典型汽油组分在饱水孔隙介质中的吸附运移研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽油类污染物对土壤和地下水的污染日益严重。土壤作为污染物的主要污染场所,研究其不同组成介质对污染物的吸附以及污染物在其介质中的运移规律有着重要意义。本文选取典型汽油组分苯、甲苯和甲基叔丁基醚( Methyl tert-butyl ether,MTBE )作为目标污染物,利用室内静态吸附批实验和动态土柱实验,模拟它们在典型饱水孔隙介质中的吸附和运移过程,研究得到如下结论:
     (1)选取某采油厂不同有机碳含量的表层土壤作为吸附剂,用批实验方法对苯和甲苯的单组分吸附和双组分竞争吸附行为进行研究。结果表明:单组分溶液中,苯和甲苯在土壤中的吸附符合线性规律,吸附能力与土壤有机碳含量成正比;双组分溶液中,苯和甲苯存在竞争吸附,土壤对它们的吸附能力小于单组分时的情况,竞争吸附的结果表明,介质表面点位对苯和甲苯的吸附也起着重要的作用。
     (2)选取高岭土和磁河土壤为吸附剂,用柱实验方法对MTBE、苯和甲苯的吸附运移过程进行研究。结果表明:高岭土中,MTBE穿透曲线呈现对称现象,表面吸附为主要吸附机理。磁河土壤中,由于土壤有机质的存在,MTBE会与其发生化学吸附作用,穿透过程表现解吸阶段缓慢下降,表面吸附和分配作用共存。
     (3)典型汽油组分到达穿透曲线峰值的时间顺序依次为:MTBE、苯、甲苯,即不同饱水孔隙介质对甲苯的吸附能力最强,甲苯的竞争吸附能力最强。由于分子量大、溶解度低,苯和甲苯在孔隙介质中的解吸滞后现象较明显。
     (4)模拟土壤溶液CaCl2浓度的增大时,提高了颗粒之间相互碰撞吸附几率,吸附点位增多,吸附能力增大,使得有机污染物的洗脱流出液相对浓度降低。而磁河土壤中,CaCl2浓度的升高时,由于有机质易于与Ca2+形成络合物,阻碍污染物与土壤介质接触,使有机物苯和甲苯的迁移速率加快,洗脱流出液相对浓度增大。
     (5)非线性Freundlich模型在平衡和非平衡状态下均能对典型汽油组分在饱和孔隙介质中的运移进行较好的模拟。两点非平衡模型( TSM )对典型汽油组分在磁河土壤中的运移模拟效果较好,而高岭土中则相对较差。因此,汽油类污染物在不同饱水孔隙介质中的吸附运移过程主要受到非线性吸附的影响。随着孔隙介质土壤有机质百分含量的增加,污染物的运移过程也受到化学非平衡吸附的影响。
Gasoline contaminants have caused serious pollution problems in soil andgroundwater. It is of significance to study the sorption and migration of oragnicpollutants in different components of the soil, because soil is a main sink of pollutants.Inthis thesis, benzene, toluene and methyl tert-butyl ether ( MTBE ) were selected as thetarget pollutants. Batch experiments and column experiments were used to study theadsorption and transport of organic pollutants in typical saturated porous media.Conclusions were summarized as follows:
     (1) Batch experiments were carried out to investigate the sorption and competitivesorption between benzene and toluene to soils of different organic carbon content.Single-solute solution experiments showed that sorption of single compound to soils canbe described by a linear sorption isotherm, and the sorption capacity is proportional tosoil organic carbon content. In bi-solute solution experiments, competitive sorption ofsolutes was observed and caused a decrease of sorption capacity of target compoundwhen compared to that of single-solute cases. The competitive sorption results indicatedthat sorption of organic compounds to specific sites on the solid surface probably playedan important role.
