煤泥水中高岭石颗粒表面水化作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高泥化煤泥水中含有大量的微细粘土矿物颗粒是其难以沉降澄清处理的一个重要原因。由于这些粘土矿物颗粒表面具有大量的亲水基团,在水溶液中其表面会产生一层水化膜从而增加了颗粒间的水化斥力,传统的以DLVO理论为基础的凝聚技术无法有效地实现这些微细颗粒间的聚团沉降,因此研究粘土矿物颗粒表面的水化作用机理,探索破解颗粒表面水化膜的方法是实现高泥化煤泥水高效沉降澄清处理的一项重要内容。高岭石是煤泥水中的主要矿物成分之一,本文采用试验分析、理论计算和计算机模拟的研究方法,模拟煤泥水的溶液特性,以pH值、煤泥水中常见离子、离子浓度等溶液性质作为影响因素,研究了煤系高岭石颗粒表面理化特性及与煤泥水的相互作用、颗粒表面的荷电机理及溶液性质对水化作用的影响规律,测定了颗粒表面水化参数,分析了高岭石颗粒在不同性质溶液中与水分子相互耦合的作用机理,并通过分子动力学模型软件建立了高岭石颗粒表面水化作用模型,为破解煤泥水中高岭石表面水化膜,实现高泥化煤泥水的高效沉降澄清处理提供理论支持。
     高岭石颗粒表面理化特性及与煤泥水的相互作用研究表明,高岭石颗粒表面含有大量的硅醇基(>SiOH)和铝醇基(>A1OH)等含羟基组,这些羟基组在低的pH溶液中会产生质子化作用,从而使溶液pH升高,同时增加了颗粒表面羟基数量,而在高pH溶液中会产生去质子化作用,从而使溶液pH降低,硅氧基(>SiO)和铝氧基(>A10)基团数量增多;对于偏碱性的煤泥水,高岭石主要有降低煤泥水pH值的作用,同时高岭石颗粒结构中及其表面吸附其它元素会溶解到煤泥水中,从而增加煤泥水中金属阳离子浓度;煤泥水中的阳离子对高岭石颗粒表面的质子化有抑制作用,对去质子化有促进作用。
     高岭石颗粒表面的荷电机理研究表明,煤系高岭石颗粒的IEP在3.00左右,PZNPC为5.65,煤泥水中高岭石颗粒各面均荷负电荷,整个颗粒的ξ电位在-60mV左右;煤泥水中K+、Na+离子主要通过压缩溶液中颗粒表面双电层及抑制质子化作用或促进去质子化作用来影响颗粒表面电动特性的;Mg2+、Ca2+离子则主要是通过压缩双电层和在颗粒表面产生特性吸附的方法来降低颗粒表面ξ电位,当离子浓度达到0.1mol/L时,颗粒表面ξ电位接近零值,并在较宽的pH值范围内保持稳定;无机盐类的Al化合物则通过A13+的水解降低溶液pH,减少颗粒表面的去质子化作用来降低煤泥水中微细颗粒表面ξ电位,同时利用粘土类矿物颗粒IEP点较低,Al(OH)3(s)颗粒IEP较高的特点,将Al(OH)3(s)沉淀物覆盖到粘土矿物颗粒表面,从而提高高岭石颗粒IEP值,使IEP值接近煤泥水pH值来降低颗粒表面ξ电位;高岭石颗粒粒度越小,颗粒表面酸碱响应系数α值越大,颗粒表面羟基越多,在溶液中的质子化去质子化能力越强。
     水化作用机理研究表明,高岭石颗粒表面的水化能力要远强于溶液中离子的水化能力;Na+、K+等离子主要是通过改变颗粒表面扩散双电层内游离水的含量以及影响颗粒表面与水分子的直接水化作用能力来使双电层中剪切面产生移动,从而改变颗粒表面水化膜的厚度;Ca2+、Mg2+等高价离子在高岭石颗粒表面的特性吸附,影响了颗粒表面与水分子的直接水化作用能力,而使双电层中剪切面向颗粒表面移动从而减小了表面水化膜的厚度;Al3+离子溶液中高岭石颗粒表面会覆盖一层厚厚的Al(OH)3(s)沉淀物,从而极大地增加了高岭石颗粒的粒度。
     分子动力学模拟研究表明,水分子主要通过类似于“洞水”分子的A型和类似于“连接水”分子的B型两种形式吸附在高岭石颗粒表面,从而形成一层紧密、稳固的水化膜,其中A型是水分子在颗粒表面的主要吸附形式。
One of the vital reasons why it is difficult to achieve sedimentation and clarification of the high marlaceous coal slurry is that there are a lot of fine clay mineral particles in the slurry. Thick hydration layers will be formed on the surfaces of clay mineral particles in the aqueous solutions to increase the repulsive hydration force between two particles because of the large number of hydrophilic groups of surface. The conventional technology of aggregation based on the DLVO theory cannot make these fine particles agglomerate and settle effectively. Thus, to study the hydration mechanism and look for ways to crack the hydration layers on clay mineral particle surfaces are the important parts of high efficiency method of high marlaceous coal slurry treatment. In consideration of kaolinite being a kind of main mineral in high marlaceous coal slurry, in this work the surface physicochemical characteristics, and effects of solution chemical properties and surface charging characteristics on hydration of kaolinite particles have been researched based on the test analysis, theoretical calculations and computer simulations methods. In addition the hydration mechanism of kaolinite particles has been analyzed and the hydration model has been established according to molecular dynamic simulation. This work will provide a theoretical support for cracking hydration layer on the surface of kaolinite particles and high efficiency clarification treatment of high marlaceous coal slurry.
