缔合型聚电解质水溶液的剪切与热诱导增稠行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,聚电解质材料已被广泛用作工程材料、日化添加剂、食品添加剂以及生物医用材料等,是国内外众多学者长期关注的研究热点之一。由于聚电解质材料常以溶液态使用,溶液黏弹行为是决定其性能的重要因素,因此流变学研究是聚电解质研究中最重要的内容之一。
     通常,聚电解质结构较为复杂。其中,缔合型聚电解质因含有大量缔合基团,可呈现出特殊的黏弹特性,而其分子相互作用更加复杂,导致缔合型聚电解质的相关研究相对滞后。因此,探明缔合型聚电解质溶液的流变行为与分子结构、缔合形态之间的构效关系,已成为目前聚电解质研究领域的重要课题。这一方面可为聚电解质材料的结构调控以及性能优化等提供理论指导,另一方面可为拓宽缔合型聚电解质材料的应用范围、提升使用功效积累实践经验。
     本论文针对应用最为广泛的聚电解质材料之一的聚丙烯酰胺(PAM)进行改性,选择壳聚糖(CS)作为主链,利用溶液聚合法制备了壳聚糖接枝聚丙烯酰胺(CS-g-PAM, GPAM)。本论文系统考察了GPAM的溶液性质、缔合形态与流变行为的内在关系,探索了剪切作用、温度、第二组分等外界因素对于GPAM溶液中的缔合结构演化及一系列特殊流变行为的影响,重点考察了剪切与热诱导增稠行为,揭示了GPAM溶液浓度与链结构等内在因素对其特殊流变行为的影响规律,初步建立了分子结构-缔合形态-内外界因素-特殊流变行为的关联机制。研究取得了以下主要结果:
     1.GPAM在稀溶液区即存在分子内缔合,在较低浓度下(C*附近)即可形成分子间缔合体,其溶液性质无法用经典的聚电解质理论来描述。透射电子显微镜(TEM)、动态光散射(DLS)等结果证明了缔合结构的存在,其黏度-浓度依赖性存在两个临界浓度(Co1,C02),分别对应缔合体的形成以及缔合体间作用的形成,这可作为分析缔合形态与流变行为内在关系的基础。
     2.缔合型聚电解质常出现多重剪切变稀、剪切增稠、负触变性等普通聚电解质所没有的特殊流变行为。GPAM溶液会呈现一种特殊的剪切诱导自增稠行为(Shear induced self-thickening,SIT),即浓度在C02以上的GPAM溶液在强剪切下会首先呈现剪切变稀;剪切停止后,体系黏度持续增加,其最终黏度远高于初始溶液,且其增稠效果不会自发回复。与传统的高分子剪切增稠相比较,该现象具有三个显著区别:1)增稠过程不同。该增稠过程由剪切变稀和停止高速剪切后的静态增稠两阶段组成,而传统的剪切增稠则是体系黏度随施加剪切而增大;2)增稠效果不同。该体系的增稠效果不会自发回复,而传统剪切增稠体系的黏度会在剪切停止后自动回复;3)增稠程度可控。其黏度增幅依赖于高速剪切条件,且呈现良好的重现性。GPAM的剪切变稀现象由三段剪切变稀构成,随着剪切速率增大溶液中逐步发生缔合体间作用、缔合体内作用以及缔合体瓦解后分子间相互作用的破坏过程。SIT行为可解释为强剪切作用之后,GPAM分子内氢键缔合逐渐转化为分子间氢键缔合,最终因GPAM缔合体规模增大导致溶液黏度增大。
     3.在适当浓度区间内的GPAM溶液能发生明显的热增稠。通常,由于富含氢键、疏水等基团,缔合高分子体系具有显著的温度响应性,在升温过程中,疏水基团(或LCST组分)引发的缔合甚至微相分离会导致黏度显著上升,发生热增稠。然而,不同于研究较多的疏水改性CS,GPAM引入的是亲水的PAM支链,这意味着GPAM的热增稠机理不同于常规的LCST组分驱动的热增稠。实验表明,升温前后GPAM溶液中发生了氢键主导缔合体向疏水作用主导缔合体的转变。这种缔合体的转变,使得缔合体数量显著增多,缔合体间作用得到增强,最终导致热增稠发生。同时,GPAM的热增稠行为受温度、加热时间、GPAM溶液浓度以及链形态等因素共同影响,且热增稠具备不可逆性,在降温过程中黏度不能回复至初始黏度。
     4.GPAM和CS均含有大量的氢键基团,可与富含羟基的β-环糊精(β-CD,CD)分子产生氢键复合效应。适当的CD浓度下,GPAM/CD与CS/CD体系均能表现出SIT行为以及大幅振荡之后模量增大的振荡硬化行为,这与强剪切或大幅振荡之后复合体系中大分子-CD-大分子之间氢键作用的均一化以及复合结构的加强有关。GPAM/CD与CS/CD体系的实验结果对比表明,PAM支链对复合溶液流变行为的剪切响应性有显著影响。
In the past decades, polyelectrolyte has been widely used in industry, biomedical, daily chemicals and food fields, etc., and polyelectrolyte has attracted increasing attention in scientific research. Polyelectrolyte is mainly used in solution state, and its viscoelasticity usually determines the performance of polyelectrolyte materials. It is noted that rheology has become one of the most important methods in polyelectrolyte research. Among the polyelectrolytes with complex structures, the one containing some associative groups can be named 'associative polyelectrolyte'. Associative polyelectrolytes present some unique viscoelastic properties which are suitable for industry applications. However, systematic rheological research has rarely been carried out up to now. In fact, the aggregates or associative structure in polyelectrolyte solutions significantly affect their rheological behavior. To achieve better structure modulations and performance optimizations, it is necessary to investigate the relationship between the molecular structures or associative states and the rheological behavior. Furthermore, the rheological results of associative polyelectrolytes will extend the knowledge field of polyelectrolytes.
     In this thesis, polyacrylamide-g-chitosan (CS-g-PAM, GPAM) by graft modifying PAM (one of the most used polyelectrolyte materials in industry) with CS as the backbone was prepared through solution polymerization.The solution properties, associative states and basic rheological behavior of GPAM were investigated. Then we focused on the influences of shear, temperature and second component on the associative state and the complex rheological behavior. Based on the influences of the concentration of GPAM and the structural information of GPAM chain, the special rheological behavior was discussed in detail. Based on the above experimental conclusions, the correlation among molecular structure, associative state, internal/external conditions and special rheological behavior was established. The main conclusions are as following:
     The results reveal that aggregate forms even in GPAM dilute solution with the concentration near C*, and the classical theory of polyelectrolyte solution is fail to describe the solution properties of GPAM. The observations of transmission electron microscope (TEM) and dynamic light scattering (DLS) confirm the formation of GPAM aggregate. Besides, the scaling relationship between viscosity and concentration gives two critical concentrations (C01and C02) for GPAM solutions, indicating the initial concentrations for the formations of single aggregate and the interaction among these aggregates, respectively. It is believed that, C01and C02may help to analyse the mechanisms of these special rheology behavior.