     (2) Column experiments were carried out to investigate the sorption and migrationin kaoline and Cihe soil columns. The breakthrough curves ( BTCs ) of MTBE showedthe symmetrical phenomenon. But in Cihe soil, the BTCs of MTBE slowly declined indesorption stage, with a long tail in the desorption stage, so the mainly adsorptionmechanism is chemical adsorption, because there are soil organic carbons in soil.
     (3) The order of typical gasoline components reaching the peak time of BTCs isMTBE, benzene and toluene. Due to the large molecular weight and low solubility ofbenzene and toluene, the desorption hysteresis of benzene and toluene in porous media ismore obvious.
     (4) With the increase of the concentration of CaCl2, kaoline crystals within the filmlayer spacing increases, adsorption point increase, the adsorption capacity increases. InCihe soil, complexation organic matter with Ca2+, hinders pollutants contacting withCihe soil. Therefore, the leaching rate of benzene and toluene became faster, and theleaching concentration increased if the CaCl2concentration increased in the solution.
     (5) The transport of typical gasoline components in saturated porous media can bewell simulated by the Freundlich model. The transport of typical gasoline components inCihe soil can be better simulated by the two-site model with CXTFIT than in kaoline.Therefore, the adsorption of the organic pollutants in the saturated porous mediumtransport processes was affected by nonlinear adsorption. With the soil organic carboncontent increases, the organic pollutants were also affected by chemical non-equilibriumadsorption.
引文
Abdul, A.S. and Gibson, T.L., 1991. Laboratory studies of surfactant-enhanced washing ofpolychlorinated biphenyl from sandy material. Environmental Science & Technology, 25(4):665-671.
    Abriola, L.M. and Pinder, G.F., 1985. A multiphase approach to the modeling of porous-mediacontamination by organic-compounds .1. equation development. Water Resources Research,21(1): 11-18.
    Albrecht, A., Reichert, P., Beer, J. and Luck, A., 1995. Evaluation of the importance of reservoirsediments as sinks for reactor-derived radionuclides in riverine systems. Journal ofEnvironmental Radioactivity, 28(3): 239-269.
    Anonymous, 1998. Health advisory set for fuel oxygenate MTBE. Environmental Science &Technology, 32(3): 83A-83A.
    Arteconi, A., Mazzarini, A. and Di Nicola, G., 2011. Emissions from Ethers and Organic CarbonateFuel Additives: A Review. Water Air and Soil Pollution, 221(1-4): 405-423.
    Berkowitz, B., Scher, H. and Silliman, S.E., 2000. Anomalous transport in laboratory-scale,heterogeneous porous media (vol 36, pg 149, 2000). Water Resources Research, 36(5):1371-1371.
    Bi, E., Schmidt, T.C. and Haderlein, S.B., 2006. Sorption of Heterocyclic organic compounds toreference soils: Column studies for process identification. Environmental Science &Technology, 40(19): 5962-5970.
    Bi, E., Zhang, L., Schmidt, T.C. and Haderlein, S.B., 2009. Simulation of nonlinear sorption ofN-heterocyclic organic contaminates in soil columns. Journal of Contaminant Hydrology,107(1-2): 58-65.
    Bi, E.P., Haderlein, S.B. and Schmidt, T.C., 2005. Sorption of methyl tert-butyl ether (MTBE) andtert-butyl alcohol (TBA) to synthetic resins. Water Research, 39(17): 4164-4176.
    Chen, B. and Xing, B., 2005. Sorption and conformational characteristics of reconstituted plantcuticular waxes on montmorillonite ENVIRONMENTAL SCIENCE & TECHNOLOGY39(21): 8315-8323.
    Chiou, C.T., Peters, L.J. and Freed, V.H., 1979. A physical concept of soil-water equilibria fornonionic organic compounds. Science, 205(831-832).
    Chiou, C.T., Porter, P.E. and Shoup, T.D., 1984. Partition equilibria of nonionic organic-compoundsbetween soil organic-matter and water. Environmental Science & Technology, 18(4):295-297.
    Curiale, J.A., 2002. A review of the occurrences and causes of migration-contamination in crude oil.Organic Geochemistry, 33(12): 1389-1400.
