effects of carbon sources and COD/NO3-N." Bioresource Technology 114: 137-143.
    [171]Wang, X. M. and J. L. Wang (2012). "Denitrification of nitrate-contaminated groundwater using biodegradable snack ware as carbon source under low-temperature condition." International Journal of Environmental Science and Technology 9(1):113-118.
    [172]Wertz, S., C. Goyer, et al. (2013). "Effects of temperatures near the freezing point on N2O emissions, denitrification and on the abundance and structure of nitrifying and denitrifying soil communities." Fems Microbiology Ecology 83(1):242-254.
    [173]Mauret, M., F. Ferrand, et al. (2001). "Process using DO and ORP signals for biological nitrification and denitrification:validation of a food-processing industry wastewater treatment plant on boosting with pure oxygen." Water Science and Technology 44(2-3):163-170.
    [174]Meng, Q., F. Yang, et al. (2008). "Effects of COD/N ratio and DO concentration on simultaneous nitrification and denitrification in an airlift internal circulation membrane bioreactor." Journal of Environmental Sciences-China 20(8):933-939.
    [175]Newcomer, T. A., S. S. Kaushal, et al. (2012). "Influence of natural and novel organic carbon sources on denitrification in forest, degraded urban, and restored streams." Ecological Monographs 82(4):449-466.
    [176]吴平霄.黏土矿物材料与环境修复.北京:化学工业出版社,2004.
    [177]张乃娴.粘土矿物研究方法.北京:科学出版社,1990.
    [178]Grim R.E著,许冀泉译.粘土矿物学.北京:地质出版社,1960.
    [179]Brigatti, M. F., E. Galan, et al. (2006). Structures and Mineralogy of Clay Minerals. Handbook of Clay Science. F. Bergaya, B. K. G. Theng and G. Lagaly.1:19-86.
    [180]Kai Su, Adi Radian, Yael Mishael, Lizhong Yang, Joseph W. Stucki,2012. Nitrate Reduction by Redox-modified, Polycation-smectite Composites, the 49th Annual Meeting of The Clay Minerals Society, July7-11, Golden, CO, USA.
    [181]Bergaya, F. and G. Lagaly (2006). General Introduction:Clays, Clay Minerals, and Clay Science. Handbook of Clay Science. F. Bergaya, B. K. G. Theng and G. Lagaly.1:1-18.
    [182]Schoonheydt, R. A. and C. T. Johnston (2006). Surface and Interface Chemistry of Clay Minerals. Handbook of Clay Science. F. Bergaya, B. K. G. Theng and G. Lagaly.1:87-113.
    [183]Matsue, N., T. Henmi, et al. (1991). "Charge distribution in clay mineral structure-molecular orbital calculation." Nendo Kagaku= Journal of the Clay Science Society of Japan 30(4):240-243.
    [184]McBride, M. B. and P. Baveye (2002). "Diffuse double-layer models, long-range forces, and ordering in clay colloids." Soil Science Society of America Journal 66(4):1207-1217.
    [185]Mojid, M. A. and H. Cho (2006). "Estimating the fully developed diffuse double layer thickness from the bulk electrical conductivity in clay." Applied Clay Science 33(3-4):278-286.
    [186]Xu, C. (1998). Pesticide adsorption and degradation properties as influenced by iron oxidation state in clay minerals. United States-Illinois, University of Illinois at Urbana-Champaign. Ph.D.:143 p.
    [187]Bergaya, F. and M. Vayer (1997). "CEC of clays:Measurement by adsorption of a copper ethylenediamine complex." Applied Clay Science 12(3):275-280.
    [188]Tabikh, A. A., I. Barshad, et al. (1960). "Cation-exchange hysteresis in clay minerals." Soil Sci 90((4)):219-226.
    [189]Topp, G. C. (1971). "Soil Water Hysteresis in Silt Loam and Clay Loam Soils." Water Resources Research 7(4):914-&.
    [190]Vaccari, A. (1998). "Preparation and catalytic properties of cationic and anionic clays." Catalysis Today 41(1-3):53-71.
    [191]Keller, W. D. (1970). "Environmental Aspects of Clay Minerals." Journal of Sedimentary Petrology 40(3):788-&.
    [192]Prost, R. and B. Yaron (2001). "Use of modified clays for controlling soil environmental quality." Soil Science 166(12):880-895.
    [193]Zielke, R. C. and T. J. Pinnavaia (1988). "Modified Clays for the Adsorption of Environmental Toxicants-Binding of Chlorophenols to Pillared, Delaminated, and Hydroxy-Interlayered Smectites." Clays and Clay Minerals 36(5):403-408.
    [194]鲁春霞,于云江,吴俊平.粘土矿物对环境污染的防治作用.中国沙漠,1999,19(3):265-267.
    [195]沈培友,徐晓燕.粘土矿物在环境修复中的研究进展.中国矿业,2004,13(1):47-50.
    [196]尹奋平,何玉风,王荣民,王云普.粘土矿物在废水处理中的应用.水处理技术,2005,31(5):1-6.
    [197]Harvey, C. C. and G. Lagaly (2006). Conventional Applications. Handbook of Clay Science. F. Bergaya, B. K. G. Theng and G. Lagaly.1:501-540.
    [198]Bergaya, F, B. K. G. Theng, et al. (2006). Clays, Environment and Health. Handbook of Clay Science. F. Bergaya, B. K. G. Theng and G. Lagaly.1:623-623.
    [199]Churchman, G. J., W. P. Gates, et al. (2006). Clays and Clay Minerals for Pollution Control. Handbook of Clay Science. F. Bergaya, B. K. G. Theng and G. Lagaly.1:625-675.
    [200]Nir, S., Y El Nahhal, et al. (2006). Clays and Pesticides. Handbook of Clay Science. F. Bergaya, B. K. G. Theng and G. Lagaly.1:677-691.
    [201]Czurda, K. (2006). Clay Liners and Waste Disposal. Handbook of Clay Science. F. Bergaya, B. K. G. Theng and G. Lagaly.1:693-701.
    [202]Pusch, R. (2006). Clays and Nuclear Waste Management Handbook of Clay Science. F. Bergaya, B. K. G. Theng and G. Lagaly.1:703-716.
    [203]Carretero, M. I., C. S. F. Gomes, et al. (2006). Clays and Human Health. Handbook of Clay Science. F. Bergaya, B. K. G. Theng and G. Lagaly.1:717-741.
    [204]Carretero, M. I. (2002). "Clay minerals and their beneficial effects upon human health. Areview." Applied Clay Science 21(3-4):155-163.
    [205]Stucki, J. W. (2006). Properties and Behaviour of Iron in Clay Minerals. Handbook of Clay Science. F. Bergaya, B. K. G. Theng and G. Lagaly.1:423-475.
    [206]Stucki, J. W. and P. R. Lear (1989). "Variable Oxidation-States of Iron in the Crystal-Structure of Smectite Clay-Minerals." Acs Symposium Series 415:330-358.
    [207]Amonette, J. E. (2002). Iron redox chemistry of clays and oxides:environmental applications. In: Fitch, A. (Ed), Electrochemical Properties of Clays. CMS Workshop Lectures, vol.10. The Clay Minerals Society, Aurora, CO, pp.89-148.
    [208]Murad, E. and W. R Fischer (1988). The Geobiochemical Cycle of Iron. Stucki, J. W., B. A. Goodman and U. Schwertmann (Eds.), Iron in Soils and Clay Minerals. D. Reidel, Dordrecht, pp.1-18.
    [209]Stucki, J. W., B. A. Goodman, et al. (1988). Iron in soils and clay minerals. Dordrecht; Boston: Norwell, MA, U.S.A., D. Reidel; Sold and distributed in the U.S.A. and Canada by Kluwer Academic Publishers.
    [210]Yamagishi, A. (1982). "Racemic Adsorption of Iron(Ⅱ) Tris(1,10-Phenanthroline) Chelate on a Colloidal Clay." Journal of Physical Chemistry 86(13):2472-2479.