     The research results of the physicochemical characteristics of kaolinite surface and the interaction between particle surface and coal slurry show that kaolinite particle surface contains a lot of hydroxyl groups such as> SiOH and> A1OH. These hydroxy groups will produce protonation at low pH solutions resulting in the increasing of solution pH and the numbers of surface hydroxyl groups, on the contrary produce deprotonation at high pH solutions resulting in the reducing of solution pH and the increasing of the numbers of> SiO and> A1O groups. In alkaline slurry, kaolinite can reduce the solution pH value, and the other elements in the structure of kaolinite particles and adsorbed on surface can dissolve into the solutions, thereby increasing the concentration of the solution metal cations. The presence of metal cations in the solutions can restrain the protonation of the kaolinite particle surfaces, and promote the deprotonation of the kaolinite particle surfaces inversely.
     The research results of kaolinite surface charging characteristics shows that the IEP and PZNPC of kaolinite are around pH3.00and pH5.65respectively. All the surfaces of kaolinite are negatively charged and theζpotential of entire kaolinite particle is around-60mV. The K+and Na+ionsaffect the kaolinite electrokinetic properties by compressing the electrical double layer of the particles and weakening the protonation or strengthening the deprotonation of the kaolinite particle surfaces. The Mg2+and Ca2+ionsreduce the absoluteζpotential of kaolinite particles by compressing the electrical double layer of the particles and having specific adsorption on the kaolinite particle surfaces. Once the ion concentration of Mg2+and Ca2+increases to0.1mol/L, theζpotential of entire kaolinite particle becomes around zero and keeps steady in a lager range of solution pH. The aluminiumcompound inorganic salts can decrease the deprotonation of the kaolinite particles by reducing the solution pH caused by the hydrolysis of Al3+ions, resulting in theζpotential of kaolinite particles decreasing. Additionally, on account of the low IEP of clay mineral particlesand high IEP ofAl(OH)3(S)particles, once the A1(OH)3(S)precipitate onto the particle surface, the IEP of particles with A1(OH)3(S) on surfacewill increase to approach the pH of coal surry and reduce theζpotential of the entire particles. The smaller the size of kaolinite particle is, the larger the acid-base response coefficientα value is, and the more hydroxyl groups there are on the particle surface, and the stronger the protonation/deprotonation capability of particles is.
     The research results of the hydration mechanistic of kaolinite particle surfaces prove that the hydration capability of kaolinite particle surfaces is stronger than that of ions in solutions. The K+and Na+ions can make the shear plane in the electric double layer moves by changing the free water content in the diffuse electric double layer and affecting the hydration capacity between water molecules and kaolinite particle surfaces, resulting in the changing of the thickness of hydration layers on the particle surfaces. The Mg2+and Ca2+ionscan make the shear plane move to the particle surfaces and reduce the thickness of hydration layer by having specific adsorption on the kaolinite particle surfaces which can affect the surfaces hydration capacity. In the Al3+ions solution the A1(OH)3(S) will deposit on the kaolinite particle surfaces and increase the size of kaolinite particles greatly.