    Eckberg, D.K. and Sunada, D.K., 1984. Nonsteady 3-phase immiscible fluid distribution inporous-media. Water Resources Research, 20(12): 1891-1897.
    Falta, R.W., Bulsara, N., Henderson, J.K. and Mayer, R.A., 2005. Leaded-gasoline additives stillcontaminate groundwater. Environmental Science & Technology, 39(18): 378A-384A.
    Faust, C.R. and Schwille, J.W., 1980. Groundwater modeling:Recent developments. Ground Water,18(6): 1233-1242.
    Haderlein, S.B., Weissmahr, K.W. and Schwarzenbach, R.P., 1996. Specific adsorption ofnitroaromatic: Explosives and pesticides to clay minerals. Environmental Science &Technology, 30(2): 612-622.
    Herrington, T.M., Clarke, A.Q. and Watts, J.C., 1992. The surface-charge of kaolin. Colloids andSurfaces, 68(3): 161-169.
    Hunt, P.K., Engler, P. and Bajsarowicz, C., 1988. Computed-tomography as a core analysis tool-applications, instrument evaluation, and image improvement techniques. Journal ofPetroleum Technology, 40(9): 1203-1210.
    Illangasekare, T.H., Ramsey, J.L., Jensen, K.H. and Butts, M.B., 1995. Experimental-study ofmovement and distribution of dense organic contaminants in heterogeneous aquifers. Journalof Contaminant Hydrology, 20(1-2): 1-25.
    Jones, K. and Tiller, C., 1999. Effect of solution chemistry on the extent of binding of phenanthreneby a soil humic acid: A comparison of dissolved and clay bound humic EnvironmentalScience & Technology, 33(4): 580-587.
    Joo, J.C., Shackelford, C.D. and Reardon, K.F., 2008. Sorption of nonpolar neutral organiccompounds to humic acid-coated sands: Contributions of organic and mineral components.Chemosphere 70(7): 1290-1297.
    Karickhoff, S.W., 1984. Organic pollutant sorption in aquatic systems. Journal of HydraulicEngineering-Asce, 110(6): 707-735.
    Karickhoff, S.W., Brown, D.S. and Scott, T.A., 1979. Sorption of hydrophobic pollutants on naturalsediments. Water Research, 13: 241-248.
    Kasten, P.R., Lapidus, L. and Amundson, N.R., 1952. Mathematics of adsorption in beds. V. Effect ofintra-particle diffusion in flow systems in fixed beds. Journal of Physical Chemistry, 56(6):683-688.
    Kueper, B.H. and McWhorter, D.B., 1991. The behavior of dense nonaqueous phase liquids infractured clay and rock. Ground Water, 29(5): 716-728.
    Lambert, S.M., Porter, P.E. and Schieferstein, H., 1965. Movement and sorption of chemicals appliedto soils. Weeds, 13: 185-190.
    Lenhard, R.J., Parker, J.C. and Kaluarachchi, J.J., 1989. A model for hysteretic constitutive relationsgoverning multiphase flow .3. refinements and numerical simulations. Water ResourcesResearch, 25(7): 1727-1736.
    Levy, M. and Berkowitz, B., 2003. Measurement and analysis of non-Fickian dispersion inheterogeneous porous media. Journal of Contaminant Hydrology, 64(3-4): 203-226.
    Lifka, J., Hoffmann, J. and Ondruschka, B., 2001. Ethers as pollutants in groundwater: the role ofreaction parameters during the aquasonolysis. Water Science and Technology, 44(5):139-144.
    Lopez, E., Schuhmacher, M. and Domingo, J.L., 2008. Human health risks ofpetroleum-contaminated groundwater. Environmental Science and Pollution Research, 15(3):278-288.
    Mader, B., Goss, K. and Eisenreich, S., 1997. Sorption of nonionic, hydrophobic organic chemicals tomineral surfaces Environmental Science & Technology 31(4): 1079-1086
    Mayer, L. and Xing, B., 2001. Organic matter-surface area relationships in acid soils. Soil ScienceSociety Of America Journal 65(1): 250-258.