    [211]Letaief, S., B. Casal, et al. (2002). "Fe-rich smectites from Gafsa (Tunisia):characterization and pillaring behaviour." Clay Minerals 37(3):517-529.
    [212]Nembrini, G. P., J. A. Capobianco, et al. (1983). "A Mossbauer and Chemical Study of the Formation of Vivianite in Sediments of Lago Maggjore (Italy)." Geochimica Et Cosmochimica Acta 47(8):1459-1464.
    [213]Hansen, H. C. B. and I. F. Poulsen (1999). "Interaction of synthetic sulphate "Green rust" with phosphate and the crystallization of vivianite." Clays and Clay Minerals 47(3):312-318.
    [214]Loeppert, R. H. (1988). Chemistry of Iron in Calcareous Systems. Stucki, J. W., B. A. Goodman and U. Schwertmann(Eds.), Iron in Soils and Clay Minerals. D. Reidel, Dordrecht, pp.:689-714.
    [215]Van Breemen, N. (1988). Long-Term Chemical Mineralogical and Morphological Effects of Iron-Redox Processes in Periodically Flooded Soils. Stucki, J. W., B. A. Goodman and U. Schwertmann(Eds.), Iron in Soils and Clay Minerals. D. Reidel, Dordrecht,pp.:811-824.
    [216]Van Breemen, N. (1988). Redox Processes of Iron and Sulfur Involved in The Formation of Acid Sulfate Soils. Stucki, J. W., B. A. Goodman and U. Schwertmann(Eds.), Iron in Soils and Clay Minerals. D. Reidel, Dordrecht, pp.:825-842.
    [217]Stubican, V. and R. Roy (1961). "Infrared Spectra of Layer-Structure Silicates." Journal of the American Ceramic Society 44(12):625-627.
    [218]Farmer, V. C. and J. D. Russell (1964). "The Infra-Red Spectra of Layer Silicates." Spectrochimica Acta 20(7):1149-1173.
    [219]Farmer, V C. and J. D. Russell (1967). "Infrared absorption spectrometry in clay studies." Clays Clay Miner., Proc. Fifteenth Conf. Pittsburgh, Pennsylvania:121-142.
    [220]Bishop, J., E. Murad, et al. (2002). "The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy." Clay Minerals 37(4):617-628.
    [221]Madejova, J., P. Komadel, et al. (1994). "Infrared Study of Octahedral Site Populations in Smectites." Clay Minerals 29(3):319-326.
    [222]Petit, S., J. Madejova, et al. (1999). "Characterization of octahedral substitutions in kaolinites using near infrared spectroscopy." Clays and Clay Minerals 47(1):103-108.
    [223]Muller, F., G. Besson, et al. (1997). "Distribution of isomorphous cations within octahedral sheets in montmorillonite from Camp-Bertaux." Physics and Chemistry of Minerals 24(3):159-166.
    [224]Tsipursky, S. I. and V. A. Drits (1984). "The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction." Clay Minerals 19(2):177-193.
    [225]Cardile, C. M. (1989). "Tetrahedral Iron in Smectite-A Critical Comment." Clays and Clay Minerals 37(2):185-188.
    [226]Osthaus, B.B.,1953. Chemical determination of tetrahedral ions in nontronite and montmorillonite. Clays and Clay Minerals,2,404-417.
    [227]Osthaus, B.B.,1953. Kinetic studies on montmorillonite and nontronites by the acid dissolution technique. Clays and Clay Minerals,4,301-321.
    [228]Komadel, P., J. W. Stucki, et al. (1993). "Readily HCl-soluble iron in the fine fractions of some Czech bentonites." Geologica Carpathica-Clays 1(1):11-16.
    [229]Komadel, P., J. Madejova, et al. (1996). "Dissolution of hectorite in inorganic acids." Clays and Clay Minerals 44(2):228-236.
    [230]Komadel, P., T. Grygar, et al. (1998). "Reductive dissolution and Mossbauer spectroscopic study of Fe forms in the fine fractions of Slovak Fe-rich bentonites." Clay Minerals 33(4):593-599.
    [231]Luca, V. and D. J. Maclachlan (1992). "Site Occupancy in Nontronite Studied by Acid Dissolution and Mossbauer-Spectroscopy." Clays and Clay Minerals 40(1):1-7.
    [232]Cardile, C. M. and P. G. Slade (1987). "Structural Study of a Benzidine-Vermiculite Intercalate Having a High Tetrahedral-Iron Content by Fe57 Mossbauer-Spectroscopy." Clays and Clay Minerals 35(3):203-207.
    [233]Johnston, J. H. and C. M. Cardile (1985). "Iron Sites in Nontronite and the Effect of Interlayer Cations from Mossbauer-Spectra" Clays and Clay Minerals 33(1):21-30.
    [234]Johnston, J. H. and C. M. Cardile (1987). "Iron Substitution in Montmorillonite, Illite, and Glauconite by Fe57 Mossbauer-Spectroscopy." Clays and Clay Minerals 35(3):170-176.
    [235]Luca, V. (1991). "Detection of Tetrahedral Fe3+ Sites in Nontronite and Vermiculite by Mossbauer-Spectroscopy." Clays and Clay Minerals 39(5):467-477.
    [236]Luca, V. and C. M. Cardile (1989). "Improved Detection of Tetrahedral Fe3+ in Nontronite Swa-1 by Mossbauer-Spectroscopy." Clay Minerals 24(3):555-559.
    [237]Manceau, A., V. A. Drits, et al. (2000). "Oxidation-reduction mechanism of iron in dioctahedral smectites:Ⅱ. Crystal chemistry of reduced Garfield nontronite." American Mineralogist 85(1):153-172.
    [238]Manceau, A, B. Lanson, et al. (2000). "Oxidation-reduction mechanism of iron in dioctahedral smectites:Ⅰ. Crystal chemistry of oxidized reference nontronites." American Mineralogist 85(1): 133-152.
    [239]Gates, W. P., P. G. Slade, et al. (2002). "Site occupancies by iron in nontronites." Clays and Clay Minerals 50(2):223-239.
    [240]Roth, C. B. and R. J. Tullock (1973). "Deprotonation of Nontronite Resulting from Chemical Reduction of Structural Ferric Iron." In:Serratosa, J. M. (Ed.), Proceedings of the International Clay Conference,1972, Madrid. Division Ciencias C.S.I.C., Madrid, pp.107-114.
    [241]Stucki, J. W. and C. B. Roth (1977). "Oxidation-Reduction Mechanism for Structural Iron in Nontronite." Soil Science Society of America Journal 41(4):808-814.
    [242]Stucki, J. W., D. C. Golden, et al. (1984). "Preparation and Handling of Dithionite-Reduced Smectite Suspensions." Clays and Clay Minerals 32(3):191-197.
    [243]Mehra, O.P., Jackson, M.L.,1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. In:Swineford, A. (Ed.), Seventh National Conference on Clays and Clay Minerals. National Research Council, Washington, DC,pp.317-327.
    [244]Roth, C.B., Jackson, M.L., Lotse, E.G., Syers, J.K.,1968. Ferrous-ferric ratio and C. E. C. changes on deferration of weathered micaceous vermiculites. Israel Journal of Chemistry 6, 261-273.
    [245]Roth, C.B., Jackson, M.L., Syers, J.K.,1969. Deferration effect on structural ferrous-ferric iron ratio and CEC of vemiculites and soils. Clays and Clay Minerals 17,253-264.
    [246]Gan, H., J. W. Stucki, et al. (1992). "Reduction of Structural Iron in Ferruginous Smectite by Free-Radicals." Clays and Clay Minerals 40(6):659-665.
    [247]Rinker, R. G., T. P. Gordon, et al. (1964). "Electron Spin Resonance Studies of Sodium Dithionite +Sodium Formaldehyde Sulfoxylate." Inorganic Chemistry 3(10):1467-&.