     It is noted that associative polymers are sensitive to shear effect and can present some special responses like multistage shear thinning, shear thickening and negative thixotropy, etc. GPAM is an associative polyelectrolyte presenting more complex structure, and GPAM appears three-region shear thinning, and shear-induced self-thickening (SIT). Different from previously reported rheopexy and shear-thickening, SIT presents three distinct features:i) different thickening process, in which this thickening behavior consists of an initial shear-thinning and a subsequent thickening region after removing strong shear, while the thickening of conventional shear-thickening systems only happens when undergoing shear; ii) maintainable thickening effect, with which the resulting thickening could be hold until undergoing strong shear once again while for the conventional shear-thickening most of the increased viscosity may spontaneously recover; iii) controllable thickening extent, i.e., the viscosity increment of SIT is related to the shear conditions and could repeat well. The distinct three-region shear thinning reveals that there exist complex structures or interactions in GPAM solution which can be distinguished by shear rate. SIT is attributed to the transformation from the intramolecular aggregate to the intermolecular aggregate during the rebuilding process of GPAM H-bonding aggregate after the strong shear, which results in the enhanced GPAM aggregation and increased viscosity.
     Furthermore, in a proper concentration range, GPAM solution displays obvious thermo-thickening. Thermo-thickening is one of the most important thermo-responsive behavior, in which the hydrophobic groups collapse and form aggregates, resulting in a sharp increase in viscosity upon heating. Different from the widely reported thermo-thickening in hydrophobic modified CS, GPAM is a hydrophilically modified one containing lots of PAM side chains. Hence, the mechanism of GPAM thermo-thickening is unusual, and it is found that the aggregate transformation from hydrophobic aggregate to H-bonding aggregate dominates the thickening process. Furthermore, the thickening of GPAM is influenced by temperature, heating time, GPAM concentration, and the structure of GPAM chain. Besides, the thermo-thickening is irreversible, i.e., the increased viscosity upon heating would not recover when the temperature drops to room temperature.
     Owing to lots of H-bonding groups, GPAM and CS can compound with β-cyclodextrin (β-CD, CD) through intermolecular H-bonds. With appropriate CD concentration, both GPAM/CD and CS/CD solutions present SIT and a novel rheological behavior named hardening after large amplitude oscillation, which may be related to the increased amount of polymer-CD-polymer H-bonds and the enhanced H-bonding network structure. According to the comparison between GPAM/CD and CS/CD, PAM side chain is considered as an important influence factor to the shear-response of the complex solutions.
引文
[1]Dobrynin A., V.Rubinstein M. Theory of polyelectrolytes in solutions and at surfaces, Progress in Polymer Science 2005,30(11):1049-1118.
    [2]Han D. K., Yang C. Z., Zhang Z. Q., Lou Z. H-Chang Y. I. Recent development of enhanced oil recovery in China, Journal of Petroleum Science and Engineering 1999,22(1):181-188.
    [3]Wever D., Picchioni F.Broekhuis A. Polymers for enhanced oil recovery:a paradigm for structure-property relationship in aqueous solution, Progress in Polymer Science 2011,36(11): 1558-1628.
    [4]Levitt D., Pope G. A. Selection and screening of polymers for enhanced-oil recovery. SPE Symposium on Improved Oil Recovery:Society of Petroleum Engineers,2008.
    [5]Buchgraber M., Clemens T., Castanier L. M.Kovscek A. R. The displacement of viscous oil by associative polymer solutions. SPE Annual Technical Conference and Exhibition:Society of Petroleum Engineers,2009.
    [6]Michaels A. Aggregation of suspensions by polyelectrolytes, Industrial& Engineering Chemistry 1954,46(7):1485-1490.
    [7]Bolto B., Gregory J. Organic polyelectrolytes in water treatment, Water research 2007,41(11): 2301-2324.
    [8]Petzold G., Nebel A., Buchhammer H. M., Lunkwitz K. Preparation and characterization of different polyelectrolyte complexes and their application as flocculants, Colloid and Polymer Science 1998,276(2):125-130.
    [9]Lee C., Liu J. Enhanced sludge dewatering by dual polyelectrolytes conditioning, Water research 2000,34(18):4430-4436.
    [10]Bohm N., Kulicke W. M. Optimization of the use of polyelectrolytes for dewatering industrial sludges of various origins, Colloid and Polymer Science 1997,275(1):73-81.
    [11]Mowla D., Tran H.Allen D. G. A review of the properties of biosludge and its relevance to enhanced dewatering processes, Biomass and Bioenergy 2013,58:365-378.
    [12]Ramesh M., Sivakumar A. Hydrophobically-modified demulsifiers for oil-in-water systems. Google Patents,1997.
    [13]Perrin P., Millet F., Charleux B. Emulsions stabilized by polyelectrolytes, surfactant science series 2001:363-446.
    [14]Milller H., Leube W., Tauer K., Forster S., Antonietti M. Polyelectrolyte block copolymers as effective stabilizers in emulsion polymerization, Macromolecules 1997,30(8):2288-2293.
    [15]Kosmella S., Koetz J. Poly (ethyleneimine) as reducing and stabilizing agent for the formation of gold nanoparticles in w/o microemulsions, Colloids and Surfaces A:Physicochemical and Engineering Aspects 2006,290(1):150-156.
    [16]Ole Kiminta D., Luckham P., Lenon S. The rheology of deformable and thermoresponsive microgel particles, Polymer 1995,36(25):4827-4831.
    [17]Schaffer J., Woodhams R., Polyelectrolyte builders as detergent phosphate replacements, Industrial& Engineering Chemistry Product Research and Development 1977,16(1):3-11.
    [18]Dautzenberg H., Jaeger W., Kotz J., Philipp B., Seidel C., Stscherbina D. Polyelectrolytes: formation, characterization and application,1994.
    [19]Shahidi F., Arachchi J. K., V.Jeon Y.-J., Food applications of chitin and chitosans, Trends in food science & technology 1999,10(2):37-51.
    [20]Baziwane D., He Q., Gelatin:the paramount food additive, Food reviews international 2003, 19(4):423-435.
    [21]Agullo E., Rodriguez M. S., Ramos V, Albertengo L. Present and future role of chitin and chitosan in food, Macromolecular bioscience 2003,3(10):521-530.
    [22]Hamman J. H. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems, Marine Drugs 2010,8(4):1305-1322.
    [23]De Geest B. G., De Koker S., Sukhorukov G. B., Kreft O., Parak W. J., Skirtach A. G., Demeester J., De Smedt S. C, Hennink W. E. Polyelectrolyte microcapsules for biomedical applications, Soft Matter 2009,5(2):282-291.
    [24]Hassani L. N., Hendra F.Bouchemal K. Auto-associative amphiphilic polysaccharides as drug delivery systems, Drug discovery today 2012,17(11):608-614.
    [25]Yethiraj A. Liquid State Theory of Polyelectrolyte Solutions, The Journal of Physical Chemistry B 2008,113(6):1539-1551.
    [26]Grosberg A., Khokhlov A. AIP Press; New York:1994, Statistical Physics ofMacromolecules.