    Nkedikizza, P., Rao, P.S.C. and Hornsby, A.G., 1985. Influence of organic cosolvents on sorption ofhydrophobic organic-chemicals by soils. Environmental Science & Technology, 19(10):975-979.
    Nkedikizza, P., Rao, P.S.C. and Hornsby, A.G., 1987. Influence of organic cosolwents on leaching ofhydrophobic organic-chemicals through soils. Environmental Science & Technology, 21(11):1107-1111.
    Ostendorf, D.W., Richards, R.J. and Beck, F.P., 1993. LNAPL retention in sandy soil. Ground Water,31(2): 285-292.
    Pignatello, J.J. and Xing, B.S., 1996. Mechanisms of slow sorption of organic chemicals to naturalparticles. Environmental Science & Technology, 30(1): 1-11.
    Pusino, A., Petretto, S. and Gessa, C., 1997. Adsorption and desorption of imazapyr by soil. Journal ofAgricultural and Food Chemistry, 45(3): 1012-1016.
    Ransom, B., Bennett, R., Baerwald, R. and Shea, K., 1997. TEM study of in situ organic matter oncontinental margins: Occurrence and the ''monolayer'' hypothesis MARINE GEOLOGY138(1-2): 1-9.
    Salloum, M., Chefetz, B. and Hatcher, P., 2002. Phenanthrene sorption by aliphatic-rich naturalorganic matter. Environmental Science & Technology 36(9): 1953-1958.
    Sander, M. and Pignatello, J.J., 2005. Characterization of charcoal adsorption sites for aromaticcompounds: Insights drawn from single-solute and Bi-solute competitive experiments.Environmental Science & Technology, 39(6): 1606-1615.
    Schlautman, M.A. and Morgan, J.J., 1993. Effects of aqueous chemistry on the binding of polycyclicaromatic-hydrocarbons by dissolved humic materisls. Environmental Science & Technology,27(5): 961-969.
    Schwarzenbach, R.P. and Westall, J., 1981. Transport of nonpolar organic compounds from surface wat er t o groundwater: Laborat ory sorpt ion studies. Environmental Science & Technology, 15:1360-1367.
    Simon, W., Reichert, P. and Hinz, C., 1997. Properties of exact and approximate traveling wavesolutions for transport with nonlinear and nonequilibrium sorption. Water ResourcesResearch, 33(5): 1139-1147.
    Simunek, J., Genuchten, M.T.V. and Sejna, M., 2005. The HYDRUS software package for simulatingthemovement of water, heat, and multiple solutes in variably saturated media, Version3.0.Riverside. California.
    Sposito, G., 1991. Effect of chloride-ions on sodium calcium and sodium magnesium exchange onmontmorillonite. Soil Science Society of America Journal, 55(4): 965-967.
    Spurlock, F.C., Huang, K. and Vangenuchten, M.T., 1995. Isotherm nonlinearity and nonequilibriumsorption effects on transport of fenuron and monuron in soil columns. Environmental Science& Technology, 29(4): 1000-1007.
    Squillace, P.J., Pankow, J.F., Korte, N.E. and Zogorski, J.S., 1997. Review of the environmentalbehavior and fate of methyl tert-butyl ether. Environmental Toxicology and Chemistry, 16(9):1836-1844.
    Swoboda, A.R. and Thomas, G.W., 1968. Movement of parathion in soil columns. Journal ofAgricultural and Food Chemistry, 16: 923-927.
    Toride, N., Leij, F.J. and Genuchten, M.T.V., 1995. The CXTFIT code for estimating transportparameters from laboratory or field tracer experiments. Version 2.0. Research Report No.137.Riverside. California.
    Tzou, Y.-M., Wang, S.-L., Liu, J.-C., Huang, Y.-Y. and Chen, J.-H., 2008. Removal of2,4,6-trichlorophenol from a solution by humic acids repeatedly extracted from a peat soilJournal Of Hazardous Materials 152(2): 812-819.