    [248]Stucki, J.W. & Getty, P.J. (1986) Microbial reduction of iron in nontronite. In:Agronomy Abstracts,1986 annual meetings of the Soil Science Society of America, p.279.
    [249]Wu, J., Roth, C.B., Low, P.F.,1988. Biological reduction of structural Fe in sodium-nontronite. Soil Science Society of America Journal 52,295-296.
    [250]Kostka, J. E., D. D. Dalton, et al. (2002). "Growth of iron(Ⅲ)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms.' Applied and Environmental Microbiology 68(12):6256-6262.
    [251]Cervini-Silva, J., J. E. Kostka, et al. (2003). "Dehydrochlorination of 1,1,1-trichloroethane and pentachloroethane by microbially reduced ferruginous smectite." Environmental Toxicology and Chemistry 22(5):1046-1050.
    [252]Gorby, Y.A., Amonette, J.E., Fruchter, J.S.,1994. Remediation of contaminated subsurface materials by a metal-reducing bacterium. In:Gee, G.W., Wing, N.R. (Eds.), Thirty-third Hanford Sy mposium on Health and the Environment. Battelle Pacific Northwest National Laboratory, pp.233-247.
    [253]Kostka, J. E., J. W. Stucki, et al. (1996). "Reduction of structural Fe(Ⅲ) in smectite by a pure culture of Shewanella putrefaciens strain MR-1." Clays and Clay Minerals 44(4):522-529.
    [254]Hofstetter, T. B., R. P. Schwarzenbach, et al. (2003). "Reactivity of Fe(Ⅱ) species associated with clay minerals." Environmental Science & Technology 37(3):519-528.
    [255]Xu, J. C., J. W. Stucki, et al. (2001). "Fate of atrazine and alachlor in redox-treated ferruginous smectite." Environmental Toxicology and Chemistry 20(12):2717-2724.
    [256]Stucki, J. W., D. C. Golden, et al. (1984). "Effects of Reduction and Reoxidation of Structural Iron on The Surface-Charge and Dissolution of Dioctahedral Smectites." Clays and Clay Minerals 32(5): 350-356.
    [257]Stucki, J. W., P. F. Low, et al. (1984). "Effects of Oxidation-State of Octahedral Iron on Clay Swelling." Clays and Clay Minerals 32(5):357-362.
    [258]Favre, F., D. Tessier, et al. (2002). "Iron reduction and changes in cation exchange capacity in intermittently waterlogged soil." European Journal of Soil Science 53(2):175-183.
    [259]Favre, F., V. Ernstsen, et al. (2002). "Short scale changes in soil properties due to structural iron reduction." Geochimica Et Cosmochimica Acta 66(15 A):A226-A226.
    [260]Khaled, E.M., Stucki, J.W.,1991. Fe oxidation state effects on cation fixation in smectites.Soil Science Society of America Journal 55,550-554.
    [261]Shen, S. and J. W. Stucki (1994). Effects of iron oxidation state on the fate and behavior of potassium in soils. SSSA Special Publication; Soil testing:Prospects for improving nutrient recommendations. J. L. Havlin and J. S. Jacobsen.40:173-185.
    [262]Huo, D. (1997). Infrared study of oxidized and reduced nontronite and Ca-K competition in the interlayer. United States--Illinois, University of Illinois at Urbana-Champaign. Ph.D.:139p.
    [263]Wu, J., P. F. Low, et al. (1989). "Effects of Octahedral-Iron Reduction and Swelling Pressure on Interlayer Distances in Na-Nontronite." Clays and Clay Minerals 37(3):211-218.
    [264]Gates, W. P., H. T. Wilkinson, et al. (1993). "Swelling Properties of Microbially Reduced Ferruginous Smectite." Clays and Clay Minerals 41 (3):360-364.
    [265]Stucki, J. W., J. Wu, et al. (2000). "Effects of iron oxidation state and organic cations on dioctahedral smectite hydration." Clays and Clay Minerals 48(2):290-298.
    [266]Stucki, J. W. and D. Tessier (1991). "Effects of Iron Oxidation-State on the Texture and Structural Order of Na-Nontronite Gels." Clays and Clay Minerals 39(2):137-143.
    [267]Shen, S. Y, J. W. Stucki, et al. (1992). "Effects of Structural Iron Reduction on the Hydraulic Conductivity of Na-Smectite." Clays and Clay Minerals 40(4):381-386.
    [268]Cervini-Silva, J., R. A. Larson, et al. (2002). "Dechlorination of pentachloroethane by commercial Fe and ferruginous smectite." Chemosphere 47(9):971-976.
    [269]Tor, J. M., C. F. Xu, et al. (2000). "Trifluralin degradation under microbiologically induced nitrate and Fe(Ⅲ) reducing conditions." Environmental Science & Technology 34(15):3148-3152.
    [270]Sorensen, K. C., J. W. Stucki, et al. (2004). "Alteration of mammalian-cell toxicity of pesticides by structural iron(II) in ferruginous smectite." Environmental Science & Technology 38(16):4383-4389.
    [271]Sorensen, K. C., J. W. Stucki, et al. (2005). "Modulation of the genotoxicity of pesticides reacted with redox-modified smectite clay." Environmental and Molecular Mutagenesis 46(3):174-181.
    [272]Komadel, P., J. Madejova, et al. (2006). "Structural Fe(Ⅲ) reduction in smectites." Applied Clay Science 34(1-4):88-94.
    [273]Stucki, J. W. (2011). "A review of the effects of iron redox cycles on smectite properties.' Comptes Rendus Geoscience 343(2-3):199-209.
    [274]Banin, A. and N. Lahav (1968). "Particle Size and Optical Properties of Montmorillonite in Suspension." Israel Journal of Chemistry 6(3):235-&.
    [275]Lahav, N. and A. Banin (1968). "Effect of Various Treatments on Optical Properties of Montmorillonite Suspensions." Israel Journal of Chemistry 6(3):285-&.
    [276]Sherman, D. M. and N. Vergo (1988). "Optical (Diffuse Reflectance) and Mossbauer Spectroscopic Study of Nontronite and Related Fe-Bearing Smectites." American Mineralogist 73(11-12):1346-1354.
    [277]Roth, C. B., M. L. Jackson, et al. (1969). "Deferration Effect on Structural Ferrous-Ferric Iron Ratio and CEC of Vermiculites and Soils." Clays and Clay Minerals 17(5):253-&.
    [278]Lear, P. R. and J. W. Stucki (1989). "Effects of Iron Oxidation-State on the Specific Surface-Area of Nontronite." Clays and Clay Minerals 37(6):547-552.
    [279]Chen, S. Z., P. F. Low, et al. (1987). "Relation between Potassium Fixation and the Oxidation-State of Octahedral Iron." Soil Science Society of America Journal 51(1):82-86.
    [280]Gan, H., G. W. Bailey, et al. (1996). "Morphology of lead(Ⅱ) and chromium(Ⅲ) reaction products on phyllosilicate surfaces as determined by atomic force microscopy." Clays and Clay Minerals 44(6): 734-743.
    [281]Taylor, R. W., S. Y. Shen, et al. (2000). "Chromate removal by dithionite-reduced clays:Evidence from direct X-ray adsorption near edge spectroscopy (XANES) of chromate reduction at clay surfaces." Clays and Clay Minerals 48(6):648-654.
    [282]Brigatti, M. F., C. Lugli, et al. (2000). "Reduction and sorption of chromium by Fe(Ⅱ)-bearing phyllosilicates:Chemical treatments and X-ray absorption spectroscopy (XAS) studies." Clays and Clay Minerals 48(2):272-281.
    [283]Gu, C., H. Li, et al. (2008). "Octachlorodibenzodioxin formation on Fe(Ⅲ)-montmorillonite clay." Environmental Science & Technology 42(13):4758-4763.
