腐植酸钠复合吸收剂吸收二氧化硫及产物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国内外比较成熟的脱硫技术主要是湿法石灰石-石膏法及循环流化床半干法,但是随着现有电厂烟气脱硫设备运行数量的不断增加和规模的不断扩大,脱硫副产品产量的日益增加,其处理问题也日益变得突出。按照国家节能环保和循环经济发展的要求,理想的烟气脱硫技术应该是无废物产生、可再生循环利用并且无二次污染。所以,可回收硫资源的烟气脱硫技术正成为当前研究的热点和主要方向。而腐植酸钠法烟气脱硫技术正是由于具有无废物产生且无二次污染等特点使其有可能成为替代石灰石-石膏湿法脱硫的新技术之一,具有广阔的应用范围和良好的发展前景。此外,腐植酸钠来源广泛,价格便宜,脱硫后处理产物可用于肥料原料使其在烟气脱硫技术领域更具可行性。因此探索腐植酸钠复合吸收剂吸收二氧化硫的性能对腐植酸钠脱硫技术的进一步发展和应用具有重要的理论价值和现实意义。本文按照脱硫副产物资源化的目标对腐植酸钠复合吸收剂吸收二氧化硫及产物进行相关分析研究,根据实验结果研究了腐植酸钠复合吸收剂吸收二氧化硫的机理及产物后处理方法,为其今后能工业化应用提供理论基础。本文的主要内容包括以下几点:
     1、通过对腐植酸钠氨水复合吸收剂负载在α-氧化铝上并有二氧化氮同时存在的条件下吸收二氧化硫的研究,分析其过程化学反应机理与吸收产物成分,结果发现:在实验条件下二氧化氮的存在有利于负载腐植酸钠氨水复合吸收剂对二氧化硫的吸收,其吸收二氧化硫的最大效率可达98%以上,吸收二氧化氮的最大效率在80%左右,其主要产物为硫酸铵、亚硫酸铵和硝酸铵等。同时动力学实验结果表明,负载腐植酸钠氨水复合吸收剂同时吸收二氧化硫和二氧化氮时分为两个反应区段,即快速反应区段和慢速反应区段。在快速反应区段二氧化硫的分级数为0.291,而二氧化氮的分级数为0.464。在慢速反应区段则无论是二氧化硫还是二氧化氮,反应级数均为0。
     2、通过对污泥进行碱解制备出污泥腐植酸钠后,使用其作为吸收剂在鼓泡反应器内进行了吸收二氧化硫的实验研究,发现污泥腐植酸钠吸收剂对二氧化硫有较好的吸收效果,其吸收量可达0.037gSO2/gSHA-Na。在实验研究条件下,二氧化硫的浓度变化在整个吸收过程可以分为三段:急速下降段,近似水平段,最后经历缓慢升高段。与此同时,整个过程中吸收剂的pH值从最初的10.8开始变化,经历急速下降段、近似水平段的线性下降后在缓慢升高段保持不变,最后维持在约3.4。在通过对污泥腐植酸钠吸收剂与水(同体积)、氢氧化钠(同pH)的吸收比较后发现污泥腐植酸钠无论是吸收二氧化硫持续时间还是吸收效率均优于相比较的水与氢氧化钠。在改变不同工况条件后,得出不同入口二氧化硫浓度及温度对污泥腐植酸钠吸收剂吸收二氧化硫的吸收效率影响较小,但对其吸收持续时间则影响较大,入口浓度越高吸收持续时间越短,温度越高吸收持续时间越短,而有氧气存在的条件下污泥腐植酸钠吸收剂吸收二氧化硫的最大吸收效率高但吸收持续时间则较没有氧气存在的条件下要短。通过对污泥腐植酸钠吸收剂吸收二氧化硫的产物进行分析得到其主要成分是腐植酸、蛋白质、糖类、脂肪及其他一些小分子有机酸等,可以用作制备腐植酸液肥原料,实现污泥资源化利用。
     3、通过使用稀硫酸对腐植酸钠脱硫产物的模型化合物腐植酸在有季铵盐相转移催化剂的条件下的磺化实验研究,得到季铵盐相转移催化剂中四丁基溴化铵的催化效果最好,四丙基溴化铵次之,四乙基溴化铵再次之,而四甲基溴化铵则最差。在四丁基溴化铵为相转移催化剂条件下硫酸浓度为0.98%时就可以与硫酸形成离子对而将其转移到有机相中使腐植酸磺化。当跟对照组无超声作用相比较,发现增加超声作用后腐植酸的磺化度得到了提高,并且超声功率越大,则磺化效果越明显,但是当超声功率增大到一定程度后腐植酸的磺化度变化就不再明显增加,而增加超声作用时间则有助于腐植酸的磺化度提高。通过正交试验设计得到:用相转移催化剂四丁基溴化铵的条件下进行针对磺化腐植酸的优选方案为超声功率为120W,超声作用时间为30分钟,添加相转移催化剂四丁基溴化铵为0.02g,温度控制在85℃为佳,此时磺化度为0.517mg-S/g-HA。
     4、通过对腐植酸钠/[CPL][TBAB]复合吸收剂吸收二氧化硫的过程研究,得出在利用腐植酸钠/[CPL][TBAB]复合吸收剂吸收二氧化硫的吸收过程中,来自混合气体中的二氧化硫首先溶入吸收剂溶液发生溶解平衡和离子平衡而生成HSO3-、SO32-、H+等离子,然后与腐植酸钠所带的的羧基和羟基基团发生反应生成难溶的腐植酸后,亚硫酸氢钠作为亲核试剂与腐植酸片断上的苯环可以发生迈克尔加成反应,从而使腐植酸部分磺化成磺化腐植酸。并且通过计算吸收增强因子判断出:腐植酸钠/[CPL][TBAB]复合吸收剂吸收二氧化硫的吸收反应控制步骤为扩散控制,整个吸收曲线过程可以分成三个阶段,其中第一和第二阶段中φ>6.9×1010因此是由气侧传质阻力控制的化学吸收过程,而在第三阶段φ <50则为气-液侧传质阻力共同控制的过程,此时体系已经不能完全吸收二氧化硫。
     5、通过对腐植酸钠/[CPL][TBAB]复合吸收剂循环吸收二氧化硫的研究,分别考察了循环次数对复合吸收剂吸收二氧化硫效率、吸收量以及复合吸收剂吸收前后pH的影响,得出在使用腐植酸钠/[CPL][TBAB]复合吸收剂吸收二氧化硫工艺时为了得到较高的效率则需要根据工艺要求在排出产物的同时及时补充更换新鲜复合吸收剂以维持较高的吸收效率,而且随着循环次数的增加复合吸收剂吸收二氧化硫的吸收量在逐步降低,这是与复合吸收剂循环使用时的初始pH值的降低相一致。随后在此基础上对复合吸收剂循环吸收二氧化硫的产物分别进行了FTIR、XRD、XPS及离子色谱分析等,得出产物主要是磺化腐植酸及硫酸钠,在磺化腐植酸中硫元素主要是以磺酸R-SO3H形式存在于吸收产物中,氧元素以O–C O与R-SO3H为主要存在形式,碳元素以C-C、C=O与O–C O为主要存在形式。
For the purpose of conducting desulfurization, the wet limestone-gypsum methodand circulating fluidized bed half-dry method are widely used domestically andinternationally. Though mature in practicing, they are not ideal for energy saving andcircular economy, and has become less adequate as the scale of flue gasdesulfurization equipment is enlarging and the by-product is not cyclic utilization.So the technology, which the by-product can be recycled, is becoming a hot spot incurrent research and the main direction on flue gas desulfurization. The method thatuses sodium humate in flue gas desulfurization technology is expected to become avaluable desulfurization technology in our country in the future as it is free fromcreating secondary pollution. Sodium humate desulfurization technology, after yearsof domestic and foreign research and development, will be further developed. Thefeasibility of this technology, the construction and operation in economy, and thedesulfurization by-products utilization, need to be further studied. The study on thesodium humate compound absorbent has a considerable theoretical and practicalsignificance for sodium humate desulfurization technology. In this paper, accordingto the goal of resource recovery the research in sodium humate composite absorbentto absorb sulfur dioxidehas been done. With the result of the experiment, themechanism of sodium humate compound absorbent to absorb sulfur dioxide whichprovides the theoretical foundation for its industrial application in the future isstudied. The main contents and results are summarized as follows:
     1. Sodium humate and ammonia loaded on α-alumina used to absorb sulfurdioxide when the simulated flue gas has nitrogen dioxide. Under this condition, thechemical reaction mechanism and absorption process have been analyzed. It is foundthat the presence of nitrogen dioxide in experimental conditions is conducive forabsorbing sulfur dioxide and the sulfur dioxide absorption efficiency can reachabove98%while the nitrogen dioxide absorption efficiency is about80%. The mainproducts are ammonium sulfate, ammonium sulfate and ammonium nitrate, etc.Through analyzing, the kinetics experimental results show that the desulfurizing process, with sodium humate and ammonia loaded on α-alumina used to absorbsulfur dioxide, is divided into two reaction sections, namely the fast reaction sectionand the slow reaction.The order of reaction on sulfur dioxide is0.291in fast reactionextents, and the order of reaction on nitrogen dioxide is0.464. Meanwhile, in theslow reaction section, either sulfur dioxide or nitrogen dioxide, the order of reactionis0.