    Van Geel, P.J. and Sykesa, J.F., 1994. Laboratory and model simulations of a LNAPL spill in avariably-saturated sand, 1. Laboratory experiment and image analysis techniques. Journal ofContaminant Hydrology, 17(1): 1-25.
    Von Gunten, U., Elovitz, M. and Kaiser, H.P., 1997. Characterization of ozonation processes withconservative and reactive tracers: prediction of the degradation of micropollutants. Analusis,25(7): M29-M31.
    Von Schulthess, R., Wild, D. and Gujer, W., 1994. Nitric and nitrous oxides form denitrifyingactivated-sludge at low-oxygen concentration. Water Science and Technology, 30(6):123-132.
    Voudrias, E.A., Nzengung, V. and Li, C.Y., 1994. Removal of light nonaqueous phase liquids(LNAPLS) by aquifer flushing. Waste Management, 14(2): 115-126.
    Wanner, O., 1994. Modeling of mixed-population biofilm accumulation. Biofouling and Biocorrosionin Industrial Water Systems, 37-62 pp.
    Weber, W.J., McGinley, P.M. and Katz, L.E., 1992. A distributed reactivity model for sorption by soilsand sediments .1. conceptual basis and equilibrium assessments. Environmental Science &Technology, 26(10): 1955-1962.
    Xing, B.S. and Pignatello, J.J., 1997. Dual-mode sorption of low-polarity compounds in glassypoly(vinyl chloride) and soil organic matter. Environmental Science & Technology, 31(3):792-799.
    Xing, B.S., Pignatello, J.J. and Gigliotti, B., 1996. Competitive sorption between atrazine and otherorganic compounds in soils and model sorbents. Environmental Science & Technology, 30(8):2432-2440.
    Xue-you, S., Ying-ying, L., Li-zhong, Z. and Shu-yu, L., 2004. Sorption of BTEX mixtures toorganobenonites. Journal of Environmental Sciences-China(02): 222-225.
    陈迪云,谢文彪,吉莉,李锦文,汤泽平, 2006.混合有机污染物在土壤中的竞争吸附研究.环境科学(07): 1377-1382.
    陈余道,朱学愚,武三三, 1997.淄博市临淄地区地下水源地石油烃污染特征.中国岩溶(01).
    戴劲草,肖子敬,叶玲,黄继泰, 1998.纳米多孔粘土材料.非金属矿(04): 1-2+5.
    党志,于虹,黄伟林,刘丛强, 2001.土壤/沉积物吸附有机污染物机理研究的进展.化学通报(02): 81-85.
    付新建,张修田,苗长军, 2008.中原油田石油污染地下水现状分析.地下水(03): 48-49.
    高鹏等, 2011.高岭土对喹诺酮类抗生素吸附特性的初步研究.环境科学(06): 1740-1744.
    何强,井文涌,王翊亭, 2004.环境学导论(第三版).清华大学出版社,北京.
    李涛, 2010.粘土矿物/DOM复合体对多环芳烃的吸附特征及其机理研究.硕士Thesis,华南理工大学.
    李文波,付静,高步良,郝兴仁, 2002.我国汽油添加剂的现状与发展趋势.齐鲁石油化工(02):136-139+9.
    李影,张巍,吕燕,林匡飞,应维琪, 2009.活性炭对水中MTBE和BTEX的吸附性能.华东理工大学学报(自然科学版)(06): 866-872.
    林海,宋存义,金龙哲,徐玉琴,陆爱军, 2001.改性煤系煅烧高岭土晶化焙烧产品分析测试.北京科技大学学报(04): 302-304.
    林慧斌,蔡锐彬,梁精明, 2004.汽油添加剂对提高汽车排气净化与节能效果的研究.润滑与密封(01): 37-38+40.
    刘菲,王苏明,陈鸿汉, 2010.欧美地下水有机污染调查评价进展.地质通报(06): 907-917.