    [284]Jaisi, D. P., H. Dong, et al. (2009). "Reduction and long-term immobilization of technetium by Fe(Ⅱ) associated with clay mineral nontronite." Chemical Geology 264(1-4):127-138.
    [285]Ilton, E. S., S. M. Heald, et al. (2006). "Reduction of uranyl in the interlayer region of low iron micas under anoxic and aerobic conditions." Environmental Science & Technology 40(16):5003-5009.
    [286]Boparai, H. K., P. J. Shea, et al. (2006). "Dechlorinating chloroacetanilide herbicides by dithionite-treated aquifer sediment and surface soil." Environmental Science& Technology 40(9): 3043-3049.
    [287]Emstsen, V. (1996). "Reduction of nitrate by Fe2+ in clay minerals." Clays and Clay Minerals 44(5):599-608.
    [288]Emstsen, V, W. P. Gates, et al. (1998). "Microbial reduction of structural iron in clays-A renewable source of reduction capacity." Journal of Environmental Quality 27(4):761-766.
    [289]Hansen, H. C. B. and C. B. Koch (1998). "Reduction of nitrate to ammonium by sulphate green rust:activation energy and reaction mechanism." Clay Minerals 33(1):87-101.
    [290]Hansen, H. C. B., C. B. Koch, et al. (1996). "Abiotic nitrate reduction to ammonium:Key role of green rust." Environmental Science & Technology 30(6):2053-2056.
    [291]Hansen, H. C. B., S. Guldberg, et al. (2001). "Kinetics of nitrate reduction by green rusts-effects of interlayer anion and Fe(Ⅱ):Fe(Ⅲ) ratio." Applied Clay Science 18(1-2):81-91.
    [292]Lear, P. R and J. W. Stucki (1987). "Intervalence Electron-Transfer and Magnetic Exchange in Reduced Nontronite." Clays and Clay Minerals 35(5):373-378.
    [293]Komadel, P., P. R. Lear, et al. (1990). "Reduction and Reoxidation of Nontronite-Extent of Reduction and Reaction-Rates." Clays and Clay Minerals 38(2):203-208.
    [294]Ottley, C. J., W. Davison, et al. (1997). "Chemical catalysis of nitrate reduction by iron(Ⅱ)." Geochimica Et CosmochimicaActa 61(9):1819-1828.
    [295]Buresh, R J. and J. T. Moraghan (1976). "Chemical Reduction of Nitrate by Ferrous Iron." Journal of Environmental Quality 5(3):320-325.
    [296]Siantar, D. P., C. G. Schreier, et al. (1996). "Treatment of 1,2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts." Water Research 30(10):2315-2322.
    [297]Huang, C. P., H. W. Wang, et al. (1998). "Nitrate reduction by metallic iron." Water Research 32(8): 2257-2264.
    [298]Till, B. A, L. J. Weathers, et al. (1998). "Fe(0)-supported autotrophic denitrification." Environmental Science & Technology 32(5):634-639.
    [299]Devlin, J. E, R Eedy, et al. (2000). "The effects of electron donor and granular iron on nitrate transformation rates in sediments from a municipal water supply aquifer." Journal of Contaminant Hydrology 46(1-2):81-97.
    [300]Alowitz, M. J. and M. M. Scherer (2002). "Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal." Environmental Science & Technology 36(3):299-306.
    [301]Westerhoff, P. (2003). "Reduction of nitrate, bromate, and chlorate by zero valent iron (Fe-0)." Journal of Environmental Engineering-Asce 129(1):10-16.
    [302]Miehr, R., P. G. Tratnyek, et al. (2004). "Diversity of contaminant reduction reactions by zerovalent iron:Role of the reductate." Environmental Science & Technology 38(1):139-147.
    [303]Sohn, K., S. W. Kang, et al. (2006). "Fe(0) nanoparticles for nitrate reduction:Stability, reactivity, and transformation." Environmental Science & Technology 40(17):5514-5519.
    [304]SU K, RADIAN A, MISHAEL Y G, et al. Nitrate Reduction By Redox-Modified, Polycation-Smectite Composites[A]. The 49th Annual Meeting of The Clay Minerals Society, July7-11, Golden, CO, USA,2012.
    [305]Breen, C. and R. Watson (1998). "Polycation-exchanged clays as sorbents for organic pollutants: Influence of layer charge on pollutant sorption capacity." Journal of Colloid and Interface Science 208(2): 422-429.
    [306]Breen, C. (1999). "The characterisation and use of polycation-exchanged bentonites." Applied Clay Science 15(1-2):187-219.
    [307]Churchman, G. J. (2002)."Tormation of complexes between bentonite and different cationic polyelectrolytes and their use as sorbents for non-ionic and anionic pollutants." Applied Clay Science 21(3-4):177-189.
    [308]Chang, M. Y. and R. S. Juang (2004). "Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay." Journal of Colloid and Interface Science 278(1): 18-25.
    [309]Ruiz-Hitzky, E. R., M. Darder, et al. (2005). "Functional biopolymer nanocomposites based on layered solids." Journal of Materials Chemistry 15(35-36):3650-3662.
    [310]Huskic, M., E. Zagar, et al. (2009). "Modification of montmorillonite by cationic polyesters." Applied Clay Science 43(3-4):420-424.
    [311]Letaief, S. and C. Detellier (2009). "Clay-Polymer Nanocomposite Material from the Delamination of Kaolinite in the Presence of Sodium Polyacrylate." Langmuir 25(18):10975-10979.
    [312]Claesson, P. M., E. Poptoshev, et al. (2005). "Polyelectrolyte-mediated surface interactions." Advances in Colloid and Interface Science 114:173-187.
    [313]Radian, A. and Y. G. Mishael (2008). "Characterizing and designing polycation-Clay nanocomposites as a basis for imazapyr controlled release formulations." Environmental Science & Technology 42(5):1511-1516.
    [314]Darder, M., M. Colilla, et al. (2005). "Chitosan-clay nanocomposites:application as electrochemical sensors." Applied Clay Science 28(1-4):199-208.
    [315]Darder, M., M. Lopez-Blanco, et al. (2006). "Microfibrous chitosan-sepiolite nanocomposites." Chemistry of Materials 18(6):1602-1610.
    [316]Bleiman, N. and Y. G. Mishael (2010). "Selenium removal from drinking water by adsorption to chitosan-clay composites and oxides:Batch and columns tests." Journal of Hazardous Materials 183(1-3):590-595.
    [317]Radian, A. and Y. Mishael (2012). "Effect of Humic Acid on Pyrene Removal from Water by Polycation-Clay Mineral Composites and Activated Carbon." Environmental Science & Technology 46(11):6228-6235.
    [318]Mulvaney, R. L.1996. Nitrogen-Inorganic forms, p.1123-1184. In D.L. Sparks et al. (ed.) Methods of soil analysis. Part 3. SSSABook Ser.5. SSSA, Madison. WI.
    [319]Khan, S. A., R. L. Mulvaney, et al. (1997). "Accelerated diffusion methods for inorganic-nitrogen analysis of soil extracts and water." Soil Science Society of America Journal 61(3):936-942.
    [320]Mulvaney, R. L., S. A. Khan, et al. (1997). "Improved diffusion methods for determination of inorganic nitrogen in soil extracts and water." Biology and Fertility of Soils 24(4):413-420.
    [321]Cassman, K. G., S. Peng, et al. (1998). "Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems." Field Crops Research 56(1-2):7-39.
    [322]Mengel, K., B. Hutsch, et al. (2006). "Nitrogen fertilizer application rates on cereal crops according to available mineral and organic soil nitrogen." European Journal of Agronomy 24(4): 343-348.
    [323]Mulvaney, R. L., S. A. Khan, et al. (2006). "Need for a soil-based approach in managing nitrogen fertilizers for profitable corn production." Soil Science Society of America Journal 70(1):172-182.