     2. The sludge sodium humate absorbent had been prepared from sludge. Theexperimental research has been conducted about the absorbing process of sulfurdioxide in bubbling reactor used the sludge sodium humate absorbent. It is foundthat sodium humate sludge absorbent has better absorption effect for sulphur dioxidethan water, sodium hydroxide. Under the condition of experiment research, theconcentration of sulfur dioxide changes in the absorption process can be divided intothree sections: a rapid decline section, an approximate horizontal section, and a slowrise section. Meanwhile the pH value of sludge sodium humate absorbent in thisprocess changes from the original10.8to a constant about3.4. It is concluded thatdifferent inlet sulfur dioxide concentration and temperature on sludge sodiumhumate absorbent to absorb sulfur dioxide have little effect on the absorptionefficiency and have a significant effect on the absorption duration. The higher theinlet concentration is, the shorter the duration is. With the presence of oxygen theabsorption efficiency of sludge sodium humate absorbent on sulfur dioxide is higherbut the duration is shorter than without the presence of oxygen. Through analyze theproduct, it can be concluded that the main ingredient in product is humic acid,protein, carbohydrate, fat and other small molecule organic acids, etc.
     3. Phase-transfer catalysis (PTC) is a synthetic organic method and manufacturingprocess technology that is applied successfully in a wide range of organic reactions.A sulfuric acid/humic acid (HA) system with quaternary ammonium salts asphase-transfer catalysts were employed in the sulfonation of humic acid. Fourquaternary ammonium salts catalytic systems with ultrasound were carried out,tetrabutyl ammonium bromide behaved as the optimum active catalyst, and thesulfonation degree was above0.407mg-S/g-HA. In order to attain a highersulfonation degree of humic acid, orthogonal experiments of dilute sulfuric acidsulfonated humic acid system with tetrabutyl ammonium bromide as phase-transfercatalysts were carried out in the flask to investigate the effect of main factors, namely, temperature, ultrasound power, ultrasound time and catalyst dose onsulfonation degree. The results of orthogonal experiments showed that the optimalcondition for humic acid sulfonation should be A4B4C1D1, namely, temperature,ultrasound power density, ultrasound time and catalyst dose were85°C,12W ml-1,30min and0.02g, respectively. The verification experiments were carried out inflasks at the corresponding parameters. The results of verification experiments in theshaking flasks showed that sulfonation degree was0.517mg-S/g-HA. Theconclusion in the research would be beneficial for application of dilute sulfuric acidsulfonated humic acid.
     4. The study on the sodium humate/[CPL][TBAB] composite absorbent in thesulfur dioxide absorption process has been conducted. It is found that sulfur dioxidefrom the mixed gas first dissolve in the absorbent occurring dissolving balance andion balance in the process used sodium humate/[CPL][TBAB] composite absorbent.HSO3-, SO32-and H+generated in this process. And then H+react with carboxyl andhydroxyl groups to generate the undissolved humic acid, sodium bisulfite asnucleophilic reagent react with fragments of humic acid on the benzene ring asMichael addition reaction, which makes part of humic acid into sulfonated humicacid. The whole process of absorption curve can be divided into three stages,including the first and second stage is controlled by the gas side mass transferresistance of chemical absorption process, while in the third stage is common controlprocess for gas-liquid mass transfer. The system has not fully absorbed sulfurdioxide at the third stage.
     5. By means of the research of sodium humate/[CPL][TBAB] compoundabsorbent for circulation absorption of sulfur dioxide, respectively investigates thecycles of composite absorbent to absorb sulfur dioxide efficiency, absorption and thepH of composite absorbent absorption before and after the absorption. It isconcluded that the fresh composite absorbent should be supply timely to replace theused absorbent in order to maintain higher absorption efficiency. With the increase ofcycling times the amount of compound absorbent to absorb sulfur dioxide ingradually reduce, when it is used with the composite absorber cycle, lower initial pHvalue of consistent. Then on this basis, the product of this process have been testedrespectively by the FTIR, XRD, XPS and ion chromatographic analysis, etc..Products are mainly consists of sodium sulfate and sulfonated humic acid and sulfur element in sulfonated humic acid mainly exists in the form of sulfonic acid R-SO3Hin absorption products, oxygen element in the form of sulfonic acid R-SO3H andO–C O, carbon element in the form of C-C, C=O and O–C O.
引文
1.蒋文举;宁平,大气污染控制工程[M].四川大学出版社:2001.
    2.张钟宪,环境与绿色化学[M].清华大学出版社有限公司:2005.
    3. Smith, S. J.; Aardenne, J. v.; Klimont, Z.; Andres, R. J.; Volke, A.; Delgado Arias, S.,Anthropogenic sulfur dioxide emissions:1850–2005[J]. Atmospheric Chemistry and Physics2011,11(3),1101-1116.
    4.刘成武;史磊,身边的环保[M].中国林业出版社:2004.
    5.王永刚,双碱法用于旋转填充床脱除气体中二氧化硫的研究[D].硕士学位论文集:北京化工大学2009.
    6.向仁军;柴立元;张青梅;肖劲松;赵大为,中国典型酸雨区大气湿沉降化学特性[J].中南大学学报(自然科学版)2012,43(1).
    7. Abbasi, T.; Poornima, P.; Kannadasan, T.; Abbasi, S., Acid rain: past, present, and future.International Journal of Environmental Engineering2013,5(3),229-272.
    8. Schreurs, M. A., Transboundary cooperation to address acid rain: Europe, North America,and East Asia compared[J]. Beyond resource wars: Scarcity, environmental degradation, andinternational cooperation,2011:89-116.
    9. Fan, Y.; Hu, Z.; Zhang, Y.; Liu, J., Deterioration of compressive property of concrete undersimulated acid rain environment[J]. Construction and Building Materials2010,24(10),1975-1983.