     The molecular dynamics simulation shows that the water molecules adsorb on the surface of kaolinite particles to form a dense, firmhydration layer in two types. The water molecules are similar to the "hole water" in type A, and the water molecules are similar to the "connect water" in type B. Type A is the major adsorption form of water molecules on the surface of kaolinite surfaces.
引文
[1]王和德.2010年中国能源与世界能源生产和消费对比[J].煤炭工程,2012(1):86-90.
    [2]欧阳文喜,谢德泳,张天昊.中国能源消耗与经济增长-基于IPAT脱钩指数的脱钩分析[J].中南财经政法大学研究生学报,2013(1):21-27.
    [3]姚强.洁净煤技术[M].北京:化学工业出版社,2007.
    [4]陈清如.发展洁净煤技术推动节能减排[J].高校科技与产业化,2008(3):65-67.
    [5]王倩倩.基于灰色模糊的煤泥水加药控制系统研究[D].太原:太原理工大学,2012.
    [6]张明青,刘炯天,王永田.水质硬度对煤泥水中煤和高岭石颗粒分散行为的影响[J].煤炭学报,2008,33(9):1058-1062.
    [7]王广德.2012年煤炭工业改革发展情况[J].煤矿支护,2013(2):1-4.
    [8]张东晨,张明旭,陈清如.煤泥水处理中絮凝剂的应用现状及发展展望[J].选煤技术,2004(4):1-3.
    [9]沈华军.济西矿488m深井冻结施工技术[J].煤炭技术.2004(2):60-62.
    [10]陈忠杰,闵凡飞,朱金波,刘令云.高泥化煤泥水絮凝沉降试验研究[J].煤炭科学技术,2010,38(9):174-178.
    [11]张明旭.选煤厂煤泥水处理[M].徐州:中国矿业大学出版社.2005.
    [12]温雪峰,李昌平,关嘉华,陈亚伟,段晨龙,浮选尾煤煤泥水特性及沉降药剂的选择性研究,煤炭工程,2004(2):55-57.
    [13]张敏,王永田,刘炯天.矿物型凝聚剂用于煤泥水澄清[J].中国煤炭,2003,29(10):46-47.
    [14]Sposito G. The Surface Chemistry of the Soils[M]. New York:Oxford University Press,1996.
    [15]Wieland E, Strum W. Dissolution kinetics of kaolinite in acidic aqueous solutions at 25°C[J]. Geochim Cosmochim Acta,1992(56):3339-3355.
    [16]张明青,刘炯天,周晓华,李小兵.煤泥水中主要金属离子的溶液化学研究[J].煤炭科学技术.2004,32(2):14-16.
    [17]闵凡飞,赵晴,李宏亮,等.煤泥水中高岭土颗粒表面荷电特性研究[J].中国矿业大学学报,2013,42(2):284-290.
    [18]张景,王泽南,宋树磊.煤泥水pH值对絮凝沉降效果的影响[J].洁净煤技 术,2011,17(5):16-18.
    [19]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988.
    [20]Lyklema J. Points of zero charge in the presence of specific adsorption[J]. Journal of Colloid and Interface Science,1984(99):109-117.
    [21]Tripathy T. De B R. Flocculation:A New Way to Treat the Waste Water[J]. Journal of Physical Sciences,2006(10):93-127.
    [22]Hunter R J, James M. charge reversal of kaolinite by hydrolyzable metal ions: an electroacoustic study [J]. Clays and Clay Minerals,1992(40):644-649.
    [23]张明青.煤泥水中钙离子的吸附规律及机理研究[D].北京:中国矿业大学,2003.
    [24]Rao F, Ramirez-Acosta F J, Sanchez-Leija R J, Song S, Lopez-Valdivieso A. Stability of kaolinite dispersions in the presence of sodium and aluminum ions[J]. Applied Clay Science,2011(51):38-42.
    [25]Parsons D F, Ninham B W. Surface charge reversal and hydration forces explained by ionic dispersion forces and surface hydration [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011(383):2-9.
    [26]刘令云,闵凡飞,张明旭,等.不同密度级原煤的泥化特性[J].煤炭学报,2012,37(增1):182-186.
    [27]Sabah E. Erkan Z E. Interaction mechanism of flocculants with coal waste slurry[J]. Fuel,2006(85):350-359.