    [27]Tsitsilianis C, Katsampas I.Sfika V. ABC heterotelechelic associative polyelectrolytes. Rheological behavior in aqueous media, Macromolecules 2000,33(24):9054-9059.
    [28]Kujawa P., Audibert-Hayet A., Selb J.Candau F. Rheological properties of multisticker associative polyelectrolytes in semidilute aqueous solutions, Journal of Polymer Science Part B:Polymer Physics 2004,42(9):1640-1655.
    [29]Chassenieux C., Nicolai T., Benyahia L. Rheology of associative polymer solutions, Current opinion in colloid & interface science 2011,16(1):18-26.
    [30]Rodriguez M., Xue J., Gouveia L. M., Muller A. J., Saez A. E., Rigolini J., Grassl B. Shear rheology of anionic and zwitterionic modified polyacrylamides, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011,373(1):66-73.
    [31]Esquenet C., Terech P., Boue F., Buhler E. Structural and rheological properties of hydrophobically modified polysaccharide associative networks, Langmuir 2004,20(9): 3583-3592.
    [32]Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery, Advanced drug delivery reviews 2006,58(15):1655-1670.
    [33]Belbekhouche S., Desbrieres J., Hamaide T., Le Cerf D.Picton L. Association states of multisensitive smart polysaccharide-block-polyetheramine copolymers, Carbohydrate Polymers 2013,95(1):41-49.
    [34]Bokias G., Mylonas Y., Staikos G., Bumbu G., Vasile C. Synthesis and aqueous solution properties of novel thermoresponsive graft copolymers based on a carboxymethylcellulose backbone, Macromolecules 2001,34(14):4958-4964.
    [35]Katchalsky A., Michaeli I. Polyelectrolyte gels in salt solutions, Journal of polymer Science 1955,15(79):69-86.
    [36]Parker A., Fieber W. Viscoelasticity of anionic wormlike micelles:effects of ionic strength and small hydrophobic molecules, Soft Matter 2013,9(4):1203-1213.
    [37]Nystrom B., Kj(?)niksen A.-L., Beheshti N., Maleki A., Zhu K., Knudsen K. D., Pamies R., Hernandez Cifre J. G., Garcia J. Characterization of polyelectrolyte features in polysaccharide systems and mucin, Advances in Colloid and Interface Science 2010,158(1):108-118.
    [38]Colinet I., Dulong V., Mocanu G., Picton L., Le Cerf D. New amphiphilic and pH-sensitive hydrogel for controlled release of a model poorly water-soluble drug, European Journal of Pharmaceutics and Biopharmaceutics 2009,73(3):345-350.
    [39]Ferry J. D. Viscoelastic properties of polymers,1980.
    [40]Larson R. G. The structure and rheology of complex fluids:Oxford university press New York, 1999.
    [41]Langela M., Wiesner U., Spiess H.Wilhelm M. Microphase reorientation in block copolymer melts as detected via FT rheology and 2D SAXS, Macromolecules 2002,35(8):3198-3204.
    [42]Camerel F., Gabriel J., Batail P., Panine P., Davidson P. Combined SAXS-rheological studies of liquid-crystalline colloidal dispersions of mineral particles, Langmuir 2003,19(24): 10028-10035.
    [43]Nystroem B., Thuresson K., Lindman B. Rheological and dynamic light-scattering studies on aqueous solutions of a hydrophobically modified nonionic cellulose ether and its unmodified analog, Langmuir 1995,11(6):1994-2002.
    [44]Lessard D., Ousalem M., Zhu X., Eisenberg A., Carreau P. Study of the phase transition of poly (N, N-diethylacrylamide) in water by rheology and dynamic light scattering, Journal of Polymer Science Part B:Polymer Physics 2003,41(14):1627-1637.
    [45]Matsunaga T., Shibayama M. Gel point determination of gelatin hydrogels by dynamic light scattering and rheological measurements, Physical Review E 2007,76(3):030401.
    [46]Richter S., Boyko V., Schroter K. Gelation studies on a radical chain cross-linking copolymerization process:comparison of the critical exponents obtained by dynamic light scattering and rheology, Macromolecular rapid communications 2004,25(4):542-546.
    [47]Roy A. N., Comesse S., Grisel M., Hucher N., Souguir Z., Renou F. Hydrophobically modified xanthan:an amphiphilic but not associative polymer, Biomacromolecules 2014.
    [48]Oosawa F. Poly electrolytes. Marcel Dekker,1971.
    [49]Boris D. C., Colby R. H. Rheology of sulfonated polystyrene solutions, Macromolecules 1998, 31(17):5746-5755.
    [50]Zhang R., Shi T., An L., Sun Z., Tong Z. Conformational Study on Sol-Gel Transition in Telechelic Polyelectrolytes Solutions, The Journal of Physical Chemistry B 2010,114(10): 3449-3456.
    [51]De Gennes P.G. Scaling concepts in polymer physics, Cornell university press,1979.
    [52]Edwards S. F., Doi M. The theory of polymer dynamics, Clarendon, Oxford 1986.
    [53]Rubinstein M.Colby R. H. Polymer physics:OUP Oxford,2003.
    [54]Dobrynin A. V, Colby R. H., Rubinstein M. Scaling theory of polyelectrolyte solutions, Macromolecules 1995,28(6):1859-1871.
    [55]Kuhn W., Kunzle O., Katchalsky A. Verhalten polyvalenter fadenmolekelionen in losung, Helvetica Chimica Acta 1948,31(7):1994-2037.
    [56]Dou S., Colby R. H. Charge density effects in salt-free polyelectrolyte solution rheology, Journal of Polymer Science Part B:Polymer Physics 2006,44(14):2001-2013.
    [57]Ying Q., Chu B. Overlap concentration of macromolecules in solution, Macromolecules 1987, 20(2):362-366.
    [58]Rubinstein M., Colby R. H., Dobrynin A. V. Dynamics of semidilute polyelectrolyte solutions, Physical review letters 1994,73(20):2776.
    [59]Kavassalis T. A., Noolandi J. New view of entanglements in dense polymer systems, Physical review letters 1987,59:2674-2677.
    [60]Kavassalis T. A., Noolandi J. A new theory of entanglements and dynamics in dense polymer systems, Macromolecules 1988,21(9):2869-2879.
    [61]Kavassalis T. A., Noolandi J. Entanglement scaling in polymer melts and solutions, Macromolecules 1989,22(6):2709-2720.
    [62]Spiteri M., Williams C., Boue F. Pearl-necklace-like chain conformation of hydrophobic polyelectrolyte:a SANS study of partially sulfonated polystyrene in water, Macromolecules 2007,40(18):6679-6691.
    [63]Chen J., Xue H., Yao Y., Yang H., Li A., Xu M., Chen Q., Cheng R. Effect of Surfactant Concentration on the Complex Structure of Poly (N-isopropylacrylamide)/Sodium n-Dodecyl Sulfate in Aqueous Solutions, Macromolecules 2012,45(13):5524-5529.