    10.高海伶,季静,王罡.植物吸收灰霾中二氧化硫的代谢综述[OL].[2013-07-04].中国科技论文在线,http://www.paper.edu.cn/releasepaper/content/2013.07-68
    11.冯宗炜.中国酸雨对陆地生态系统的影响和防治对策[J].中国工程科学,2005,2(9):5-11.
    12.王小婧;贾黎明,森林保健资源研究进展[J].中国农学通报2010,26(12),73-80.
    13. Luan, X. Q.; Dong, Y. C., A Study on Impact of Air Pollution upon Public PhysicalFitness[J]. Advanced Materials Research2013,610,665-668.
    14. Lin, C.; Chen, S.J.; He, W.; Zhao, L.C., Effect of Acid Rain on Corrosion Behavior of MildSteel[J]. ournal of Iron and Steel Research2011,23(6),18-23.
    15. Brimblecombe, P.; Grossi, C. M.; Harris, I., Climate change critical to cultural heritage[J].In Survival and Sustainability, Springer:2011;195-205.
    16. De la Fuente, D.; Vega, J.; Viejo, F.; Díaz, I.; Morcillo, M., City scale assessment model forair pollution effects on the cultural heritage[J]. Atmospheric Environment2011,45(6),1242-1250.
    17. Corvo, F.; Reyes, J.; Valdes, C.; Villase or, F.; Cuesta, O.; Aguilar, D.; Quintana, P.,Influence of air pollution and humidity on limestone materials degradation in historical buildingslocated in cities under tropical coastal climates[J]. Water, Air, and Soil Pollution2010,205(1-4),359-375.
    18.高庆先;师华定;张时煌;吕连宏;陈东升;杜吴鹏;付加锋,空气污染对气候变化的影响与反馈研究[J].资源科学2012,34(8)1384-1391.
    19.赵进文;范继涛,经济增长与能源消费内在依从关系的实证研究[J].经济研究2007,8,31-42.
    20.李文华;翟炯,中国动力煤的灰分硫分和发热量[J].煤炭转化1994,17(1),12-25.
    21.环保部.中国环境状况公报[M].2012.
    22. Li, W., Research on Effect Evaluation of Flue Gas Desulfurization Transformation forCoal-fired Power Plants[J]. Economic Management Journal2013,2(3),93-98.
    23.王昊天,谁为雾霾埋单[J].新理财2013,(2),22-22.
    24. Franco, A.; Diaz, A. R., The future challenges for “clean coal technologies”: joiningefficiency increase and pollutant emission control[J]. Energy2009,34(3),348-354.
    25. Brown, M. A.; Levine, M. D.; Short, W.; Koomey, J. G., Scenarios for a clean energyfuture[J]. Energy policy2001,29(14),1179-1196.
    26. Fang, S. L.; Huang, S. Y.; Wen, W. Q.; Du, Y. Q.; Liu, Y., Numerical Simulation Researchfor the Optimization of the Wet Flue Gas Desulfurization Tower[J]. Applied Mechanics andMaterials2012,170,3662-3667.
    27. Cui, G. W.; Sun, M. Y.; Guo, Q. K.; Li, Y. J., A Brief Analysis of Coal Desulfurizationbefore Combustion[J]. Advanced Materials Research2012,512,2477-2481.
    28. Murakami, T.; Kurita, N.; Naruse, I., Theoretical Study on Desulfurization Characteristics ina Fluidized Bed Combustor[J]. Journal of High Temperature Society2011,36,41-46.
    29. Srivastava, R. K.; Jozewicz, W., Flue gas desulfurization: The state of the art[J]. Journal ofthe Air&Waste Management Association2001,51(12),1676-1688.
    30. Liu, Y. A. Physical cleaning of coal: present and developing methods [M]; Marcel Dekker,Inc., New York, NY:1982.
    31. Wheelock, T. D., Coal desulfurization: chemical and physical methods: based on asymposium sponsored by the Division of Fuel Chemistry at the173rd meeting of the AmericanChemical Society, New Orleans, La.[J]. American Chemical Society:1977; Vol.64.
    32. Eligwe, C. A., Microbial desulphurization of coal[J]. Fuel1988,67(4),451-458.
    33. Demirbas, A.; Balat, M., Coal desulfurization via different methods[J]. Energy Sources2004,26(6),541-550.
    34. Isbister, J. D., Acinetobacter species and its use in removing organic sulfur compounds[P].Google Patents:1989.
    35. Honaker, R.; Singh, N.; Govindarajan, B., Application of dense-medium in an enhancedgravity separator for fine coal cleaning[J]. Minerals Engineering2000,13(4),415-427.
    36. Rubiera, F.; Hall, S. T.; Shah, C. L., Sulfur removal by fine coal cleaning processes[J]. Fuel1997,76(13),1187-1194.
    37. Demirba, A., Demineralization and desulfurization of coals via column froth flotation anddifferent methods[J]. Energy conversion and management2002,43(7),885-895.
    38. Ayhan F D, Abakay H, Saydut A. Desulfurization and deashing of Hazro coal via a flotationmethod[J]. Energy&fuels,2005,19(3):1003-1007.
    39. Maxwell, E.; Kelland, D., High gradient magnetic separation in coal desulfurization.Magnetics[J], IEEE Transactions on1978,14(5),482-487.
    40. Uslu, T.; Atalay, ü., Microwave heating of coal for enhanced magnetic removal of pyrite[J].Fuel processing technology2004,85(1),21-29.
    41. Abdollahy, M.; Moghaddam, A.; Rami, K., Desulfurization of mezino coal usingcombination of ‘flotation’and ‘leaching with potassium hydroxide/methanol’[J]. Fuel2006,85(7),1117-1124.
    42. Mukherjee, S.; Borthakur, P., Chemical demineralization/desulphurization of high sulphurcoal using sodium hydroxide and acid solutions[J]. Fuel2001,80(14),2037-2040.
    43. Cheng, J.; Zhou, J.; Liu, J.; Zhou, Z.; Huang, Z.; Cao, X.; Zhao, X.; Cen, K., Sulfur removalat high temperature during coal combustion in furnaces: a review[J]. Progress in Energy andCombustion Science2003,29(5),381-405.
    44. Sugawara, K.; Tozuka, Y.; Sugawara, T.; Nishiyama, Y., Effect of heating rate andtemperature on pyrolysis desulfurization of a bituminous coal[J]. Fuel processing technology1994,37(1),73-85.
    45. Kim, D. J.; Gahan, C. S.; Akilan, C.; Choi, S.Y.; Kim, B.G., Microbial desulfurization ofthree different coals from Indonesia, China and Korea in varying growth medium[J]. KoreanJournal of Chemical Engineering2013,1-8.
    46.李春桃;徐兵;梁玉祥,复合型煤粘结剂的成型及固硫效果研究[J].洁净煤技术2010,(002),72-75.
    47. Li, S.; Fang, M.; Yu, B.; Wang, Q.; Luo, Z. In Desulfurization Characteristics of Fly AshRecirculation and Combustion in the Circulating Fluidized Bed Boiler[C], Proceedings of the20th International Conference on Fluidized Bed Combustion, Springer:2010;941-946.
    48.汤龙华;岳林海;吴晓蓉;李宁;曹欣玉;岑可法,纳米CaCO3作固硫剂的基础研究[J].工程热物理学报2000,21(6),764-768.
    49.徐承焱;孙体昌;莫晓兰;刘杰;杨大伟,我国黏土矿物尾矿的现状及利用途径[J].中国矿业2009,18(6),8.
    50.赵晓英;陈曙光,电石渣固硫性能的研究[J].污染防治技术1999,12(3),152-153.