    刘晓艳等, 2007.石油类污染物在土壤中的吸附/解吸机理研究及展望.矿物岩石地球化学通报(01): 82-87.
    娄保锋, 2004.有机污染物在沉积物上的竞争吸附效应及影响因素.博士Thesis,浙江大学.
    任磊,黄廷林, 2000.土壤的石油污染.农业环境保护(06): 360-363.
    任理,李保国,曾凡,邢维玲, 1999.土壤溶质运移两种新的求参方法的应用.水利学报(11): 1-6.
    任理,毛萌, 2003.阿特拉津在饱和砂质壤土中非平衡运移的模拟.土壤学报(04): 529-537.
    任文杰,周启星,王美娥, 2009. BTEX在土壤中的环境行为研究进展.生态学杂志(08):1647-1654.
    陶亚奇,蒋新,卞永荣,杨兴伦,王芳, 2008.杀扑磷在土壤色谱柱中的迁移及其模型拟合.环境科学(09): 2599-2605.
    童玲,郑西来,李梅,胡志峰, 2007.土壤对苯系物的吸附行为研究.西安建筑科技大学学报(自然科学版), No.157(06): 856-861.
    王璐璐,齐邦峰,曹祖宾,于海莲, 2005.含氧化合物对汽油抗爆性的影响.辽宁石油化工大学学报(04): 17-19.
    王昭等, 2009.建议纳入地下水调查指标体系的有机污染物——基于迁移性和致病风险的分析.中国地质, v.36;No.334(05): 1175-1178.
    王兆同,王郁,胥峥,周卫, 1999.黄浦江底泥对多环芳烃(菲)的吸附过程模拟.华东理工大学学报(02).
    韦尚正, 2010.硝基苯类化合物在土壤和砂质上的竞争吸附研究.硕士Thesis,华北电力大学(北京).
    文冬光等, 2008.区域性地下水有机污染调查与评价方法.中国地质(05): 814-819.
    武晓峰,唐杰,藤间幸久, 2000.有机污染物在多孔介质中的残留.云南环境科学(S1): 46-49.
    徐建,戴树桂,刘广良, 2002.土壤和地下水中污染物迁移模型研究进展.土壤与环境(03):299-302.
    殷淑华, 2006.土壤/沉积物对挥发性有机污染物的吸附研究.博士Thesis,中国地质大学(北京).
    湛含辉,罗彦伟, 2006.多孔吸附材料对钙离子的吸附研究.矿冶工程(06): 35-38.
    张建红,胡黎明, 2006.重金属离子和LNAPLs在非饱和土中的运移规律研究.岩土工程学报(02): 277-280.
    张晶,何江涛,曲雪妍,张坤峰,韩璐, 2010.包气带土壤组成对三氯乙烯的吸附影响研究.岩石矿物学杂志(04): 439-444.
    张亮,马振民,于玮玮,李玲玲, 2009.某炼油厂地下水系统石油烃污染机制.济南大学学报(自然科学版)(03): 288-291.
    张明青,刘炯天等, 2004.煤泥水中黏土颗粒对钙离子的吸附实验研究及机理探讨.中国矿业大学学报(03): 57-61.
    张树芹, 2007.蒙脱土、高岭土和层状双金属氢氧化物对Pb~(2+)和对硝基苯酚的吸附研究.博士Thesis,山东大学.
    章虎,陈关喜,冯建跃, 2003. 93号汽油样品组分的GC-MS分析.分析测试学报(05): 56-59.
    郑德凤,赵勇胜,王本德, 2002.轻非水相液体在地下环境中的运移特征与模拟预测研究.水科学进展(03): 321-325.
    朱晓星, 2011.汽油类组分在典型孔隙介质中的吸附与运移规律研究.硕士Thesis,中国地质大学(北京).
    朱晓星,刘博,毕二平, 2010.原油组分对地下水的污染研究.勘察科学技术(06): 22-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700