    [324]Stanford, G. and S. J. Smith (1972). "Nitrogen Mineralization Potentials of Soils." Soil Science Society of America Proceedings 36(3):465-&.
    [325]Saghir, N. S., R. L. Mulvaney, Et Al. (1993). "Determination of Nitrogen by Microdiffusion in Mason Jars.1. Inorganic Nitrogen in Soil Extracts." Communications in Soil Science and Plant Analysis 24(13-14):1745-1762.
    [326]Khan, S. A., R. L. Mulvaney, et al. (2000). "Evaluation of diffusion for inorganic-nitrogen analysis of natural water and wastewater." Journal of Environmental Quality 29(6):1890-1895.
    [327]Khan, S. A.. R. L. Mulvaney, et al. (2000). "Direct-diffusion methods for inorganic-nitrogen analysis of soil." Soil Science Society of America Journal 64(3):1083-1089.
    [328]Rafael Otto, Kai Su, Richard L. Mulvaney, Paulo Cesar O. Trivelin. Leaching Methods to Determine Soil Inorganic N Underestimate Net Mineralization. ASA CSSA SSSA International Annual Meeting, Oct.11-19,2011, San Antonio, TX. USA.
    [329]Rozenson, I. and L. Hellerkallai (1976). "Reduction and Oxidation of Fe3+ in Dioctahedral Smectites.1. Reduction With Hydrazine And Dithionite." Clays and Clay Minerals 24(6):271-282.
    [330]Russell. J. D., B. A. Goodman, Et Al. (1979). "Infrared and Mossbauer Studies of Reduced Nontronites." Clays and Clay Minerals 27(1):63-71.
    [331]Komadel, P., J. Madejova, Et Al. (1995). "Reduction and Reoxidation of Nontronite-Questions Of Reversibility." Clays and Clay Minerals 43(1):105-110.
    [332]Stucki, J. W., K. Lee, et al. (2002). "Effects of iron oxidation state on the surface and structural properties of smectites." Pure and Applied Chemistry 74(11):2145-2158.
    [333]Merola, R. B., E. D. Fournier, et al. (2007). "Spectroscopic investigations of Fe2+complexation on nontronite clay." Langmuir 23(3):1223-1226.
    [334]Schaefer. M. V., C. A. Gorski, et al. (2011). "Spectroscopic Evidence for Interracial Fe(Ⅱ)-Fe(III) Electron Transfer in a Clay Mineral." Environmental Science & Technology 45(2):540-545.
    [335]Peretyazhko, T., J. M. Zachara, et al. (2008). "Heterogeneous reduction of Tc(Ⅶ) by Fe(Ⅱ) at the solid-water interface." Geochimica Et Cosmochimica Acta 72(6):1521-1539.
    [336]Neumann, A., T. B. Hofstetter, et al. (2009). "Reduction of Polychlorinated Ethanes and Carbon Tetrachloride by Structural Fe(II) in Smectites." Environmental Science & Technology 43(11): 40824089.
    [337]Zhang, G., J. M. Senko, et al. (2009). "Microbial reduction of iron(Ⅲ)-rich nontronite and uranium(Ⅵ)." Geochimica Et Cosmochimica Acta 73(12):3523-3538.
    [338]Cervini-Silva, J., J. Hernandez-Pineda, et al. (2010). "Arsenic(Ⅲ) methylation in betaine-nontronite clay-water suspensions under environmental conditions." Journal of Hazardous Materials 178(1-3):450-454.
    [339]Bishop, M. E., H. Dong, et al. (2011). "Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99)." Geochimica Et Cosmochimica Acta 75(18):5229-5246.
    [340]Southam, G. (2012). "Minerals as Substrates for Life:The Prokaryotic View." Elements 8(2): 101-106.
    [341]Zhuang, Y.-F., C. I. Fialips, et al. (2012). "New redox-active material for permeable water remediation systems." Applied Clay Science 59-60:26-35.
    [342]Stucki, J. W., P. Komadel, et al. (1987). "Microbial Reduction of Structural Iron(Iii) in Smectites." Soil Science Society of America Journal 51(6):1663-1665.
    [343]Kostka, J. E., J. Wu, et al. (1999). "The impact of structural Fe(Ⅲ) reduction by bacteria on the surface chemistry of smectite clay minerals." Geochimica Et Cosmochimica Acta 63(22):3705-3713.
    [344]Dong, H. L., J. E. Kostka, et al. (2003). "Microscopic evidence for microbial dissolution of smectite." Clays and Clay Minerals 51(5):502-512.
    [345]Dong, H.L.,R.K. Kukkadapu, et al. (2003). "Microbial reduction of structural Fe(Ⅲ) in illite and goethite." Environmental Science & Technology 37(7):1268-1276.
    [346]Dong, H., D. P. Jaisi, et al. (2009). "Microbe-clay mineral interactions." American Mineralogist 94(11-12):1505-1519.
    [347]Li, Y. L., H. Vali, et al. (2004). "Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium." Geochimica Et Cosmochimica Acta 68(15):3251-3260.
    [348]Jaisi, D. P., R K. Kukkadapu, et al. (2005). "Control of Fe(Ⅲ) site occupancy on the rate and extent of microbial reduction of Fe(Ⅲ) in nontronite." Geochimica Et Cosmochimica Acta 69(23): 5429-5440.
    [349]Jaisi, D. P., H. Dong, et al. (2007). "Kinetic analysis of microbial reduction of Fe(Ⅲ) in nontronite." Environmental Science & Technology 41(7):2437-2444.
    [350]O'Reilly, S. E., J. Watkins, et al. (2005). "Secondary mineral formation associated with respiration of nontronite, NAu-1 by iron reducing bacteria." Geochemical Transactions 6(4):67-76.
    [351]O'Reilly, S. E., Y. Furukawa, et al. (2006). "Dissolution and microbial Fe(III) reduction of nontronite (NAu-1)." Chemical Geology 235(1-2):1-11.
    [352]Kukkadapu, R. K., J. M. Zachara, et al. (2006). "Reductive biotransformation of Fe in shale-limestone saprolite containing Fe(Ⅲ) oxides and Fe(II)/Fe(Ⅲ) phyllosilicates." Geochimica Et Cosmochimica Acta 70(14):3662-3676.
    [353]Lee, K.. J. E. Kostka, et al. (2006). "Comparisons of structural Fe reduction in smectites by bacteria and dithionite:An infrared spectroscopic study." Clays and Clay Minerals 54(2):195-208.
    [354]Zhang, G., J. Kim, et al. (2007). "Microbial effects in promoting the smectite to illite reaction: Role of organic matter intercalated in the interlayer." American Mineralogist 92(8-9):1401-1410.
    [355]Ribeiro, F. R., J. D. Fabris, et al. (2009). "Comparisons of structural iron reduction in smectites by bacteria and dithionite:Ⅱ. A variable-temperature Mossbauer spectroscopic study of Garfield nontronite." Pure and Applied Chemistry 81 (8):1499-1509.
    [356]Stucki, J.W., Pentrak, M., Su, K., Pentrakova, L. (2013). Controlled atmosphere methods for redox-activated smectites. Clay Minerals,48, (submitted).
    [357]Stucki, J. W. (1981). "The Quantitative Assay of Minerals for Fe2+ and Fe3+ using 1,10-Phenanthroline.2. A Photochemical Method." Soil Science Society Of America Journal 45(3): 638-641.
    [358]Stucki, J. W. And W. L. Anderson (1981). "The Quantitative Assay of Minerals for Fe2+ and Fe3+ using 1,10-Phenanthroline.1. Sources Of Variability." Soil Science Society Of America Journal 45(3): 633-637.
    [359]Komadel, P. And J. W. Stucki (1988). "Quantitative Assay of Minerals for Fe2+ And Fe3+ using 1,10-Phenanthroline.3. A Rapid Photochemical Method." Clays and Clay Minerals 36(4):379-381.