    51.兰泽全;曹欣玉;周俊虎;程军;刘建忠;岑可法,黑液水煤浆燃烧固硫特性及机理[J].化工学报2008,59(2),484-489.
    52.杨剑锋;刘豪;谢骏林;邱建荣;王泉海,煤洁净燃烧高效钙基复合固硫剂的研究进展[J].煤炭转化2003,26(4),10-15.
    53.陆轶青,我国重工业企业烟气脱硫技术及存在的问题[J].环境工程2011,29(1),80-82.
    54. Hudson, J. L.; Rochelle, G. T. Flue gas desulfurization [M]; American Chemical Society,Washington, DC:1982.
    55. Kikkinides, E.; Yang, R., Gas separation and purification by polymeric adsorbents: flue gasdesulfurization and sulfur dioxide recovery with styrenic polymers[J]. Industrial&engineeringchemistry research1993,32(10),2365-2372.
    56. Ukawa, N.; Takashina, T.; Oshima, M.; Oishi, T., Effects of salts on limestone dissolutionrate in wet limestone flue gas desulfurization[J]. Environmental progress1993,12(4),294-299.
    57. Stehouwer, R.; Sutton, P.; Fowler, R.; Dick, W., Minespoil amendment with dry flue gasdesulfurization by-products: element solubility and mobility[J]. Journal of environmental quality1995,24(1),165-174.
    58. Xu, G.; Guo, Q.; Kaneko, T.; Kato, K., A new semi-dry desulfurization process using apowder-particle spouted bed[J]. Advances in Environmental Research2000,4(1),9-18.
    59. Gutiérrez Ortiz, F.; Vidal, F.; Ollero, P.; Salvador, L.; Cortes, V.; Gimenez, A., Pilot-planttechnical assessment of wet flue gas desulfurization using limestone[J]. Industrial&engineeringchemistry research2006,45(4),1466-1477.
    60. Li, R.; Yan, K.; Miao, J.; Wu, X., Heterogeneous reactions in non-thermal plasma flue gasdesulfurization[J]. Chemical engineering science1998,53(8),1529-1540.
    61. Mizuno, A.; Clements, J. S.; Davis, R. H., A method for the removal of sulfur dioxide fromexhaust gas utilizing pulsed streamer corona for electron energization[J]. Industry Applications,IEEE Transactions on1986,(3),516-522.
    62. Licki, J.; Chmielewski, A.; Iller, E.; Zimek, Z.; Mazurek, J.; Sobolewski, L., Electron-beamflue-gas treatment for multicomponent air-pollution control[J]. Applied Energy2003,75(3),145-154.
    63. Jozewicz, W.; Jorgensen, C.; Chang, J. C.; Sedman, C. B.; Brna, T. G., Development andpilot plant evaluation of silica-enhanced lime sorbents for dry flue gas desulfurization[J]. JAPCA1988,38(6),796-805.
    64. Davini, P., Flue gas desulphurization by activated carbon fibers obtained frompolyacrylonitrile by-product[J]. Carbon2003,41(2),277-284.
    65. Pennline, H. W.; Hoffman, J. S., Flue gas cleanup using the Moving-Bed Copper OxideProcess[J]. Fuel processing technology2013,114,109-117.
    66. Yu, J. L.; Song, C. L.; Yin, F. K.; Dou, J. X., A Review on Research of Carbonaceous andCarbon-Supported Sorbents for Flue Gas Desulfurization[J]. Applied Mechanics and Materials2013,295,1497-1501.
    67. Tsuji, K.; Shiraishi, I., Combined desulfurization, denitrification and reduction of air toxicsusing activated coke:1. Activity of activated coke[J]. Fuel1997,76(6),549-553.
    68.金文海;施凤甡,旋转喷雾干燥法烟气脱硫工艺优化及烟气实测分析[J].三峡环境与生态2011,33(5),34-37.
    69.袁莉莉,半干法烟气脱硫技术研究进展[J].山东化工2009,38(8),23-25.
    70. Kallinikos, L.; Farsari, E.; Spartinos, D.; Papayannakos, N., Simulation of the operation ofan industrial wet flue gas desulfurization system[J]. Fuel processing technology2010,91(12),1794-1802.
    71. Shi, Y. X.; Pan, W. H.; Liu, J. P., The Design and Development of a Mass BalanceCalculation Software for Sodium-Calcium Dual-Alkali Scrubbing Flue Gas Desulfurization[J].Applied Mechanics and Materials2012,155,27-31.
    72. Chen, H.; Ge, H.; Dou, B.; Pan, W.; Zhou, G., Thermogravimetric Kinetics ofMgSO3·6H2O Byproduct from Magnesia Wet Flue Gas Desulfurization[J]. Energy&Fuels2009,23(5),2552-2556.
    73. Liu, H.-G.; Peng, J.; Ye, S.-C.; Jiang, K., Experimental Study on Flue Gas DesulphurizationSystem of Wet Falling-film Tower by Ammonia Method[J]. Environmental science&technology2011,10,041.
    74. Lan, T.; Zhang, X.; Yu, Q.; Lei, L., Study on the Relationship between Absorbed S (IV) andpH in the Seawater Flue Gas Desulfurization Process[J]. Industrial&engineering chemistryresearch2012,51(12),4478-4484.
    75. Guo, R. T.; Pan, W. G.; Zhang, X. B.; Wu, J.; Ren, J. X. In Dissolution Rate of Limestone forWet Flue Gas Desulfurization in the Presence of Citric Acid [C], ASME:2011.
    76. Marchant, W. N.; May, S.; Simpson, W.; Winter, J.; Beard, H. Analytical chemistry of thecitrate process for flue gas desulfurization [R]; Bureau of Mines, Salt Lake City, UT (USA). SaltLake City Research Center:1980.
    77. Johnstone, H., Recoverry of Sulfur Dioxide from Waste Gases Equilibrium Partial VaporPressures over Solutions of the Ammonia-Sulfur Dioxide-Water System[J]. Industrial&Engineering Chemistry1935,27(5),587-593.
    78.尹爱君;刘肇华;张宁,聚铝处理低浓度SO2烟气的研究[J].中南工业大学学报(自然科学版)1999,30(3),260-262.
    79. Hikita, H.; Asai, S.; Tsuji, T., Absorption of sulfur dioxide into aqueous sodium hydroxideand sodium sulfite solutions[J]. AIChE Journal1977,23(4),538-544.
    80. Helfritch, D. J., Process for removing SO2and fly ash from flue gas. Google Patents:1990.
    81.王智友;陈雯;耿家锐,有机胺烟气脱硫现状[J].云南冶金2009,38(1),39-42.
    82.李喜玉.可再生胺法烟道气脱硫吸收解吸一体化[D].华南理工大学,2011.
    83.郑争志;李钰;王琪;陈亚中;崔鹏,二乙烯三胺-柠檬酸溶液吸收SO2过程[J].化学反应工程与工艺2010,26(2),167-172.
    84.薛娟琴;官欣;王永亮;孟令嫒;王玉洁,有机胺溶液吸收SO2的研究[J].有色金属(冶炼部分)2009,6,10-13.
    85. Jiang, X.; Liu, Y.; Gu, M., Absorption of sulphur dioxide with sodium citrate buffer solutionin a rotating packed bed[J]. Chinese Journal of Chemical Engineering2011,19(4),687-692.
    86. Wu, W.; Han, B.; Gao, H.; Liu, Z.; Jiang, T.; Huang, J., Desulfurization of flue gas: SO2absorption by an ionic liquid[J]. Angewandte Chemie International Edition2004,43(18),2415-2417.