    [64]Dobrynin A. V, Rubinstein M. Counterion condensation and phase separation in solutions of hydrophobic polyelectrolytes, Macromolecules 2001,34(6):1964-1972.
    [65]Muthukumar M. Theory of counter-ion condensation on flexible polyelectrolytes:adsorption mechanism, The Journal ofchemical physics 2004,120(19):9343-9350.
    [66]Odijk T. Polyelectrolytes near the rod limit, Journal of Polymer Science:Polymer Physics Edition 1977,15(3):477-483.
    [67]Wyatt N. B., Liberatore M. W. The effect of counterion size and valency on the increase in viscosity in polyelectrolyte solutions, Soft Matter 2010,6(14):3346-3352.
    [68]Wyatt N. B., Gunther C. M., Liberatore M. W. Increasing viscosity in entangled polyelectrolyte solutions by the addition of salt, Polymer 2011,52(11):2437-2444.
    [69]Wu X., Qiao Y., Wang J. Associative properties of amphiphilic statistical polymers in aqueous media, Journal of Chemical & Engineering Data 2009,55(2):919-924.
    [70]Van Wazer J. R., Colwell R., Lyons J., Kim K. Viscosity and flow measurement:a laboratory handbook of rheology:Interscience Publishers New York, London,1963.
    [71]吴其晔,静安巫.高分子材料流变学:高等教育出版社,2002.
    [72]周持兴.聚合物流变实验与应用:上海交通大学出版社,2003.
    [73]Clausen T., Vinson P., Minter J., Davis H., Talmon Y., Miller W. Viscoelastic micellar solutions:microscopy and rheology, The Journal of Physical Chemistry 1992,96(1):474-484.
    [74]Chen D., Weeks E., Crocker J. C., Islam M., Verma R., Gruber J., Levine A., Lubensky T. C.Yodh A. Rheological microscopy:local mechanical properties from microrheology, Physical review letters 2003,90(10):108301.
    [75]Pearson C. R., Heng M., Gebert M., Glatz C. E. Zeta potential as a measure of polyelectrolyte flocculation and the effect of polymer dosing conditions on cell removal from fermentation broth, Biotechnology and bioengineering 2004,87(1):54-60.
    [76]Cheng H., Shen L., Wu C. LLS and FTIR studies on the hysteresis in association and dissociation of poly (N-isopropylacrylamide) chains in water, Macromolecules 2006,39(6): 2325-2329.
    [77]Philippova O. E., Korchagina E. V, Volkov E. V, Smirnov V. A., Khokhlov A. R., Rinaudo M. Aggregation of some water-soluble derivatives of chitin in aqueous solutions:Role of the degree of acerylation and effect of hydrogen bond breaker, Carbohydrate Polymers 2012, 87(1):687-694.
    [78]Wang D., Lal J., Moses D., Bazan G. C., Heeger A. J. Small angle neutron scattering (SANS) studies of a conjugated polyelectrolyte in aqueous solution, Chemical physics letters 2001, 348(5):411-415.
    [79]Ermi B. D., Amis E. J. Influence of backbone solvation on small angle neutron scattering from polyelectrolyte solutions, Macromolecules 1997,30(22):6937-6942.
    [80]Swanson-Vethamuthu M., Dubin P. L., Almgren M., Li Y. Cryo-TEM of Polyelectrolyte-Micelle Complexes, Journal of colloid and interface science 1997,186(2):414-419.
    [81]FSrster S., Abetz V, Muller A. H. Polyelectrolyte block copolymer micelles. Polyelectrolytes with Defined Molecular Architecture Ⅱ:Springer,2004. pp.173-210.
    [82]Shchipunov Y. A., Postnova I. V. Water-soluble polyelectrolyte complexes of oppositely charged polysaccharides, Composite interfaces 2009,16(4-6):251-279.
    [83]Spruijt E., Cohen Stuart M. A., van der Gucht J. Linear viscoelasticity of polyelectrolyte complex coacervates, Macromolecules 2013,46(4):1633-1641.
    [84]Huang C. I., Olvera de La Cruz M. Polyelectrolytes in multivalent salt solutions: monomolecular versus multimolecular aggregation, Macromolecules 2002,35(3):976-986.
    [85]Wu K. M., Wei Y. F., Hsiao P. Y. Polyelectrolytes in multivalent salt solutions, Electrophoresis 2011,32(23):3348-3363.
    [86]Pristinski D., Kozlovskaya V., Sukhishvili S. A. Fluorescence correlation spectroscopy studies of diffusion of a weak polyelectrolyte in aqueous solutions, The Journal of chemical physics 2004,122(1):014907.
    [87]Walczak W. J., Hoagland D. A., Hsu S. L. Analysis of polyelectrolyte chain conformation of polarized Raman-spectroscopy, Macromolecules 1992,25(26):7317-7323.
    [88]Kitano H., Sudo K., Ichikawa K., Ide M., Ishihara K. Raman spectroscopic study on the structure of water in aqueous polyelectrolyte solutions, The Journal of Physical Chemistry B 2000,104(47):11425-11429.
    [89]Sun B., Lin Y, Wu P., Siesler H. W. A FTIR and 2D-IR spectroscopic study on the microdynamics phase separation mechanism of the poly (N-isopropylacrylamide) aqueous solution, Macromolecules 2008,41(4):1512-1520.
    [90]Jiang F., Dallas J. L., Ahn B. K., Hsieh Y. L. 1D and 2D NMR of nanocellulose in aqueous colloidal suspensions, Carbohydrate Polymers 2014.
    [91]Chang R.Yethiraj A. Brownian dynamics simulations of salt-free polyelectrolyte solutions, The Journal of chemical physics 2002,116(12):5284-5298.
    [92]Chang R.,Yethiraj A. Brownian dynamics simulations of polyelectrolyte solutions with divalent counterions, The Journal ofchemical physics 2003,118(24):11315-11325.
    [93]Winnik M. A.,Yekta A. Associative polymers in aqueous solution, Current opinion in colloid & interface science 1997,2(4):424-436.
    [94]Bhatia S., Mohr A., Mathur D., Parmar V. S., Haag R., Prasad A. K. Biocatalytic route to sugar-PEG-based polymers for drug delivery applications, Biomacromolecules 2011,12(10): 3487-3498.
    [95]Alexandridis P. Amphiphilic copolymers and their applications, Current opinion in colloid & interface science 1996,1(4):490-501.
    [96]Goethals E. J. Telechelic Polymers:CRC press,1988.
    [97]Rubinstein M., Dobrynin A. V. Solutions of associative polymers, Trends in Polymer Science 1997,5(6):181-186.
    [98]Korchagina E. V., Philippova O. E. Effects of Hydrophobic Substituents and Salt on Core-Shell Aggregates of Hydrophobically Modified Chitosan:Light Scattering Study, Langmuir 2012,28(20):7880-7888.
    [99]Walker L. M. Rheology and structure of worm-like micelles, Current opinion in colloid & interface science 2001,6(5):451-456.
    [100]Tam K., Jenkins R., Winnik M.Bassett D. A structural model of hydrophobically modified urethane-ethoxylate (HEUR) associative polymers in shear flows, Macromolecules 1998, 31(13):4149-4159.