    [360]Camargo, J. A. and A. Alonso (2006). "Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems:A global assessment." Environment International 32(6):831-849.
    [361]Tiedje, J.M. (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Pp.179-244 in:Biology of Anaerobic Microorganisms (J.B.A. Zehnder.editor). John Wiley & Sons, New York.
    [362]Burgin, A. J. and S. K. Hamilton (2007). "Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways." Frontiers in Ecology and the Environment 5 (2):89-96.
    [363]Rivett, M. O., S. R. Buss, et al. (2008). "Nitrate attenuation in groundwater:A review of biogeochemical controlling processes." Water Research 42(16):4215-4232.
    [364]Baggs, E. M. (2011). "Soil microbial sources of nitrous oxide:recent advances in knowledge, emerging challenges and future direction." Current Opinion in Environmental Sustainability 3 (5): 321-327.
    [365]Seitzinger, S. P. (1988). "Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance." Limnology & Oceanography 33 (4):702-724.
    [366]Davidson, E. A., J. Chorover, et al. (2003). "A mechanism of abiotic immobilization of nitrate in forest ecosystems:the ferrous wheel hypothesis." Global Change Biology 9(2): 228-236.
    [367]Stucki, J. W., K. Lee, et al. (2007). "Effects of in situ biostimulation on iron mineral speciation in a sub-surface soil." Geochimica Et Cosmochimica Acta 71 (4):835-843.
    [368]Khaled, E. M. and J. W. Stucki (1991). "Iron Oxidation-State Effects on Cation Fixation in Smectites." Soil Science Society of America Journal 55 (2):550-554.
    [369]Cervini-Silva, J., J. Wu, et al. (2000). "Adsorption kinetics of pentachloroethane by iron-bearing smectites. " Clays and Clay Minerals 48(1):132-138.
    [370]Gates, W. P., A. M. Jaunet, et al. (1998). "Swelling and texture of iron-bearing smectites reduced by bacteria " Clays and Clay Minerals 46(5):487-497.
    [371]Coates, J., Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd:2006.
    [372]Yang, F., S. Liu, et al. (2006). "Pickering emulsions stabilized solely by layered double hydroxides particles:The effect of salt on emulsion formation and stability." Journal of Colloid and Interface Science 302(1):159-169.
    [373]Garcia-Garcia, S., M. Jonsson, et al. (2006). "Temperature effect on the stability of bentonite colloids in water." Journal of Colloid and Interface Science 298 (2):694-705.
    [374]Baez, E., N. Quazi, et al. (2009). "Stability study of nanopigment dispersions. "Advanced Powder Technology 20(3):267-272.
    [375]Garcia-Garcia, S., S. Wold, et al. (2007). "Kinetic determination of critical coagulation concentrations for sodium-and calcium-montmorillonite colloids in NaCl2 and CaCl2 aqueous solutions. " Journal of Colloid and Interface Science 315(2):512-519.
    [376]Duman, O. and S. Tunc (2009). "Electrokinetic and rheological properties of Na-bentonite in some electrolyte solutions." Microporous and Mesoporous Materials 117(1-2):331-338.
    [377]Durandpiana, G., F. Lafuma, Et Al. (1987). "Flocculation and Adsorption Properties of Cationic Polyelectrolytes toward Na-Montmorillonite Dilute Suspensions. " Journal of Colloid and Interface Science 119(2):474-480.
    [378]Tekin, N., E. Kadinci, et al. (2006). "Adsorption of polyvinylimidazole onto kaolinite. " Journal of Colloid and Interface Science 296(2):472-479.
    [379]Yue, Q. Y., Q. Li, et al. (2007). "Formation and characteristics of cationic-polymer/bentonite complexes as adsorbents for dyes." Applied Clay Science 35 (3-4): 268-275.
    [380]Colthup, N. B. (1950). Spectra-structure correlation in the infrared region. Journal of the Optica Society of America,40,397-400.
    [381]Zadaka, D., A. Radian, et al. (2010). "Applying zeta potential measurements to characterize the adsorption on montmorillonite of organic cations as monomers, micelles, or polymers. " Journal of Colloid and Interface Science 352(1):171-177.
    [382]Stucki, J. W., G. W. Bailey, et al. (1996). "Oxidation-reduction mechanisms in iron-bearing phyllosilicates." Applied Clay Science 10(6):417-430.
    [383]Kostka, J. E., E. Haefele, et al. (1999). "Respiration and dissolution of iron(Ⅲ) containing clay minerals by bacteria." Environmental Science & Technology 33(18):3127-3133.
    [384]Koslka, J.E., Stucki, J.W., Dong, H.L. (2002) Microbial reduction of Fe(Ⅲ) bound in clay minerals:Laboratory investigations of growth and mineral transformation. Abstracts of Papers of The American Chemical Society,223,598-598.
    [385]Stucki, J. W. (2009). "Overview of redox biogeochemistry of iron in phyllosilicates." Abstracts of Papers of the American Chemical Society 237.
    [386]Stucki, J.W. (2013). Properties and behaviour of iron in clay minerals.Bergaya, F. and Lagaly, G. (Eds.) Handbook of clay science,2nd Edition, Elsevier, Amsterdam, In Press.
    [387]Stucki, J. W. and J. E. Kostka (2006). "Microbial reduction of iron in smectite." Comptes Rendus Geoscience 338(6-7):468-475.
    [388]Kim, J. W., Y. Furukawa, et al. (2003). "Characterization of microbially Fe(Ⅲ)-reduced nontronite: Environmental cell-transmission electron microscopy study." Clays and Clay Minerals, 51(4):382-389.
    [389]Kim, J., H. L. Dong, et al. (2004). "Role of microbes in the smectite-to-illite reaction." Science, 303(5659):830-832.
    [390]Shelobolina, E. S., C. G. Vanpraagh, et al. (2003). "Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri." Geomicrobiology Journal 20(2):143-156.
    [391]Shelobolina, E. S., R. T. Anderson, et al. (2004). "Importance of clay size minerals for Fe(Ⅲ) respiration in a petroleum-contaminated aquifer." Geobiology 2(1):67-76.
    [392]Shelobolina, E. S., S. M. Pickering, et al. (2005). "Fe-CYCLE bacteria from industrial clays mined in Georgia, USA." Clays and Clay Minerals 53(6):580-586.
    [393]Shelobolina, E., H. Konishi, et al. (2012). "Isolation of phyllosilicate-iron redox cycling microorganisms from an illite-smectite rich hydromorphic soil." Frontiers in Microbiology 3(April): 134-Article 134.
    [394]Shelobolina, E., H. Xu, et al. (2012). "Microbial Lithotrophic Oxidation of Structural Fe(Ⅱ) in Biotite." Applied and Environmental Microbiology 78(16):5746-5752.
    [395]Jaisi, D. P., H. Dong, et al. (2007). "Influence of biogenic Fe(Ⅱ) on the extent of microbial reduction of Fe(Ⅲ) in clay minerals nontronite, illite, and chlorite." Geochimica Et Cosmochimica Acta 71(5):1145-1158.
    [396]Jaisi, D. P., H. Dong, et al. (2007). "Nontronite particle aggregation induced by microbial Fe(Ⅲ) reduction and exopolysaccharide production." Clays and Clay Minerals 55(1):96-107.
    [397]Jaisi, D. P., S. Ji, et al. (2008). "Role of microbial Fe(Ⅲ) reduction and solution chemistry in aggregation and settling of suspended particles in the Mississippi River delta plain, Louisiana, USA." Clays and Clay Minerals 56(4):416-428.
    [398]Jaisi, D. P., H. Dong, et al. (2008). "Partitioning of Fe(Ⅱ) in reduced nontronite (NAu-2) to reactive sites:Reactivity in terms of Tc(Ⅶ) reduction." Clays and Clay Minerals 56(2):175-189.