    87. Yuan, X. L.; Zhang, S. J.; Lu, X. M., Hydroxyl ammonium ionic liquids: Synthesis,properties, and solubility of SO2[J]. Journal of Chemical&Engineering Data2007,52(2),596-599.
    88. Lee, K. Y.; Gong, G. T.; Song, K. H.; Kim, H.; Jung, K.-D.; Kim, C. S., Use of ionic liquidsas absorbents to separate SO2in SO2/O2in thermochemical processes to produce hydrogen[J].International Journal of Hydrogen Energy2008,33(21),6031-6036.
    89. Guo, B.; Duan, E.; Ren, A.; Wang, Y.; Liu, H., Solubility of SO2in caprolactam tetrabutylammonium bromide ionic liquids[J]. Journal of Chemical&Engineering Data2009,55(3),1398-1401.
    90. Zhao, Y.; Han, Y.; Chen, C., Simultaneous Removal of SO2and NO from Flue Gas UsingMulticomposite Active Absorbent[J]. Industrial&engineering chemistry research2011,51(1),480-486.
    91. Sutton, R.; Sposito, G., Molecular structure in soil humic substances: the new view[J].Environmental science&technology2005,39(23),9009-9015.
    92. Francioso, O.; Ciavatta, C.; Montecchio, D.; Tugnoli, V.; Sanchez-Cortes, S.; Gessa, C.,Quantitative estimation of peat, brown coal and lignite humic acids using chemical parameters,1H-NMR and DTA analyses[J]. Bioresource Technology2003,88(3),189-195.
    93.张常书,腐植酸植物保健营养液的开发研究[C].2010中国腐植酸行业低碳经济交流大会暨第九届全国绿色环保肥料(农药)新技术,新产品交流会论文集2010.
    94.武亚聪.腐植酸分子设计及电化学行为研究[D].山西:山西师范大学,2012.
    95.刘丹丹;邓何;郭庆时;明强,腐植酸在油田钻井液中的应用[J].腐植酸2012,3,5.
    96.晋萍;王栖鹏,防水腐植酸盐砂芯粘合剂研究[J].山西煤炭1998,18(1),55-57.
    97.薄芯,腐植酸在医学上的研究应用[J].生物学通报1997,32(5),18-19.
    98.马淞江;李方文,腐植酸树脂处理含重金属离子废水可行性探讨[J].腐植酸2011,(2),43-43.
    99. Anirudhan, T.; Suchithra, P., Heavy metals uptake from aqueous solutions and industrialwastewaters by humic acid-immobilized polymer/bentonite composite: Kinetics and equilibriummodeling[J]. Chemical Engineering Journal2010,156(1),146-156.
    100. Fu, F.; Wang, Q., Removal of heavy metal ions from wastewaters: A review[J]. Journal ofEnvironmental Management2011,92(3),407-418.
    101. Hung, W.N.; Lin, T.F.; Chiu, C.H.; Chiou, C. T., On the use of a freeze-dried versus anair-dried soil humic acid as a surrogate of soil organic matter for contaminant sorption[J].Environmental Pollution2012,160,125-129.
    102. Stockdale, A.; Bryan, N., Uranyl binding to humic acid under conditions relevant tocementitious geological disposal of radioactive wastes[J]. Mineralogical Magazine2012,76(8),3391-3399.
    103.张翼峰;黄丽萍,腐植酸在环境污染治理中的应用与研究现状[J].腐植酸2007,5,16-26.
    104. Green, J. B.; Manahan, S. E., Sulphur dioxide sorption by humic acid-fly ash mixtures[J].Fuel1981,60(4),330-334.
    105.孙志国.腐植酸钠吸收烟气中SO2和NO2的实验及机理研究[D].上海:上海交通大学,2011.
    1. Green, J. B.; Manahan, S. E., Absorption of sulphur dioxide by sodium humates[J]. Fuel1981,60(6),488-494.
    2. Green, J. B.; Manahan, S. E., Sulphur dioxide sorption by humic acid-fly ash mixtures[J].Fuel1981,60(4),330-334.
    3. Zhao, R.; Liu, H.; Ye, S.; Xie, Y.; Chen, Y., Ca-based sorbents modified with humic acid forflue gas desulfurization[J]. Industrial&engineering chemistry research2006,45(21),7120-7125.
    4. Sun, Z.; Zhao, Y.; Gao, H.; Hu, G., Removal of SO2from flue gas by sodium humatesolution[J]. Energy&Fuels2010,24(2),1013-1019.
    5.孙志国.腐植酸钠吸收烟气中SO2和NO2的实验及机理研究[D].上海:上海交通大学,2011.
    6. Resnik, K. P.; Yeh, J. T.; Pennline, H. W., Aqua ammonia process for simultaneous removalof CO2, SO2and NOx[J]. International journal of environmental technology and management2004,4(1),89-104.
    7. Sun, Z.; Gao, H.; Hu, G.; Li, Y., Preparation of sodium humate/α-aluminum oxideadsorbents for flue gas desulfurization[J]. Environmental Engineering Science2009,26(7),1249-1255.
    8. Ogenga, D.; Mbarawa, M.; Lee, K.; Mohamed, A.; Dahlan, I., Sulphur dioxide removalusing South African limestone/siliceous materials[J]. Fuel2010,89(9),2549-2555.
    9. Xue, J.; Wang, T.; Nie, J.; Yang, D., Preparation and characterization of aphotocrosslinkable bioadhesive inspired by marine mussel[J]. Journal of Photochemistry andPhotobiology B: Biology2013,119,31-36.
    10. Tang, Y.; Sun, C.; Yang, X.; Yang, X.; Shen, R. F., Graphene Modified Glassy CarbonElectrode for Determination of Trace Aluminium (Ш) in Biological Samples[J]. Int. J.Electrochem. Sci2013,8,4194-4205.
    11. Zhang, X.; Li, H.; Qi, D.; Li, Q.; Ding, N.; Cai, X., Failure analysis of anticorrosion plasticalloy composite pipe used for oilfield gathering and transportation[J]. Engineering FailureAnalysis2013,32,35-43.
    12. Petit, S.; Righi, D.; Madejová, J., Infrared spectroscopy of NH4+-bearing and saturated clayminerals: A review of the study of layer charge[J]. Applied clay science2006,34(1),22-30.
    13. Hueso-Ure a, F.; Moreno-Carretero, M. N.; Salas-Peregrín, J. M.; de Cienfuegos-López, G.A., Silver (I), palladium (II), platinum (II) and platinum (IV) complexes with isoorotate and2-thioisoorotate ligands: synthesis, ir and nmr spectra, thermal behaviour and antimicrobialactivity[J]. Transition Metal Chemistry1995,20(3),262-269.
    14. Wendsj,.; Thomas, J. O.; Lindgren, J., Infra-red and X-ray diffraction study of thehydration process in the polymer electrolyte system M(CF3SO3)2PEOnfor M=Pb, Zn and Ni[J].Polymer1993,34(11),2243-2249.
    15. Hadzi, D.; Sheppard, N., The Infra-Red Absorption Bands Associated with the COOH andCOOD Groups in Dimeric Carboxylic Acids. I. The Region from1500to500cm-1. Proceedingsof the Royal Society of London. Series A[J]. Mathematical and Physical Sciences1953,216(1125),247-266.
    16. St hr, J., NEXAFS spectroscopy[M]. Springer:1992; Vol.25.
    17. Sherwood, T., Solubilities of Sulfur Dioxide and Ammonia in Water[J]. Industrial&Engineering Chemistry1925,17(7),745-747.
    18. O'Dowd, W. J.; Markussen, J. M.; Pennline, H. W.; Resnik, K. P., Characterization of NO2and SO2removals in a spray dryer/baghouse system[J]. Industrial&engineering chemistryresearch1994,33(11),2749-2756.