    [28]刘亚川,龚焕高,张克仁.石英与长石矿物结晶化学特性与药剂作用机理[J].中国有色金属学报,1992,2(4):21-25.
    [29]蔡红,王贞尧,张干诚,吴梅梅,黄毓敏.石英微粉表面结构对硬硅钙石中空二次粒子形貌的影响[J].无机材料学报,1999,14(3):431-436.
    [30]Ma C, Eggleton R A. Surface layer types of kaolinite:a high resolution transmission electron microscope study[J]. Clays Clay Miner,1999(47):181-191.
    [31]Tombacz E, Szekeres M. Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite[J]. Appl Clay Sci,2006(34): 105-124.
    [32]曾凡,胡永平.矿物加工颗粒学[M].徐州:中国矿业大学出版社,2001.
    [33]Naik P K, Rama Reddy P S, Misra V N. Interpretation of interaction effects and optimization of reagent dosages for fine coal flotation[J]. International journal of mineral processing,2005(75):83-90.
    [34]Somasundaran P, Mehta S C, Yu X, Krishnakumar S. Colloid Systems and Interfaces Stability of Dispersions through Polymer and Surfactant Adsorption[J]. in Birdi K S (Ed), Handbook of Surface and Colloid Chemistry[M].3rd edition. London: CRC press,2009.155-196.
    [35]Lu S, Pugh R J, Forssberg E. Interfacial Separation of Particles[M]. Amsterdam: Elsevier,2005.
    [36]李亚萍,李跃金.粒度组成对煤泥水沉降影响的研究[J].广东化工,2011,38(6):312-314.
    [37]孙华峰.DLVO理论在煤泥水絮凝机理中的应用分析[J].选煤技术,2013(1):3941.
    [38]Tertre E, Castet S, Berger G, Loubet M, Giffaut E. Surface chemistry of kaolinite and Na-montmorillonite in aqueous electrolyte solutions at 25 and 60°C: Experimental and modeling study[J]. Geochimica et Cosmochimica Acta, 2006(70):4579-4599.
    [39]Benson SW. Thermochemical Kinetics[M]. New York:Wiley-Interscience, 1976.41-143.
    [40]Xiao F, Ma J, Yi P, Huang J C. Effects of low temperature on coagulation of kaolinite suspensions[J]. Water Research,2008(42):2983-2992.
    [41]Song S, Lopez-Valdivieso A, Reyes-Bahena J L, Bermejo-Perez H I, Trass O. Hydrophobic Flocculation of Galena Fines in Aqueous Suspensions[J]. Journal of Colloid and Interface Science,2000(227):272-281.
    [42]Ren R, Li Y, Zhang S, Wang J, Luan Z. Flocculation of kaolin suspension with the adsorption of N, N-disubstituted hydrophobically modified polyacrylamide[J]. Colloids and Surfaces A:Physicochem Eng Aspects, 2008(317):388-393.
    [43]Derjaguin BV, Landau L. Theory of molecular interaction[J]. Acta Physicochem, 1941(14):633-668.
    [44]Verwey E J W, Overbeek J T G. Theory of the stability of lyophobic colloids[M]. Amsterdam:Elsevier,1948.
    [45]Glazman Y M. Colloid Stability in Aqueous and Non-Aqueous Media[J]. in Discussions of The Faraday Society, London:The Faraday Society, 1966.255-256.
    [46]Song S. Experimental studies on hydrophobic flocculation of coal fines in aqueous solutions and flotation of flocculated coal[J]. International Journal of Oil, Gas and Coal Technology,2008(1):180-192.
    [47]Zbik M S, Frost R L. Micro-structure differences in kaolinite suspensions[J]. Journal of Colloid and Interface Science,2009(339):110-116.
    [48]Gan W, Liu Q. Coagulation of bitumen with kaolinite in aqueous solutions containing Ca2+, Mg2+ and Fe3+:Effect of citric acid[J]. Journal of Colloid and Interface Science,2008(324):85-91.
    [49]Israelachvili J N. Intermolecular and Surface Forces[M],3rd edition, San Diego: Academic,2011.
    [50]Song S, Lu S. Hydrophobic Flocculation of Fine Hematite, Siderite, and Rhodochrosite Particles in Aqueous Solution[J]. Journal of Colloid and Interface Science,1994(166):35-42
    [51]胡岳华,邱冠周,王淀佐.细粒浮选体系中扩展的DLVO理论及应用[J].中南矿冶学院学报,1994,25(3):310-314.