    [399]Jaisi, D. P., D. D. Eberl, Et Al. (2011). "The Formation of Illite From Nontronite by Mesophilic and Thermophilic Bacterial Reaction." Clays and Clay Minerals 59(1):21-33.
    [400]Dong, H., D. Jaisi, et al. (2009). "Microbe-clay mineral interactions and implications for environmental remediation." Abstracts of Papers of the American Chemical Society 237.
    [401]Dong, H.L (2010) Mineral-microbe interactions:a review. Frontiers of Earth Science in China,4, 127-147.
    [402]Dong, H. (2012). "Clay-Microbe Interactions and Implications for Environmental Mitigation." Elements 8(2):113-118.
    [403]Perdrial, J. N., L. N. Warr, et al. (2009). "Interaction between smectite and bacteria:Implications for bentonite as backfill material in the disposal of nuclear waste." Chemical Geology 264(1-4): 281-294.
    [404]Zhang, J., H. Dong, et al. (2012). "Microbial reduction of Fe(Ⅲ) in illite-smectite minerals by methanogen Methanosarcina mazei." Chemical Geology 292:35-44
    [405]Bishop, M. E., D. P. Jaisi, Et Al. (2010). "Bioavailability of Fe(Ⅲ) Iin Loess Sediments:an Important Source of Electron Acceptors." Clays and Clay Minerals 58(4):542-557.
    [406]Bishop, M.E., Dong, H.L., Kukkadapu, R.K., & Edelmann, R.E. (2011) Microbial reduction of Fe(Ⅲ) in multiple clay minerals by Shewanella putrefaciens and reactivity of bioreduced clay minerals
    toward Tc(Ⅶ) immobilization. Geochimica et Cosmochimica Acta,75,5229-5246.
    [407]Bishop, M. E. and H. Dong (2010). "Reactivity of clay minerals towards technetium immobilization." Geochimica Et Cosmochimica Acta 74(12):A93-A93.
    [408]Liu, D., H. Wang, et al. (2010). "Comparison of Reduction Extent of Fe(Ⅲ) in Nontronite by Shewanella putrefaciens and Desulfovibrio vulgaris." Journal of Earth Science 21:297-299.
    [409]Liu, D., H. Dong, et al. (2011). "Reduction of structural Fe(Ⅲ) in nontronite by methanogen Methanosarcina barkeri." Geochimica Et Cosmochimica Acta 75(4):1057-1071.
    [410]Liu, D., H. Dong, et al. (2012). "Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium." Geobiology 10(2):150-162.
    [411]Gorski, C. A., M. Aeschbacher, et al. (2012). "Redox Properties of Structural Fe in Clay Minerals. 1. Electrochemical Quantification of Electron-Donating and-Accepting Capacities of Smectites." Environmental Science & Technology 46(17):9360-9368.
    [412]Gorski, C. A., L. Kluepfel, et al. (2012). "Redox Properties of Structural Fe in Clay Minerals.2. Electrochemical and Spectroscopic Characterization of Electron Transfer Irreversibility in Ferruginous Smectite, SWa-1." Environmental Science & Technology 46(17):9369-9377.
    [413]Wu, T., E. Shelobolina, et al. (2012). "Isolation and Microbial Reduction of Fe(Ⅲ) Phyllosilicates from Subsurface Sediments." Environmental Science & Technology 46(21):11618-11626.
    [414]Vodyanitskii, Y. N. (2007). "Reductive biogenic transformation of Fe(Ⅲ)-containing phyllosilicates (review of publications)." Eurasian Soil Science 40(12):1355-1363.
    [415]Starkey, R L. and H. O. Halvorson (1927). "Studies on the transformations of iron in nature. Ⅱ. Concerning the importance of microorganisms in the solution and precipitation of iron." Soil Sci 24((6)): 381-402.
    [416]Ottow, J. C. G. (1968). "Evaluation of Iron-Reducing Bacteria in Soil And Physiological Mechanism of Iron-Reduction in Aerobacter Aerogenes." Zeitschrift Fur Allgemeine Mikrobiologie 8(5): 441-&.
    [417]Ottow, J. C. G. (1969). "The Influence of Nitrate Chlorate Sulfate Form of Iron Oxide and Growth Conditions on The Extent Of Bacteriological Reduction of Iron." Zeitschrift Fuer Pflanzenemaehrung Und Bodenkunde 124(3):238-252.
    [418]Ottow, J. C. G. And Vonklopo.A(1969). "Enzymatic Reduction of Iron Oxide by Fungi." Applied Microbiology 18(1):41-&.
    [419]Munch, J. C. And J. C. G. Ottow (1977). "Model Experiments on Mechanism of Bacterial Iron-Reduction in Water-Logged Soils." Zeitschrift Fur Pflanzenemahrung Und Bodenkunde 140(5): 549-562.
    [420]Munch, J. C., T. Hillebrand, Et Al. (1978). "Transformations In FeO-Fed Ratio Of Pedogenic Iron-Oxides Affected By Iron-Reducing Bacteria." Canadian Journal Of Soil Science 58(4):475-486.
    [421]Rinder, G. (1979) Effect of clay minerals on the behavior of acidophilic Thiobacillus species in suspensions.Zeitschrift fur Allgemeine Mikrobiologie,19,643-665.
    [422]Sugio, T. (1981). "Isolation and Some Properties of Silver Ion-Resistant Iron-Oxidizing Bacterium Thiobacillus-Ferrooxidans." Agricultural And Biological Chemistry 45(9):2037-2051.
    [423]Munch, J. C. And J. C. G. Ottow (1982). "Effect of Cell Contact and Iron(Iii)-Oxide Form on Bacterial Iron Reduction." Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 145(1):66-77.
    [424]Onysko. S. J., R. L. P. Kleinmann, Et Al. (1984). "Ferrous Iron Oxidation by Thiobacillus-Ferrooxidans-Inhibition with Benzoic-Acid, Sorbic Acid, and Sodium Lauryl Sulfate." Applied and Environmental Microbiology 48(1):229-231.
    [425]Soljanto. P.. Rehtijarvi, P., Tuovinen, O.H. (1985) Ferrous iron oxidation by thiobacillus ferooxidans:Inhibition of finely ground particles. Geomicrobiology Journal,2.1-12.
    [426]Sand, W. (1989). "Ferric Iron Reduction by Thiobacillus-Ferrooxidans at Extremely Low Ph-Values." Biogeochemistry 7(3):195-201.
    [427]Komadel, P., Stucki, J.W., & Wilkinson, H.T. (1987) Reduction of structural iron in smectites by microorganisms. The Sixth Meeting of the European Clay Groups Sevilla,322-324.
    [428]Wu, J., C. B. Roth, Et Al. (1988). "Biological Reduction of Structural Iron in Sodium-Nontronite." Soil Science Society of America Journal 52(1):295-296.
    [429]Gates, W. P., J. W. Stucki, et al. (1996). "Structural properties of reduced Upton montmorillonite." Physics and Chemistry of Minerals 23(8):535-541.
    [430]Kashefi, K., E. S. Shelobolina, et al. (2008). "Growth of thermophilic and hyperthermophilic Fe (Ⅲ)-reducing microorganisms on a ferruginous smectite as the sole electron acceptor." Applied and Environmental Microbiology 74(1):251-258.
    [431]Stucki, J.W. (1988) Structural iron in smectites. Chapter 17 In Stucki. Joseph W., Bernard A. Goodman, Udo Schwertmann (Editors), Iron in Soils and Clay Minerals. D.Reidel, Dordrecht, The Netherlands,625-675.
    [432]Favre, F., Tessier, D., Abdelmoula, M., Genin, J.M., Gates, W.P., & Boivin, P. (2002) Iron reduction and CEC changes in intermittently reduced soil. European Journal of Soil Science,53,1-9.
    [433]Stucki, J.W., Gan, H., Wilkinson, H.T. (1992) Effects of microorganisms on phyllosilicate properties and behavior.In Wagenet, R. J.,Phillippe Baveye, & B. A. Stewart (Editors), Advances in Soil Science. Lewis Publishers, Boca Raton, Florida,227-254.