    19. Moseholm, L.; Taudorf, E.; Fr sig, A., Pulmonary function changes in asthmatics associatedwith low-level SO2and NO2air pollution, weather, and medicine intake[J]. Allergy1993,48(5),334-344.
    20.印永嘉;奚正楷;张树永,物理化学简明教程[M].高等教育出版社:2007.
    1.王金南;逯元堂;吴舜泽;严刚;吴悦颖;蒋洪强;朱建华,国家“十二五”环保产业预测及政策分析[J].中国环保产业2010,6,24-29.
    2.徐文英,加拿大污泥资源化利用和工程实践对中国的借鉴[J].环境科学与管理2011,36(7),15-20.
    3.周立祥;沈其荣;陈同斌;章申,重金属及养分元素在城市污泥主要组分中的分配及其化学形态[J].环境科学学报2000,20(3),269-274.
    4.郝晓地;曹兴坤;王吉敏;胡沅胜,剩余污泥中木质纤维素稳定并转化能源可行性分析[J].环境科学学报2013,33(5).
    5. Réveillé, V.; Mansuy, L.; Jardé, é.; Garnier-Sillam, é., Characterisation of sewagesludge-derived organic matter: lipids and humic acids[J]. Organic Geochemistry2003,34(4),615-627.
    6.罗培培;傅雪海,我国褐煤共伴生资源分析及利用方向[J].煤炭科学技术2012,40(12).
    7.邹静;王芳辉;朱红;魏永生,风化煤中腐植酸的提取研究[J].化工时刊2006,20(6),10-12.
    8.岳廷盛;唐涤,泥炭中腐植酸含量提高的方法研究[J].腐植酸1993,(2),25-28.
    9.苏丹;苏仕军;夏素兰;朱家铧,垃圾渗滤液烟气脱硫体系的实验研究[J].环境污染治理技术与设备2003,4(5),9-11.
    10.马鲁铭;刘燕;黄志通;金志刚,污水生化处理出水吸收二氧化硫——烟道气脱硫与污水回用的新途径[J].中国环境科学1998,1.
    11.孙士青;王少杰;李秋顺;李雪梅;史建国,考马斯亮蓝法快速测定乳品中蛋白质含量[J].山东科学2011,24(6),53-55.
    12. Li, H.; Jin, Y.; Nie, Y., Application of alkaline treatment for sludge decrement and humicacid recovery[J]. Bioresource Technology2009,100(24),6278-6283.
    13. Stevenson, F. J., Humus chemistry: genesis, composition, reactions[M]. John Wiley&Sons:1994.
    14. Green, J. B.; Manahan, S. E., Absorption of sulphur dioxide by sodium humates[J]. Fuel1981,60(6),488-494.
    15. Tarbuck, T. L.; Richmond, G. L., Adsorption and Reaction of CO2and SO2at a WaterSurface[J]. Journal of the American Chemical Society2006,128(10),3256-3267.
    16. Hikita, H.; Asai, S.; Tsuji, T., Absorption of sulfur dioxide into aqueous sodium hydroxideand sodium sulfite solutions[J]. AIChE Journal1977,23(4),538-544.
    17. Takeuchi, H.; Yamanaka, Y., Simultaneous Absorption of SO2and NO2in aqueous solutionsof NaOH and Na2SO3[J]. Industrial&Engineering Chemistry Process Design and Development1978,17(4),389-393.
    18. Ipek, U., Sulfur Dioxide Removal by Using Leather Factory Wastewater[J]. CLEAN–Soil,Air, Water2010,38(1),17-22.
    19. Jinno, K.; Fujimoto, C.; Nakanishi, S., Hydrocarbon group-type analysis withmicrocapillary-column liquid chromatography/conventional infrared spectrometry[J].Chromatographia1985,20(5),279-282.
    20. Leboda, R., The chemical nature of adsorption centers in modified carbon-silica adsorbentsprepared by the pyrolysis of alcohols[J]. Chromatographia1980,13(11),703-708.
    21. Hakomori, S. I., A rapid permethylation of glycolipid, and polysaccharide catalyzed bymethylsulfinyl carbanion in dimethyl sulfoxide[J]. Journal of Biochemistry1964,55(2),205-208.
    22. Wang, S. L.; Lin, S. Y.; Wei, Y. S., Transformation of metastable forms of acetaminophenstudied by thermal Fourier transform infrared (FT-IR) microspectroscopy[J]. Chemical andpharmaceutical bulletin2002,50(2),153-156.
    23. García, A.; Egües, I.; Toledano, N.; González, M.; Serrano, L.; Labidi, J., Biorefining oflignocellulosic residues using ethanol organosolv process[J]. Chemical Engineering2009,18,911-916
    24. Chibber, V.; Chaudhary, R.; Tyagi, O.; Anand, O., Anti wear and anti friction characteristicsof tribochemical films of alkyl octa-decenoates and their derivatives[J]. Lubrication Science2006,18(1),63-76.
    25. Bai, Y. H.; Gong, N.; Zhao, X. N.; Yang, G. M. In Studies on the Physiological Response ofBrassica chinensis L. Seeds in Germination to Environmental Pollutant LAS Toxicity byFTIR-ATR Spectroscopy[C], Bioinformatics and Biomedical Engineering (iCBBE),20104thInternational Conference on, IEEE:2010; pp1-4.
    26. Hsu, J. H.; Lo, S.L., Chemical and spectroscopic analysis of organic matter transformationsduring composting of pig manure[J]. Environmental Pollution1999,104(2),189-196.
    1.成绍鑫;中国腐植酸工业协会,腐植酸类物质概论[M].化学工业出版社:2007.
    2. Wang, C..; Zeng, F..; peng, Z.; Li, X.; Zhang, L., Kinetic Analysis of a Pyrolysis Processand Hydrogen Generation of Humic Acids of Yimin Lignite Fusain Using the DistributedActivation Energy Model[J]. Acta Physico-Chimica Sinica2012,28(1),25-36.
    3. Benz, M.; Schink, B.; Brune, A., Humic acid reduction by Propionibacterium freudenreichiiand other fermenting bacteria[J]. Applied and environmental microbiology1998,64(11),4507-4512.
    4. Visser, S., Oxidation-reduction potentials and capillary activities of humic acids[M].1964.
    5. Schnitzer, M.; Preston, C., Effects of acid hydrolysis on the13C NMR spectra of humicsubstances[J]. Plant and soil1983,75(2),201-211.
    6. Santoso, U. T.; Nurmasari, R.; Umaningrum, D.; Santosa, S. J.; Rusdiarso, B.; Siswanta, D.,Immobilization of Humic Acid onto Chitosan Using Tosylation Method with1,4-butanediol as aSpacerarm[J]. Indonesian Journal of Chemistry2012,12(1),35-42.
    7. Jia, C.; You, C.; Pan, G., Effect of temperature on the sorption and desorption ofperfluorooctane sulfonate on humic acid[J]. Journal of Environmental Sciences2010,22(3),355-361.
    8. De Albuquerque Brocchi, E.; Dick, D. P.; Leite, A. J. B., Nitration Effect on the Yield andChemical Composition of Humic Acids Obtained from South Brazil Coal Samples[J]. InFunctions of Natural Organic Matter in Changing Environment, Springer:2013; pp1129-1132.
    9. Zhiming, Z.; Kuiyang, X.; Yayuan, Z.; Zhe, Z., The Development and Applying Efficiencyof Pured Ammoniated Humic Acid Fertilizer[J]. Humic Acid2011,6,010.