    [101]Leibler L., Rubinstein M., Colby R. H. Dynamics of reversible networks, Macromolecules 1991,24(16):4701-4707.
    [102]Annable T., Buscall R., Ettelaie R., Whittlestone D. The rheology of solutions of associating polymers:comparison of experimental behavior with transient network theory, Journal of Rheology (1978-present) 1993,37(4):695-726.
    [103]Amiji M. M. Pyrene fluorescence study of chitosan self-association in aqueous solution, Carbohydrate Polymers 1995,26(3):211-213.
    [104]Li G., Zhuang Y., Mu Q., Wang M., Fang Y. Preparation, characterization and aggregation behavior of amphiphilic chitosan derivative having poly (L-lactic acid) side chains, Carbohydrate Polymers 2008,72(1):60-66.
    [105]Korchagina E. V, Philippova O. E. Multichain aggregates in dilute solutions of associating polyelectrolyte keeping a constant size at the increase in the chain length of individual macromolecules, Biomacromolecules 2010,11(12):3457-3466.
    [106]Minko S., Roiter Y. AFM single molecule studies of adsorbed polyelectrolytes, Current opinion in colloid & interface science 2005,10(1):9-15.
    [107]Nystrom B., Kj(?)niksen A.L., Beheshti N., Zhu K., Knudsen K. D. Rheological and structural aspects on association of hydrophobically modified polysaccharides, Soft Matter 2009,5(7): 1328-1339.
    [108]Kronberg B., Lindman B. Surfactants and Polymers in aqueous Solution:John Wiley & Sons Ltd., Chichester,2003.
    [109]Paolino M., Ennen F., Lamponi S., Cernescu M., Voit B., Cappelli A., Appelhans D.Komber H. Cyclodextrin-Adamantane Host-Guest Interactions on the Surface of Biocompatible Adamantyl-Modified Glycodendrimers, Macromolecules 2013,46(9):3215-3227.
    [110]Aida T., Meijer E., Stupp S. Functional supramolecular polymers, Science 2012,335(6070): 813-817.
    [111]Stavrouli N., Aubry T., Tsitsilianis C. Rheological properties of ABA telechelic polyelectrolyte and ABA polyampholyte reversible hydrogels:A comparative study, Polymer 2008,49(5): 1249-1256.
    [112]Pillai C., Paul W., Sharma C. P. Chitin and chitosan polymers:Chemistry, solubility and fiber formation, Progress in Polymer Science 2009,34(7):641-678.
    [113]Thongngam M., McClements D. J. Influence of pH, ionic strength, and temperature on self-association and interactions of sodium dodecyl sulfate in the absence and presence of chitosan, Langmuir 2005,21(1):79-86.
    [114]Desbrieres J. Viscosity of semiflexible chitosan solutions:influence of concentration, temperature, and role of intermolecular interactions, Biomacromolecules 2002,3(2):342-349.
    [115]Hwang J. K., Shin H. H. Rheological properties of chitosan solutions, Korea-Australia Rheology Journal 2000,12(3-4):175-179.
    [116]Rohn C. L. Analytical polymer rheology:structure-processing-property relationships:Hanser, 1995.
    [117]Martinez-Ruvalcaba A., Chornet E., Rodrigue D. Dynamic Rheological Properties of Concentrated Chitosan Soltions,Applied Rheology 2004,14(3):140-147.
    [118]Cho J., Heuzey M.C., Begin A., Carreau P. J. Viscoelastic properties of chitosan solutions: Effect of concentration and ionic strength, Journal of Food Engineering 2006,74(4):500-515.
    [119]Kienzle-Sterzer C., Rodriguez-Sanchez D., Rha C. Flow behavior of a cationic biopolymer: Chitosan, Polymer Bulletin 1985,13(1):1-6.
    [120]Nystrom B., Kj(?)niksen A.L., Iversen C. Characterization of association phenomena in aqueous systems of chitosan of different hydrophobicity, Advances in Colloid and Interface Science 1999,79(2):81-103.
    [121]Rwei S., Chen T., Cheng Y. Sol/gel transition of chitosan solutions, Journal of Biomaterials Science, Polymer Edition 2005,16(11):1433-1445.
    [122]Schatz C., Pichot C., Delair T., Viton C., Domard A. Static light scattering studies on chitosan solutions:from macromolecular chains to colloidal dispersions, Langmuir 2003,19(23): 9896-9903.
    [123]No H. K., Kim S. H., Lee S. H., Park N. Y, Prinyawiwatkul W. Stability and antibacterial activity of chitosan solutions affected by storage temperature and time, Carbohydrate Polymers 2006,65(2):174-178.
    [124]Kim K., Kwon S., Park J. H., Chung H., Jeong S. Y, Kwon I. C., Kim I. S. Physicochemical characterizations of self-assembled nanoparticles of glycol chitosan-deoxycholic acid conjugates, Biomacromolecules 2005,6(2):1154-1158.
    [125]Wyatt N. B., Liberatore M. W., Rheology and viscosity scaling of the polyelectrolyte xanthan gum, Journal of applied polymer science 2009,114(6):4076-4084.
    [126]Kimerling A. S., Rochefort W. E., Bhatia S. R. Rheology of block polyelectrolyte solutions and gels:A review, Industrial & engineering chemistry research 2006,45(21):6885-6889.
    [127]Lele A., Shedge A., Badiger M., Wadgaonkar P., Chassenieux C. Abrupt Shear Thickening of Aqueous Solutions of Hydrophobically Modified Poly (N, N-dimethylacrylamide-co-acrylic acid), Macromolecules 2010,43(23):10055-10063.
    [128]Martinez A., Chornet E., Rodrigue D. steady-shear rheology of concentrated chitosan solutions, Journal of texture studies 2004,35(1):53-74.
    [129]Malkin A. Y Non-Newtonian viscosity in steady-state shear flows, Journal of Non-Newtonian Fluid Mechanics 2013,192:48-65.
    [130]Poncet-Legrand C., Lafuma F., Audebert R. Rheological behaviour of colloidal dispersions of hydrophobic particles stabilised in water by amphiphilic polyelectrolytes, Colloids and Surfaces A:Physicochemical and Engineering Aspects 1999,152(3):251-261.
    [131]Luckham P. E, Rossi S. The colloidal and rheological properties of bentonite suspensions, Advances in Colloid and Interface Science 1999,82(1):43-92.
    [132]Shafiei-Sabet S., Hamad W. Y, Hatzikiriakos S. G. Rheology of nanocrystalline cellulose aqueous suspensions, Langmuir 2012,28(49):17124-17133.
    [133]Makarova V. V, Tolstykh M. Y, Picken S. J., Mendes E., Kulichikhin V. G. Rheology-structure interrelationships of hydroxypropylcellulose liquid crystal solutions and their nanocomposites under flow, Macromolecules 2013,46(3):1144-1157.
    [134]Tirtaatmadja V., Tam K., Jenkins R. Superposition of oscillations on steady shear flow as a technique for investigating the structure of associative polymers, Macromolecules 1997,30(5): 1426-1433.