    [52]郭香玲,欧泽深,胡明星.煤泥水悬浮体系中EDLVO理论及应用[J].中国矿业,1999,8(6):66-72.
    [53]张明青,刘炯天,王永田.煤变质程度对煤泥水沉降性能的影响[J].煤炭科学技术,2008,36(11):102-104.
    [54]刘炯天,张明青,曾艳.不同类型黏土对煤泥水中颗粒分散行为的影响[J].中国矿业大学学报,2010,39(1):60-63.
    [55]张明青,刘炯天,李小兵.煤泥水中粘土颗粒对钙离子的吸附试验研究及机理探讨[J].中国矿业大学学报,2004,33(4):547-551.
    [56]张明青,刘炯天,单爱琴,等.煤泥中Ca2+在黏土矿物表面的作用[J].煤炭学报,2005,30(5):637-641.
    [57]刘炯天,冯莉.基于水质调整的煤泥水澄清控制方法[P].中国专利.200710190527.5,2008.
    [58]盖春燕.高泥化煤泥水特性与处理工艺研究[D]:[硕士学位论文].太原:太 原理工大学,2006.
    [59]林喆,杨超,沈正义,亓欣.高泥化煤泥水的性质及其沉降特性[J].煤炭学报,2010,35(2):312-315.
    [60]朱金波,王跃,闵凡飞,等.新集二矿选煤厂煤炭泥化及煤泥沉降絮凝沉降研究[J].煤炭加工与综合利用,2007(6):5-7.
    [61]张明旭,李庆,张东晨,等.几种生物脱硫菌种作为生物抑制剂对人工煤样的浮选脱硫研究[J].选煤技术,2006,(5):79-82.
    [62]徐初阳,郑描,张明旭.浮游选煤中抑制剂的应用及作用机理[J].煤炭学报,2006,31(3):351-354.
    [63]徐初阳,聂容春,张明旭.煤泥浮选中抑制剂的应用研究[J].矿冶工程,2005,25(2):34-35.
    [64]徐初阳,俞海鹰,徐天海.任楼煤矿选煤厂煤泥水絮凝沉降试验研究[J].煤炭科学技术,2009,37(3):112-114.
    [65]吴刚.絮凝剂和凝聚剂在煤泥水处理中的复配作用[J].中国新技术新产品,2013(2):106-108.
    [66]NIE Rongchun, GUO Liying, XU Chuoyang. Study on synthesis and Flocculation property of cation-polyacrylamide[J]. Journal of Coal Science and Engineering, 2008,14(1):143-146.
    [67]聂容春,申秀梅,罗乐,等.光引发合成阳离子聚丙烯酰胺及其性能研究[J].精细石油化工,2011,28(3):53-56.
    [68]杨红霞,程小冬,刘为东.兴隆庄煤矿选煤厂煤泥水沉降试验研究[J].矿业安全与保护,2009,36(6):34-38.
    [69]朱书全,降林华,邹立壮.微细粒煤泥水用絮凝剂的合成与应用[J].中国矿业大学学报,2009,38(4):534-539.
    [70]江慧华,马森,方继敏.微生物絮凝剂产生菌的筛选及其絮凝活性研究[J].安徽农业科学,2011,39(15):8890-8993.
    [71]雷青娟,张正国.微生物絮凝剂产生菌的筛选及絮凝特性的研究[J].安徽农学通报,2011,17(13):29-31.
    [72]刘瑞娟,柴涛.微生物絮凝剂产生菌的筛选与絮凝特性研究[J].安徽农业科学,2011,39(18):11068-11069.
    [73]吴学风,张东晨,姜绍通.酱油曲霉絮凝煤泥水的试验研究[J].煤炭学报, 2007,32(4):433-435.
    [74]张东晨,张明旭,陈清如.疏水性微生物对细粒煤的絮凝试验研究[J].洁净煤技术,2006,12(2):20-22.
    [75]陈洪砚,李铁庆.电絮凝法处理煤泥水的研究阴.环境保护科学,1992,18(1):43-47.
    [76]董宪妹,姚素玲,张凌云.电化学絮凝的应用与发展[J].选煤技术,2008,8(4):132-134.