    10. Park, J. H.; Lamb, D.; Paneerselvam, P.; Choppala, G.; Bolan, N.; Chung, J.-W., Role oforganic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils[J].Journal of hazardous materials2011,185(2),549-574.
    11. Li, J. G.; Zhang, G. H.; Liu, L.; Zhao, F., Synthesis and Evaluation of Sulfonated HumicAcid-Acrylic Acid Graft Copolymer Applied as Dispersant in Coal-Water Slurry[J]. AdvancedMaterials Research2012,581,334-337.
    12.郑平,煤炭腐植酸的磺化[J].腐植酸1982,(2)54-56.
    13.叶舟,分光光度法测定污泥中腐殖酸的含量[J].环境科学与技术1989,(01),34-36.
    14. Nandurkar, N. S.; Bhanushali, M. J.; Jagtap, S. R.; Bhanage, B. M., Ultrasound promotedregioselective nitration of phenols using dilute nitric acid in the presence of phase transfercatalyst[J]. Ultrasonics Sonochemistry2007,14(1),41-45.
    15. Zhao, D.; Ren, H.; Wang, J.; Yang, Y.; Zhao, Y., Kinetics and mechanism of quaternaryammonium salts as phase-transfer catalysts in the liquid-liquid phase for oxidation ofthiophene[J]. Energy&Fuels2007,21(5),2543-2547.
    16. Sarvazyan, A. P.; Rudenko, O. V.; Swanson, S. D.; Fowlkes, J. B.; Emelianov, S. Y., Shearwave elasticity imaging: a new ultrasonic technology of medical diagnostics[J]. Ultrasound inmedicine&biology1998,24(9),1419-1435.
    17. Chemat, F.; Teunissen, P. G. M.; Chemat, S.; Bartels, P. V., Sono-oxidation treatment ofhumic substances in drinking water[J]. Ultrasonics Sonochemistry2001,8(3),247-250.
    18. Qu, Y. C.; Jia, J.; Gao, Y.; Yuan, Y. P.; Wang, K. K.; Yang, F.; Wu, G. F.; Li, Y. F., Separationof Lignin from Pine-Nut Hull by the Method of HBS and Preparation of Lignin-PEG-PAPI[J].Applied Mechanics and Materials2013,320,429-434.
    19. Brunetti, B.; De Giglio, E.; Cafagna, D.; Desimoni, E., XPS analysis of glassy carbonelectrodes chemically modified with8-hydroxyquinoline-5-sulphonic acid[J]. Surface andinterface analysis2012,44(4),491-496.
    20. Jarvis, K. L.; Majewski, P. J., Influence of Film Stability and Aging of Plasma PolymerizedAllylamine Coated Quartz Particles on Humic Acid Removal[J]. ACS applied materials&interfaces2013.5(15),7315–7322
    21. Bai, H.; Xu, Y.; Zhao, L.; Li, C.; Shi, G., Non-covalent functionalization of graphene sheetsby sulfonated polyaniline[J]. Chem. Commun.2009,(13),1667-1669.
    22. Rosenthal, D.; Ruta, M.; Schl gl, R.; Kiwi-Minsker, L., Combined XPS and TPD study ofoxygen-functionalized carbon nanofibers grown on sintered metal fibers[J]. Carbon2010,48(6),1835-1843.
    23. Deng, Y.; Zhao, D.; Chen, X.; Wang, F.; Song, H.; Shen, D., Long lifetime pure organicphosphorescence based on water soluble carbon dots[J]. Chem. Commun.2013,49,5751-5753
    24. Brisson, P. Y.; Darmstadt, H.; Fafard, M.; Adnot, A.; Servant, G.; Soucy, G., X-rayphotoelectron spectroscopy study of sodium reactions in carbon cathode blocks of aluminiumoxide reduction cells[J]. Carbon2006,44(8),1438-1447.
    1. Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B., Ionic-liquid materialsfor the electrochemical challenges of the future[J]. Nature materials2009,8(8),621-629.
    2. Kinchin, G.; Pease, R., The displacement of atoms in solids by radiation[J]. Reports onProgress in Physics1955,18(1),1.
    3. Hamaguchi, H.O.; Ozawa, R., Structure of ionic liquids and ionic liquid compounds: areionic liquids genuine liquids in the conventional sense[J]. Adv. Chem. Phys2005,131(85),104.
    4. Sheldon, R., Catalytic reactions in ionic liquids[J]. Chemical Communications2001,(23),2399-2407.
    5. Mathews, C. J.; Smith, P. J.; Welton, T., Palladium catalysed Suzuki cross-couplingreactions in ambient temperature ionic liquids[J]. Chemical Communications2000,(14),1249-1250.
    6. Roy, S. R.; Chakraborti, A. K., Supramolecular assemblies in ionic liquid catalysis foraza-Michael reaction[J]. Organic letters2010,12(17),3866-3869.
    7. Jeong, Y.; Ryu, J. S., Synthesis of1,3-Dialkyl-1,2,3-triazolium Ionic Liquids and TheirApplications to the Baylis-Hillman Reaction[J]. The Journal of Organic Chemistry2010,75(12),4183-4191.
    8. Goodrich, P.; Hardacre, C.; Paun, C.; Ribeiro, A.; Kennedy, S.; Louren o, M.; Manyar, H.;de Castro, C.; Besnea, M.; Parvulescu, V., Asymmetric Carbon-Carbon Bond Forming ReactionsCatalysed by Metal (II) Bis (oxazoline) Complexes Immobilized using Supported IonicLiquids[J]. Advanced Synthesis&Catalysis2011,353(6),995-1004.
    9. Xu, D. Z.; Liu, Y.; Shi, S.; Wang, Y., A simple, efficient and green procedure forKnoevenagel condensation catalyzed by [C4dabco][BF4] ionic liquid in water[J]. GreenChemistry2010,12(3),514-517.
    10. Dzudza, A.; Marks, T. J., Efficient intramolecular hydroalkoxylation/cyclization ofunactivated alkenols mediated by lanthanide triflate ionic liquids[J]. Organic letters2009,11(7),1523-1526.
    11. Tang, S.; Scurto, A. M.; Subramaniam, B., Improved1-butene/isobutane alkylation withacidic ionic liquids and tunable acid/ionic liquid mixtures[J]. Journal of catalysis2009,268(2),243-250.
    12. Antonia, P.; van Rantwijk, F.; Sheldon, R. A., Effective resolution of1-phenyl ethanol byCandida antarctica lipase B catalysed acylation with vinyl acetate in protic ionic liquids (PILs)[J]. Green Chemistry2012,14(6),1584-1588.
    13. Mukai, K.; Asaka, K.; Hata, K.; Fernández Otero, T.; Oike, H., High-Speed CarbonNanotube Actuators Based on an Oxidation/Reduction Reaction[J]. Chemistry-A EuropeanJournal2011,17(39),10965-10971.
    14. Wu, W.; Han, B.; Gao, H.; Liu, Z.; Jiang, T.; Huang, J., Desulfurization of flue gas: SO2absorption by an ionic liquid[J]. Angewandte Chemie International Edition2004,43(18),2415-2417.
    15. Huang, J.; Riisager, A.; Wasserscheid, P.; Fehrmann, R., Reversible physical absorption ofSO2by ionic liquids[J]. Chemical Communications2006,(38),4027-4029.
    16. Guo, B.; Duan, E.; Ren, A.; Wang, Y.; Liu, H., Solubility of SO2in caprolactam tetrabutylammonium bromide ionic liquids[J]. Journal of Chemical&Engineering Data2009,55(3),1398-1401.