    [135]Isayev A., Wong C. Parallel superposition of small- and large-amplitude oscillations upon steady shear flow of polymer fluids, Journal of Polymer Science Part B:Polymer Physics 1988,26(11):2303-2327.
    [136]Mewis J., Kaffashi B., Vermant J.Butera R. Determining relaxation modes in flowing associative polymers using superposition flows, Macromolecules 2001,34(5):1376-1383.
    [137]Wagner N. J., Brady J. F. Shear thickening in colloidal dispersions, Physics Today 2009, 62(10):27-32.
    [138]Hu Y., Wang S., Jamieson A. Rheological and rheooptical studies of shear-thickening polyacrylamide solutions, Macromolecules 1995,28(6):1847-1853.
    [139]Cadix A., Chassenieux C., Lafuma F., Lequeux F. Control of the reversible shear-induced gelation of amphiphilic polymers through their chemical structure, Macromolecules 2005, 38(2):527-536.
    [140]Wang J., Benyahia L., Chassenieux C., Tassin J. F., Nicolai T. Shear-induced gelation of associative polyelectrolytes, Polymer 2010,51(9):1964-1971.
    [141]Zhu L., Shangguan Y., Sun Y, Ji J., Zheng Q. Rheological properties of redox-responsive, associative ferrocene-modified branched poly (ethylene imine) and its modulation by β-cyclodextrin and hydrogen peroxide, Soft Matter 2010,6(21):5541-5546.
    [142]Sui K., Zhao X., Wu Z., Xia Y, Liang H., Li Y. Synthesis, rapid responsive thickening, and self-assembly of brush copolymer poly (ethylene oxide)-graft-poly (N, N-dimethylaminoethyl methacrylate) in aqueous solutions, Langmuir 2011,28(1):153-160.
    [143]Xu D., Craig S. L. Multiple dynamic processes contribute to the complex steady shear behavior of cross-linked supramolecular networks of semidilute entangled polymer solutions, The journal ofphysical chemistry letters 2010,1(11):1683-1686.
    [144]Xu D., Hawk J. L., Loveless D. M., Jeon S. L., Craig S. L. Mechanism of shear thickening in reversibly cross-linked supramolecular polymer networks, Macromolecules 2010,43(7): 3556-3565.
    [145]Xu D., Liu C. Y., Craig S. L. Divergent shear thinning and shear thickening behavior of supramolecular polymer networks in semidilute entangled polymer solutions, Macromolecules 2011,44(7):2343-2353.
    [146]Eliassaf J., Silberberg A., Katchalsky A. Negative thixotropy of aqueous solutions of polymethacrylic acid, Nature 1955,176:1119.
    [147]Quadrat O., Bradna P., Dupuis D., Wolff C. Negtive thixotropy of solutions of partially hydrolyzed polyacrylamide. Part I:The influence of shear rate on time changes of flow characteristics, Colloid and Polymer Science 1992,270(11):1057-1059.
    [148]Bradna P., Quadrat O., Dupuis D. The influence of salt concentration on negative thixotropy in solutions of partially hydrolyzed polyacrylamide, Colloid and Polymer Science 1995,273(5): 421-425.
    [149]Bradna P., Quadrat O., Dupuis D. Negative thixotropy of solutions of partially hydrolyzed polyacrylamide, Colloid and Polymer Science 1995,273(7):642-647.
    [150]Liu Z., Maleki A., Zhu K., Kj(?)nniksen A. L., Nystrom B. Intramolecular and intermolecular association during chemical cross-linking of dilute solutions of different polysaccharides under the influence of shear flow, The Journal of Physical Chemistry B 2008,112(4): 1082-1089.
    [151]Hourdet D., L'alloret F., Audebert R. Reversible thermothickening of aqueous polymer solutions, Polymer 1994,35(12):2624-2630.
    [152]Sosnik A., Cohn D. Ethoxysilane-capped PEO-PPO-PEO triblocks:a new family of reverse thermo-responsive polymers, Biomaterials 2004,25(14):2851-2858.
    [153]Cohn D., Lando G., Sosnik A., Garty S., Levi A. PEO-PPO-PEO-based poly (ether ester urethane) s as degradable reverse thermo-responsive multiblock copolymers, Biomaterials 2006,27(9):1718-1727.
    [154]Hourdet D., L'alloret F., Audebert R. Synthesis of thermoassociative copolymers, Polymer 1997,38(10):2535-2547.
    [155]L'alloret F., Hourdet D., Audebert R. Aqueous solution behavior of new thermoassociative polymers, Colloid and Polymer Science 1995,273(12):1163-1173.
    [156]Chen J. P., Cheng T. H. Thermo-responsive chitosan-graft-poly (N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells, Macromolecular bioscience 2006,6(12):1026-1039.
    [157]Otake K., Inomata H., Konno M., Saito S. Thermal analysis of the volume phase transition with N-isopropylacrylamide gels, Macromolecules 1990,23(1):283-289.
    [158]Recillas M., Silva L. L., Peniche C., Goycoolea F. M., Rinaudo M., Argiielles-Monal W. M. Thenmoresponsive behavior of chitosan-g-N-isopropylacrylamide copolymer solutions, Biomacromolecules 2009,10(6):1633-1641.
    [159]Recillas M., Silva L. L., Peniche C., Goycoolea F. M., Rinaudo M., Roman J. S., Arguelles-Monal W. M. Thermo-and pH-responsive polyelectrolyte complex membranes from chitosan-g-N-isopropylacrylamide and pectin, Carbohydrate Polymers 2011,86(3): 1336-1343.
    [160]Bao H., Li L., Leong W. C., Gan L. H. Thermo-responsive association of chitosan-graft-poly (N-isopropylacrylamide) in aqueous solutions, The Journal of Physical Chemistry B 2010, 114(32):10666-10673.
    [161]Karakasyan C., Lack S., Brunei F., Maingault P., Hourdet D. Synthesis and rheological properties of responsive thickeners based on polysaccharide architectures, Biomacromolecules 2008,9(9):2419-2429.
    [162]Bhattarai N., Ramay H. R., Gunn J., Matsen F. A., Zhang M. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release, Journal of Controlled Release 2005,103(3):609-624.
    [163]Schuetz Y. B., Gurny R., Jordan O. A novel thermoresponsive hydrogel based on chitosan, European Journal of Pharmaceutics and Biopharmaceutics 2008,68(1):19-25.
    [164]Pakravan M., Heuzey M. C., Ajji A. Determination of Phase Behavior of Poly (ethylene oxide) and Chitosan Solution Blends Using Rheometry, Macromolecules 2012,45(18):7621-7633.
    [165]Chenite A., Buschmann M., Wang D., Chaput C., Kandani N. Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions, Carbohydrate Polymers 2001,46(1): 39-47.
    [166]Cho J., Heuzey M. C., Begin A., Carreau P. J. Effect of urea on solution behavior and heat-induced gelationof chitosan-p-glycerophosphate, Carbohydrate Polymers 2006,63(4): 507-518.