    [77]董宪姝,姚素玲,候基贵.一种电解法沉降净化煤泥水的方法[P].中国专利,200910073654.6,2009.
    [78]薛玺罡.磁处理及水在煤泥水处理中的应用四.煤炭技术,2000,19(3):30-32.
    [79]Nasser M S, James A E. The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behavior of kaolinite suspensions [J]. Separation and Purification Technology,2006,52(2):241-252.
    [80]Gupta V, Hampton M A, Stokes J R, et al. Particle interactions in kaolinite suspensions and corresponding aggregate structures[J]. Journal of Colloid and Interface Science,2011,359(1):95-103.
    [81]Duran J D G, Ramos-Tejada M M, Arroyo E J, et al. Rheological and electrokinetic properties of sodium montmorillonite suspensions[J]. Journal of Colloid and Interface Science,2000(22):107-117.
    [82]Sabah E, Cen Gize I. An evaluation procedure for flocculation of coal preparation plant tailings[J]. Water Research,2004,38(6):1542-1549.
    [83]Brian K S, Garrison S. Surface charge properties of kaolinite[J]. Clays and Clay Minerals,1997,45(1):85-91.
    [84]Blanco C, Herrero J, Mendioroz S, et al. Infrared studies of surface acidity and reversible folding in palygorskite[J]. Clay and Clay Minerals,1988,36(4): 221-231.
    [85]Kou J, Tao D, Xu G. A study of adsorption of dodecyl amine on quartz surface using quartz crystal microbalance with dissipation[J]. Physicochemical and Engineering Aspects,2010,368(3):75-83.
    [86]Karlsson M, Craven C. Dove P M, et al, Surface Charge Concentrations on Silica in Different 1.0M Metal-Chloride Background Electrolytes and Implications for Dissolution Rates[J]. Aquatic Geochemistry,2001(7):13-32.
    [87]彭陈亮,闵凡飞,赵晴,李宏亮.微细矿物颗粒表面水化膜研究现状及进展综述[J].矿物学报,2012,32(4):515-523.
    [88]Derjaguin B V, Churaev N V. Structural component of disjoining pressure [J]. Journal of colloid and interface science,1974,49(2):249-255.
    [89]Derjaguin B V, Churaev N V. Inclusion of structural forces in the theory of stability of colloids and films [J]. Journal of colloid and interface science,1985, 103(2):542-553.
    [90]Manciu M, Ruckenstein E. The polarization model for hydration/double layer interactions:the role of the electrolyte ions [J]. Advances in Colloid and Interface Science,2004(112):109-128.
    [91]Manciu M, Calvo O, Ruckenstein E. Polarization model for poorly-organized interfacial water: Hydration forces between silica surfaces [J]. Advances in Colloid and Interface Science,2006(127):* 29-42.
    [92]Peng C, Song S, Fort T. Study of hydration layers near a hydrophilic surface in water through AFM imaging[J]. Surface and Interface Analysis,2006(38): 975-980.
    [93]Song S, Peng C, Gonzalez-Olivares M A, Lopez-Valdivieso A, Fort T. Study on hydration layers near nanoscale silica dispersed in aqueous solutions through viscosity measurement[J]. Journal of Colloid and Interface Science,2005,287(1): 114-120.
    [94]Song S, Peng C. Thickness of Solvation Layers on Nano-scale Silica Dispersed in Water and Ethanol[J]. J Dsper Sci Technol,2005,26(2):197-201.
    [95]Zhou W, Song S, Gonzalez-Olivares M A, ALopez-Valdivieso C K, Zhang Y. Experimental Study on Viscosity of Colloidal Silica in Aqueous Electrolytic Solutions. Journal of Dispersion Science and Technology,2008,29(6):842-847.
    [96]苟鹏.煤质对煤泥水性质的影响及处理技术研究[D]:[硕士学位论文].西安:西安建筑科技大学,2008.
    [97]陈双喜,冯敏,方磐,等.安徽淮北等地高岭石有序度研究[J].安徽地质,1992,2(1):60-65.
    [98]刘钦甫,许红亮,张鹏飞,等.煤系不同类型高岭岩中高岭石结晶度的区别 [J].煤炭学报,2000,25(6):576-580.
    [99]徐廷婧,王河锦,等.景德镇地区高岭石红外光谱分析[J].岩石矿物学杂志,2010,29(1):59-66.