    17. Sun, Z.; Zhao, Y.; Gao, H.; Hu, G., Removal of SO2from flue gas by sodium humatesolution[J]. Energy&Fuels2010,24(2),1013-1019.
    18. Zhao, D.; Bao, X. In Synthesis of Eco-Friendly Ionic Liquids by Microwave Irradiation andTheir Applications in Michael Addition[C], Bioinformatics and Biomedical Engineering,2009.ICBBE2009.3rd International Conference on, IEEE:2009; pp1-4.
    19. Green, J. B.; Manahan, S. E., Absorption of sulphur dioxide by sodium humates[J]. Fuel1981,60(6),488-494.
    20. Youngblood, M. P., Kinetics and mechanism of the addition of sulfite to p-benzoquinone[J].The Journal of Organic Chemistry1986,51(11),1981-1985.
    21. Chemat, F.; Teunissen, P. G. M.; Chemat, S.; Bartels, P. V., Sono-oxidation treatment ofhumic substances in drinking water[J]. Ultrasonics Sonochemistry2001,8(3),247-250.
    22.吴高明;沈士德;童仕唐;陆晓华, Na2S溶液吸收低浓度SO2的控制步骤分析[J].化学工程师2003,21(5),764-768.
    1.姜秀平;刘有智,湿法烟气脱硫技术研究进展[J].应用化工2013,42(3),535-538.
    2.郭长仕;王梦勤,火电厂烟气无旁路湿法烟气脱硫技术研究[J].热力发电2012,41(8),15-17.
    3.苏桂秋;卢洪波,浅析燃煤机组石灰石—石膏湿法脱硫常见问题[J].科技资讯2012,25,071.
    4.邱伟;刘盛余;能子礼超;陆成伟,氢氧化钠-钢渣双碱法烧结烟气脱硫工艺[J].环境工程学报2013,7(003),1095-1100.
    5. Wang, S.; Luan, Y.; Deng, Y.; Liu, P., The Structure Design and Numerical Simulation ofAbsorption Tower in Seawater FGD[J]. Advanced Science Letters2013,19(6),1562-1566.
    6. Li, X.; Zhu, C.; Ma, Y., Removal of SO2using ammonium bicarbonate aqueous solution asabsorbent in a bubble column reactor[J]. Frontiers of Chemical Science and Engineering2013,1-7.
    7. Shen, Z.; Chen, X.; Tong, M.; Guo, S.; Ni, M.; Lu, J., Studies on magnesium-based wet fluegas desulfurization process with oxidation inhibition of the byproduct[J]. Fuel2012.
    8. Yang, X. F.; Zhao, M.; Wang, G., A rhodamine-based fluorescent probe selective forbisulfite anion in aqueous ethanol media[J]. Sensors and Actuators B: Chemical2011,152(1),8-13.
    9. Zins, E. L.; Joshi, P. R.; Krim, L., Production and isolation of OH radicals in water ice[J].Monthly Notices of the Royal Astronomical Society2011,415(4),3107-3112.
    10. Peng, H.; Xiong, H.; Li, J.; Xie, M.; Liu, Y.; Bai, C.; Chen, L., Vanillin cross-linkedchitosan microspheres for controlled release of resveratrol[J]. Food Chemistry2010,121(1),23-28.
    11. Liu, X.; Hu, Y.; Wang, B.; Su, Z., Synthesis and fluorescent properties ofeuropium–polymer complexes containing1,10-phenanthroline[J]. Synthetic Metals2009,159(15),1557-1562.
    12. Raghunathan, V.; Han, Y.; Korth, O.; Ge, N. H.; Potma, E. O., Rapid vibrational imagingwith sum frequency generation microscopy[J]. Optics letters2011,36(19),3891-3893.
    13. Yang, H. M.; Park, C. W.; Lim, S.; Park, S. I.; Chung, B. H.; Kim, J. D., Cross-linkedmagnetic nanoparticles from poly (ethylene glycol) and dodecyl grafted poly (succinimide) asmagnetic resonance probes[J]. Chemical Communications2011,47(46),12518-12520.
    14. Tang, C. Y.; Kwon, Y. N.; Leckie, J. O., Effect of membrane chemistry and coating layer onphysiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIRand XPS characterization of polyamide and coating layer chemistry[J]. Desalination2009,242(1),149-167.
    15. Hue, K.-A. A., Modification and characterization of montmorillonite clay for the extractionof zearalenone[D].2009.
    16.张树鹏,聚乙二醇/功能化石墨烯层状纳米复合材料热稳定性的提高[J].化学学报2012,1394-1400.
    17. Miller, K. L.; Lee, C. W.; Falconer, J. L.; Medlin, J. W., Effect of water on formic acidphotocatalytic decomposition on TiO2and Pt/TiO2[J]. Journal of catalysis2010,275(2),294-299.
    18. Mishra, A.; Mishra, R.; Shrivastava, S., Structural and antimicrobial studies of coordinationcompounds of Vo (II), Co (II), Ni (II) and Cu (II) with some Schiff bases involving2-amino-4-chlorophenol[J]. Journal of the Serbian Chemical Society2009,74(5),523-535.
    19. Spinace, M. A.; Lambert, C. S.; Fermoselli, K. K.; De Paoli, M. A., Characterization oflignocellulosic curaua fibres[J]. Carbohydrate Polymers2009,77(1),47-53.
    20. Feng, S.; Shen, K.; Wang, Y.; Pang, J.; Jiang, Z., Concentrated sulfonated poly (ethersulfone) s as proton exchange membranes[J]. Journal of Power Sources2012.
    21. Nakamichi, Y.; Hirai, Y.; Yabu, H.; Shimomura, M., Fabrication of patterned and anisotropicporous films based on photo-cross-linking of poly (1,2-butadiene) honeycomb films[J]. Journalof Materials Chemistry2011,21(11),3884-3889.
    22. Lee, C. H.; Takagi, H.; Okamoto, H.; Kato, M., Improving the mechanical properties ofisosorbide copolycarbonates by varying the ratio of comonomers[J]. Journal of Applied PolymerScience2013,127(1),530-534.
    23. Qu, Y. C.; Jia, J.; Gao, Y.; Yuan, Y. P.; Wang, K. K.; Yang, F.; Wu, G. F.; Li, Y. F., Separationof Lignin from Pine-Nut Hull by the Method of HBS and Preparation of Lignin-PEG-PAPI[J].Applied Mechanics and Materials2013,320,429-434.
    24. Brunetti, B.; De Giglio, E.; Cafagna, D.; Desimoni, E., XPS analysis of glassy carbonelectrodes chemically modified with8-hydroxyquinoline-5-sulphonic acid[J]. Surface andinterface analysis2012,44(4),491-496.
    25. Jarvis, K. L.; Majewski, P. J., Influence of Film Stability and Aging of Plasma PolymerizedAllylamine Coated Quartz Particles on Humic Acid Removal[J]. ACS applied materials&interfaces2013,5(15),7315–7322.
    26. Bai, H.; Xu, Y.; Zhao, L.; Li, C.; Shi, G., Non-covalent functionalization of graphene sheetsby sulfonated polyaniline[J]. Chem. Commun.2009,(13),1667-1669.
    27. Rosenthal, D.; Ruta, M.; Schl gl, R.; Kiwi-Minsker, L., Combined XPS and TPD study ofoxygen-functionalized carbon nanofibers grown on sintered metal fibers[J]. Carbon2010,48(6),1835-1843.
    28. Deng, Y.; Zhao, D.; Chen, X.; Wang, F.; Song, H.; Shen, D., Long lifetime pure organicphosphorescence based on water soluble carbon dots[J]. Chem. Commun.2013.49(6),5751-5753

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700