    [167]Jayakumar R., Prabaharan M., Reis R., Mano J. Graft copolymerized chitosan-present status and applications, Carbohydrate Polymers 2005,62(2):142-158.
    [168]Zohuriaan-Mehr M. J. Advances in chitin and chitosan modification through graft copolymerization:a comprehensive review, Iran Polym J 2005,14(3):235-265.
    [169]Kurenkov V. F., Hartan H. G., Lobanov F. I. Application of polyacrylamide flocculants for water treatment, Chemistry and computational simulations. Butlerov Commun 2002,3:31-40.
    [170]Wende Z., Jianmei L., Ying T., Bo H., Kun X., Pixin W. Application of water dispersive cationic polyacrylamide to the treatment of wastewater from paper making, Industrial Water Treatment 2013,1:017.
    [171]Lucas E. F., Mansur C. R., Spinelli L., Queiros Y. G. Polymer science applied to petroleum production, Pure & Applied Chemistry 2009,81(3).
    [172]Qing Y., Caili D., Yefei W., Engao T., Guang Y., Fulin Z. A study on mass concentration determination and property variations of produced polyacrylamide in polymer flooding, Petroleum Science and Technology 2011,29(3):227-235.
    [173]Abdel-Alim A., Hamielec A. Shear degradation of water-soluble polymers. I. Degradation of polyacrylamide in a high-shear couette viscometer, Journal of applied polymer science 1973, 17(12):3769-3778.
    [174]Henderson J., Wheatley A. Factors effecting a loss of flocculation activity of polyacrylamide solutions:Shear degradation, cation complexation, and solution aging, Journal of applied polymer science 1987,33(2):669-684.
    [175]Nagashiro W., Tsunoda T. Degradation of polyacrylamide molecules in aqueous solutions by high-speed stirring, Journal of applied polymer science 1977,21 (4):1149-1153.
    [176]Nakano A., Minoura Y. Degradation of aqueous poly (acrylic acid) and its sodium salt solutions by high - speed stirring, Journal of applied polymer science 1978,22(8): 2207-2215.
    [177]Malik S., Shintre S., Mashelkar R. Enhancing the shear stability in drag-reducing polymers through molecular associations, Macromolecules 1993,26(1):55-59.
    [178]Wang J. P., Chen Y.-Z., Zhang S. J.,Yu H. Q. A chitosan-based flocculant prepared with gamma-irradiation-induced grafting, Bioresource technology 2008,99(9):3397-3402.
    [179]Lu Y., Shang Y., Huang X., Chen A., Yang Z., Jiang Y., Cai J., Gu W., Qian X., Yang H. Preparation of strong cationic chitosan-graft-polyacrylamide flocculants and their flocculating properties, Industrial & engineering chemistry research 2011,50(12):7141-7149.
    [180]Yi L., Li K. Z., Liu D. X. Degradation of Polyacrylamide:A Review, Advanced Materials Research 2013,800:411-416.
    [181]Wan X., Li Y, Wang X., Chen S., Gu X. Synthesis of cationic guar gum-graft-polyacrylamide at low temperature and its flocculating properties, European polymer journal 2007,43(8): 3655-3661.
    [182]Mishra S., Mukul A., Sen G., Jha U. Microwave assisted synthesis of polyacrylamide grafted starch (St-g-PAM) and its applicability as flocculant for water treatment, International Journal of Biological Macromolecules 2011,48(1):106-111.
    [183]Yang Z., Yuan B., Huang X., Zhou J., Cai J., Yang H., Li A., Cheng R. Evaluation of the flocculation performance of carboxymethyl chitosan-gra/r-polyacrylamide, a novel amphoteric chemically bonded composite flocculant, Water research 2012,46(1):107-114.
    [184]Bao Y, Ma J., Li N. Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel, Carbohydrate Polymers 2011,84(1):76-82.
    [185]Yang Z., Shang Y., Lu Y, Chen Y, Huang X., Chen A., Jiang Y, Gu W., Qian X., Yang H. Flocculation properties of biodegradable amphoteric chitosan-based flocculants, Chemical Engineering Journal2011,172(1):287-295.
    [186]Yuan B., Shang Y., Lu Y., Qin Z., Jiang Y, Chen A., Qian X., Wang G., Yang H., Cheng R. The flocculating properties of chitosan-graft-polyacrylamide flocculants (I):effect of the grafting ratio, Journal of applied polymer science 2010,117(4):1876-1882.
    [187]Hourdet D., Gadgil J., Podhajecka K., Badiger M. V, Brulet A., Wadgaonkar P. P. Thermoreversible behavior of associating polymer solutions:thermothinning versus thermothickening,Macromolecules 2005,38(20):8512-8521.
    [188]Petit L., Bouteiller L., Brulet A., Lafuma F., Hourdet D. Responsive hybrid self-assemblies in aqueous media, Langmuir 2007,23(1):147-158.
    [189]Jenkins D., W.Hudson S. M. Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers, Chemical Reviews 2001,101(11):3245-3274.
    [190]Caner H., Yilmaz E.,Yilmaz O. Synthesis, characterization and antibacterial activity of poly (N-vinylimidazole) grafted chitosan, Carbohydrate Polymers 2007,69(2):318-325.
    [191]Joshi J. M., Sinha V. K. Graft copolymerization of 2-hydroxyethylmethacrylate onto carboxymethyl chitosan using CAN as an initiator, Polymer 2006,47(6):2198-2204.
    [192]Carreau P. J., De Kee D., Chhabra R. P. Rheology of polymeric systems:principles and applications:Hanser Publishers Munich,1997.
    [193]Kraemer E. O. Molecular weights of celluloses and cellulose derivates, Industrial & Engineering Chemistry 1938,30(10):1200-1203.
    [194]Huggins M. L. The viscosity of dilute solutions of long-chain molecules. Ⅳ. Dependence on concentration, Journal of the American Chemical Society 1942,64(11):2716-2718.
    [195]Hao J., Yuan G., He W., Cheng H., Han C. C., Wu C. Interchain Hydrogen-Bonding-Induced Association of Poly (acrylic acid)-graft-poly (ethylene oxide) in Water, Macromolecules 2010, 43(4):2002-2008.
    [196]Peng X., Zhang L. Formation and morphologies of novel self-assembled micelles from chitosan derivatives, Langmuir 2007,23(21):10493-10498.
    [197]Wang Y, Winnik M. A. Onset of aggregation for water-soluble polymeric associative thickeners:a fluorescence study, Langmuir 1990,6(9):1437-1439.
    [198]Basu Ray G., Chakraborty I., Moulik S. P. Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity, Journal of colloid and interface science 2006,294(1):248-254.
    [199]Kjellin U., Reimer J., Hansson P. An investigation of dynamic surface tension, critical micelle concentration, and aggregation number of three nonionic surfactants using NMR, time-resolved fluorescence quenching, and maximum bubble pressure tensiometry, Journal of colloid and interface science 2003,262(2):506-515.
    [200]Lin S. Y., Lin Y. Y, Chen E. M., Hsu C. T., Kwan C. C. A study of the equilibrium surface tension and the critical micelle concentration of mixed surfactant solutions, Langmuir 1999, 15(13):4370-4376.