    [100]杨晓杰,刘冬明,褚立孔,陈开惠,等.煤系高岭岩成矿机理[J].煤炭学报,2006,31(1):85-89.
    [101]冯莉,刘炯天,张明青,宋玲玲,等.煤泥水沉降特性的影响因素分析[J].中国矿业大学学报,2010,39(5):671-675.
    [102]李冬莲,秦芳,张亚东,等.Ca2+、Mg2+、SO42-、PO43-对晋宁磷矿浮选的影响[J].非金属矿,2013,36(1):27-32.
    [103]Alkan M, Demirbas O, Dogan M. Electrokinetic properties of kaolinite in mono-and multivalent electrolyte solutions[J]. Microporous and Mesoporous Materials,2005(83):51-59.
    [104]Duman O, Tunc S, Cetinkaya A. Electrokinetic and rheological properties of kaolinite in poly(diallyldimethylammonium chloride), poly(sodium 4-styrene sulfonate) and poly(vinyl alcohol) solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2012(394):23-32.
    [105]Rodrigues O M, Araujo A C, Peres A E. Kaolinite microflotation and electrokinetic properties[J]. Miner Metall Process,2011(28):8-12.
    [106]Yukselen Y, Kaya A. Zeta Potential of Kaolinite in The Presence of Alkali, Alkaline Earth and Hydrolyzable Metal Ions[J]. Water Air and Soil Pollution, 2003(145):155-168.
    [107]刘晓文,胡岳华,黄圣生,邱冠周,等.高岭土的化学成分与表面电性研究[J].矿物学报,2001,21(3):443-447.
    [108]张晓萍,胡岳华,黄红军,邓美姣,等.微细粒高岭石在水介质中的聚团行为[J].中国矿业大学学报,2007,36(4):514-517.
    [109]Hiemenz P C. Principles of Colloid and Surface Chemistry[M]. New York: Marcel Dekker,1997. Chapter 11,12.
    [110]王信号.絮凝沉降技术在潘三矿选煤厂煤泥水处理中的应用研究[D]:[硕士学位论文].淮南:安徽理工大学,2011.
    [111]Amirtharajah A, Mills K M. Rapid-mix design for mechanisms of alum coagulation[J]. J Am Water Works Assoc,1982(74):210-216.
    [112]贾瑞皋,薛庆忠.电磁学[M].北京:高等教育出版社,2003.
    [113]Low P F. The Swelling of Clay:Ⅲ. Dissociation of Exchangeable Cations[J]. Soil Sci Soc Am J,1981(45):1074-1078.
    [114]沈钟,王果庭.胶体与表面化学(第二版)[M].北京:化学工业出版社,1997.
    [115]Rosenqvist J, Persson P, Sjoberg S. Protonation and charging of nanosized gibbsite (alpha-Al(OH)(3)) particles in aqueous suspension[J]. LANGMUIR, 2002(18):4598-4604.
    [116]Pommerenk P, Schafran G C. Adsorption of inorganic and organic ligands onto hydrous aluminum oxide:evaluation of surface charge and the impacts on particle and NOM removal during water treatment[J]. Environ Sci Technol, 2005(39):6429-6434.
    [117]王雷,李宏亮,彭陈亮,高丽娜,等.我国煤泥水沉降澄清处理技术现状及发展趋势[J].选煤技术,2013(2):82-86.
    [118]Zhou Z, Gunter W D. The nature of the structural charge of kaolinite. Clays and Clay Minerals,1992(40):365-368.
    [119]Zbik M S, Horn R G. Hydrophobic attraction may contribute to aqueous flocculation of clays[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003(222):323-328.
    [120]Ravisangar V, Brouckaert B M, Amirtharajah A, Sturm T W. The role of solution chemistry in the stability and detachment of cohesive kaolinite particles[J]. Water Science and Technology:Water Supply,2001(1):25-32.
    [121]Schroth B K, Sposito G. Surface Charge Properties of Kaolinite[J]. Clays and Clay Minerals,1997(45):85-91.
    [122]Leboda R, Turov V V, Marciniak M, Malygin A A, Malkov A A. Characteristics of the Hydration Layer Structure in Porous Titania-Silica Obtained by the Chemical Vapor DepositionMethod[J]. Langmuir,1999(15):8441-8446.
    [123]Nakasako M. Large-scale networks of hydration water molecules around proteins investigated by cryogenic X-ray crystallography[J]. Cell Mol Biol,2001,47(5): 767-790.