    [434]Gates, W.P., Stucki, J.W., Wilkinson, H.T. (1994) Microbial reduction of smectite structural Fe.Abstracts Of Papers Of The American Chemical Society,207,79-Geoc.
    [435]Zhang, G., H. Dong, et al. (2006). "Unique microbial community in drilling fluids from Chinese Continental Scientific drilling." Geomicrobiology Journal 23(6):499-514.
    [436]Ribeiro, F.R., Kostka, J.E., Stucki. J.W. (2009) Comparisons of structural iron reduction in phyllosilicates by bacteria and dithionite.In:The 237th Annual Meeting of American Chemical Society, Salt Lake City, Abstract Geoc.67.
    [437]Li, O., W. F. Bleam. et al. (2003). "Polarized EXAFS studies of nontronite by anaerobic bacteria." Abstracts of Papers of the American Chemical Society 226:U492-U492.
    [438]Alimova, A., Block, K., Rudolph, E., Katz, A., Steiner, J.C., Gottlieb, P., Alfano, R.R. (2006) Bacteria-clay interactions investigated by light scattering and phase contrast microscopy. In Optical Diagnostics and Sensing VI, Gerard L. Cote and Alexander V. Priezzhev, eds. SPIE Proc,6094,76-79.
    [439]Alimova, A., A. Katz, Et Al. (2009). "Bacteria-Clay Interaction:Structural Changes In Smectite Induced During Biofilm Formation." Clays And Clay Minerals 57(2):205-212.
    [440]Vempati, R. K., K. P. Kollipara. Et Al. (1995). "Reduction of Structural Iron in Selected Iron-Bearing Minerals by Soybean Root Exudates Grown in an In-Vitro Geoponic System." Journal of Plant Nutrition 18(2):343-353.
    [441]Myers, C. R. And K. H. Nealson (1988). "Bacterial Manganese Reduction and Growth with Manganese Oxide as the Sole Electron-Acceptor." Science 240(4857):1319-1321.
    [442]Seabaugh, J. L., H. L. Dong, et al. (2006). "Microbial reduction of Fe(Ⅲ) in the Fithian and Muloorina illites:Contrasting extents and rates of bioreduction." Clays and Clay Minerals 54(1):67-79.
    [443]Lovley, D. R., J. L. Fraga, et al. (1998). "Humic substances as a mediator for microbially catalyzed metal reduction." Acta Hydrochimica Et Hydrobiologica 26(3):152-157.
    [444]Scott, A. D. and J. Amonette (1988). Role of iron in mica weathering. In Stucki, Joseph W., Bernard A. Goodman, Udo Schwertmann (Editors), Iron in Soils and Clay Minerals. D.Reidel, Dordrecht, The Netherlands,537-623.
    [445]Neumann, A., Sander, M., & Hofstetter, T.B. (2011) Redox properties of structural Fe in smectite clay minerals. Chapter 17 in:Aquatic Redox Chemistry; Tratnyek, P., et al.; ACS Symposium Series; American Chemical Society:Washington, DC,2011.
    [446]Alexandrov, V, Neumann, A., Scherer, M.M., & Rosso, K. (2013) Electron exchange and conduction in nontronite from first principles Journal of Physical Chemistry (In Press)
    [447]Prakash, O., T. M. Gihring, et al. (2010). "Geobacter daltonii sp. nov., an Fe(Ⅲ)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination." International Journal of Systematic and Evolutionary Microbiology 60: 546-553.
    [448]Lee. E. Y. K. S. Cho, et al. (1999). "Microbial removal of Fe(Ⅲ) impurities from clay using dissimilatory iron reducers." Journal of Bioscience and Bioengineering 87(3):397-399.
    [449]Lee, E. Y, K. S. Cho, et al. (2002). "Microbial refinement of kaolin by iron-reducing bacteria.' Applied Clay Science 22(1-2):47-53.
    [450]Guo, M.-r., Y.-m. Lin, et al. (2010). "Bioleaching of iron from kaolin using Fe(Ⅲ)-reducing bacteria with various carbon nitrogen sources." Applied Clay Science 48(3):379-383.
    [451]Guo, M.-R., Q.-X. He, Et Al. (2010). "Removal of Fe From Kaolin using Dissimilatory Fe(Ⅲ)-Reducing Bacteria." Clays and Clay Minerals 58(4):515-521.
    [452]He, Q.-x., X.-c. Huang, et al. (2011). "Influence of organic acids, complexing agents and heavy metals on the bioleaching of iron from kaolin using Fe(Ⅲ)-reducing bacteria." Applied Clay Science 51(4):478-483.
    [453]Fialips, C. I., N. G. A. Cooper, Et Al. (2010). "Reductive Degradation of P,P'-Ddt By Fe(Ⅱ) in Nontronite Nau-2." Clays and Clay Minerals 58(6):821-836.
    [454]Hama, K., K. Bateman, et al. (2001). "Influence of bacteria on rock-water interaction and clay mineral formation in subsurface granitic environments." Clay Minerals 36(4):599-613.
    [455]Tung, H. C., P. B. Price, et al. (2006). "Microorganisms metabolizing on clay grains in 3-km-deep Greenland basal ice." Astrobiology 6(1):69-86.
    [456]Maurice, P. A., M. A. Vierkorn, et al. (2001). "Enhancement of kaolinite dissolution by an aerobic Pseudomonas mendocina bacterium." Geomicrobiology Journal 18(1):21-35.
    [457]Maurice, P. A., M. A. Vierkorn, et al. (2001). "Dissolution of well and poorly ordered kaolinites by an aerobic bacterium." Chemical Geology 180(1-4):81-97.
    [458]O'Reilly, S.E., Bickmore, B.R., Furukawa, Y. (2004) Dissolution of microbial reduced nontronite in a flow-through system. In:41st Annual Meeting of the Clay Minerals Society, Program&Abstracts, pp.86.
    [459]Grybos, M., P. Billard, et al. (2011). "Bio-dissolution of colloidal-size clay minerals entrapped in microporous silica gels." Journal of Colloid and Interface Science 362(2):317-324.
    [460]Eslinger, E., P. Highsmith, Et Al. (1979). "Role of Iron Reduction in The Conversion of Smectite to Illite in Bentonites in The Disturbed Belt, Montana." Clays and Clay Minerals 27(5):327-338.
    [461]Zhang, G., H. Dong, et al. (2007). "Microbial reduction of structural Fe(3+) in nontronite by a thermophilic bacterium and its role in promoting the smectite to illite reaction." American Mineralogist 92(8-9):1411-1419.
    [462]Stanjek, H. and C. Marchel (2008). "Linking the redox cycles of Fe oxides and Fe-rich clay minerals:an example from a palaeosol of the Upper Freshwater Molasse." Clay Minerals 43(1):69-82.
    [463]Vorhies, J. S. and R. R. Gaines (2009). "Microbial dissolution of clay minerals as a source of iron and silica in marine sediments." Nature Geoscience 2(3):221-225.
    [464]Straub, K. L., M. Benz, et al. (1996). "Anaerobic, nitrate-dependent microbial oxidation of ferrous iron." Applied and Environmental Microbiology 62(4):1458-1460.
    [465]Zhang, G., W. D. Burgos, et al. (2011). "Microbial reduction of chlorite and uranium followed by air oxidation." Chemical Geology 283(34):242-250.
    [466]Fredrickson, J. K., J. M. Zachara, et al. (2004). "Reduction of TcO4- by sediment-associated biogenic Fe(Ⅱ)." Geochimica Et Cosmochimica Acta 68(15):3171-3187.
    [467]Yang, J., R. K. Kukkadapu, et al. (2012). "Effects of redox cycling of iron in nontronite on reduction of technetium." Chemical Geology 291:206-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700