    [124]Alekseyev O L, Bojko Y P, Pavlova L A. Electroosmosis in concentrated colloids and the structure of the double electric layer[J]. Colloids and Surfaces A: Physicochem Eng Aspects,2003(222):27-34.
    [125]Peng Changsheng, Song Shaoxian, Lu Shouci. Determination of the solvation film thickness of dispersed particles with the method of Einstein viscosity equation[J]. Journal of University of Science and Technology Beijing,2005, 12(4):370-375.
    [126]Sutcu M, Akkurt S, Okur S. Influence of crystallographic orientation on hydration of MgO single crystals[J]. Ceramics International,2009(35):2571-2576.
    [127]Sobolev O, Favre Buivin F, Kemner E, Russina M, Beuneu B, Cuello G J, Charlet L. Water-clay surface interaction:A neutron scattering study [J]. Chemical Physics,2010,374(1-3):55-61.
    [128]Yaminsky V V,Ninham B W, Christenson H K, Pashley R M. Adsorption Forces between Hydrophobic Monolayers[J]. Langmuir,1996, (12):1936-1943.
    [129]孙寅.新金属油墨颗粒形状对油墨粘度及光泽的影响[J].包装工程,2006,27(5):41-43.
    [130]徐培苍,张晓云,李如璧,王永强,侯弘,等.蒙脱石晶体结构和水结构的矿物物理特征[J].中国地质科学院西安地质矿产研究所所刊,1991(32):14-30.
    [131]Stern O. Zur theorie der electrolytischen doppelschicht [J]. Z Electrochem, 1924(132):508-516.
    [132]Grahame D C. The Electrical Double Layer and the Theory of Electrocapillarity[J]. Chemical Reviews,1947,41(3):421-598.
    [133]Marcus Y. Thermodynamics of solvation of ions. Part 5. Gibbs free energy of hydration at 298.15 K[J]. Journal of the Chemical Society, Faraday Transactions, 1991, (87):2995-2999.
    [134]袁俊生,包捷.钾、钠、氯离子水化现象的分子动力学模拟[J].计算机与应用化学,2009,26(10):1295-1299.
    [135]Damir R T, Russell J H, Peng Z. Comparison of glass hydration layer thickness measured by transmission electron microscopy and nanoindentation[J]. Materials Letters,2010(64):1041-1044.
    [136]Li H, Wei S, Qing C, Yang J. Discussion on the position of the shear plane [J]. Journal of Colloid and Interface Science,2003(258):40-44.
    [137]Solc R, Gerzabek M H, Lischka H, Tunega D. Wettability of kaolinite (001) surfaces-Molecular dynamic study [J]. Geoderma,2011(169):47-54.
    [138]徐加放,付元强,田太行,孙泽宁,刘洪军,孙中富.蒙脱石水化机理的分子模拟[J].钻井液与完井液,2012,29(4):1-4.
    [139]Yang W, Zaoui A. Uranyl adsorption on (001) surfaces of kaolinite:A molecular dynamics study [J]. Applied Clay Science,2013(81):98-106.
    [140]牛继南,强颖怀.高岭石-水体系中水分子结构的分子动力学模拟[J].物理化学学报,2009,25(6):1167-1172.
    [141]李春艳,刘华,刘波涛.分子动力学模拟基本原理及研究进展[J].广州化工,2011,39(4):11-13.
    [142]孙伟,常明,杨保和.分子动力学模拟纳米晶体铜的结构与性质[J].物理学报,1998,47(4):591-597.
    [143]Berendsen H J C, Postma J P M, Gunsteren W F, Hermans J. Interaction models for water in relation to protein hydration. In Intermolecular Forces; Pullman B, Ed. Amsterdam:D Reidel,1981.331.
    [144]Bish D L. Rietveld refinement of the kaolinite structure at 1.5K [J]. Clays and Clay Minerals,1993,41(6):738-744.
    [145]Cygan R T, Liang J J, Kalinichev A G. Molecularmodels ofhydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. Journal of Physical Chemistry B,2004,108(4):1255-1266.
    [146]Konstantin S S, Daniel B J. Dynamics Study of Structure and Short-time Dynamics of Water in Kaolinite [J]. Journal of Physical Chemistry B,1999,103 (25):5266-5273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700