    [201]Buscall R., McGowan I. J., Mumme-Young C. A. Rheology of weakly interacting colloidal particles at high concentration, Faraday Discuss. Chem. Soc.1990,90:115-127.
    [202]Kulicke W. M., Porter R. Relation between steady shear flow and dynamic rheology, Rheologica Acta 1980,19(5):601-605.
    [203]Liu L., Yang J. P., Ju X. J., Xie R., Liu Y. M., Wang W., Zhang J. J., Niu C. H., Chu L. Y. Monodisperse core-shell chitosan microcapsules for pH-responsive burst release of hydrophobic drugs, Soft Matter 2011,7(10):4821-4827.
    [204]Lee K., Kwon I., Kim Y. H., Jo W., Jeong S. Preparation of chitosan self-aggregates as a gene delivery system, Journal of Controlled Release 1998,51(2):213-220.
    [205]Janeschitz-Kriegl H., Papenhuijzen J. Flow birefringence in concentrated detergent solutions, Rheol. Acta 1971,10:461-466.
    [206]Rehage H., Hoffmann H. Rheological properties of viscoelastic surfactant systems, The Journal of Physical Chemistry 1988,92(16):4712-4719.
    [207]Schatz C., Viton C., Delair T., Pichot C.Domard A. Typical physicochemical behaviors of chitosan in aqueous solution, Biomacromolecules 2003,4(3):641-648.
    [208]Lamarque G., Lucas J. M., Viton C., Domard A. Physicochemical behavior of homogeneous series of acetylated chitosans in aqueous solution:Role of various structural parameters, Biomacromolecules 2005,6(1):131-142.
    [209]Witten T. Associating polymers and shear thickening, Journal de Physique 1988,49(6): 1055-1063.
    [210]Rinaudo M. Chitin and chitosan:properties and applications, Progress in Polymer Science 2006,31(7):603-632.
    [211]Rinaudo M., Pavlov G., Desbrieres J. Influence of acetic acid concentration on the solubilization of chitosan, Polymer 1999,40(25):7029-7032.
    [212]Jin G. W., Koo H., Nam K., Kim H., Lee S., Park J. S., Lee Y. PAMAM dendrimer with a l, 2-diaminoethane surface facilitates endosomal escape for enhanced pDNA delivery, Polymer 2011,52(2):339-346.
    [213]Boyd J., Buick J. M., Green S. Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method, Physics of Fluids (1994-present) 2007,19(9):093103.
    [214]Ouchi T., Nishizawa H., Ohya Y. Aggregation phenomenon of PEG-grafted chitosan in aqueous solution, Polymer 1998,39(21):5171-5175.
    [215]He Y., Zhu B., Inoue Y. Hydrogen bonds in polymer blends, Progress in Polymer Science 2004,29(10):1021-1051.
    [216]Ohmine I.,Tanaka H. Fluctuation, relaxations, and hydration in liquid water. Hydrogen-bond rearrangement dynamics, Chemical Reviews 1993,93(7):2545-2566.
    [217]Steiner T. The hydrogen bond in the solid state, Angewandte Chemie International Edition 2002,41(1):48-76.
    [218]Lee H. C., Brant D. A. Rheology of concentrated isotropic and anisotropic xanthan solutions. 2. A semiflexible wormlike intermediate molecular weight sample, Macromolecules 2002, 35(6):2223-2234.
    [219]Cross M. Relation between viscoelasticity and shear-thinning behaviour in liquids, Rheologica Acta 1979,18(5):609-614.
    [220]Lobe V. M., White J. L. An experimental study of the influence of carbon black on the rheological properties of a polystyrene melt, Polymer Engineering & Science 1979,19(9): 617-624.
    [221]Kulicke W. M., Kniewske R., Klein J. Preparation, characterization, solution properties and rheological behaviour of polyacrylamide, Progress in Polymer Science 1982,8(4):373-468.
    [222]Skelland A. H. P. Non-Newtonian flow and heat transfer. Wiley New York,1967.
    [223]Kj(?)niksen A. L., Beheshti N., Kotlar H. K., Zhu K., Nystrom B. Modified polysaccharides for use in enhanced oil recovery applications, European polymer journal 2008,44(4):959-967.
    [224]Buscall R., McGowan J. I., Morton-Jones A. J. The rheology of concentrated dispersions of weakly attracting colloidal particles with and without wall slip, Journal of Rheology 1993, 37(4):621-641.
    [225]Tayal A., Khan S. A. Degradation of a water-soluble polymer:molecular weight changes and chain scission characteristics, Macromolecules 2000,33(26):9488-9493.
    [226]Melander W., Horvath C. Salt effects on hydrophobic interactions in precipitation and chromatography of proteins:an interpretation of the lyotropic series, Archives of biochemistry and biophysics 1977,183(1):200-215.
    [227]Meagher L., Craig V. S. Effect of dissolved gas and salt on the hydrophobic force between polypropylene surfaces, Langmuir 1994,10(8):2736-2742.
    [228]Jelesarov I., Durr E., Thomas R. M., Bosshard H. R. Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper), Biochemistry 1998,37(20):7539-7550.
    [229]Patel P., Russel W. The rheology of polystyrene latices phase separated by dextran, Journal of Rheology 1987,31(7):599-618.
    [230]Barnes H., Walters K. The yield stress myth?, Rheologica Acta 1985,24(4):323-326.
    [231]Seetapan N., Maingam K., Plucktaveesak N., Sirivat A. Linear viscoelasticity of thermoassociative chitosan-g-poly (N-isopropylacrylamide) copolymer, Rheologica Acta 2006, 45(6):1011-1018.
    [232]Bastiat G., Grassl B., Francois J. Study of sodium dodecyl sulfate/poly (propylene oxide) methacrylate mixed micelles for the synthesis of thermo-associative polymers by micellar polymerization, Polymer international 2002,51(10):958-965.
    [233]McCormick C. L., Nonaka T., Johnson C. B. Water-soluble copolymers:27. Synthesis and aqueous solution behaviour of associative acrylamideN-alkylacrylamide copolymers, Polymer 1988,29(4):731-739.
    [234]Bae Y. H., Okano T., Kim S. W. Insulin permeation through thermo-sensitive hydrogels, Journal of Controlled Release 1989,9(3):271-279.
    [235]Liu J., Huang W., Pang Y., Zhu X., Zhou Y, Yan D. Self-assembled micelles from an amphiphilic hyperbranched copolymer with polyphosphate arms for drug delivery, Langmuir 2010,26(13):10585-10592.
    [236]Sabhapondit A., Borthakur A., Haque I. Characterization of acrylamide polymers for enhanced oil recovery, Journal of applied polymer science 2003,87(12):1869-1878.
    [237]Sui W., Song G., Chen G., Xu G. Aggregate formation and surface activity property of an amphiphilic derivative of chitosan, Colloids and Surfaces A:Physicochemical and Engineering Aspects 2005,256(1):29-33.
    [238]Jin L., Shangguan Y., Ye T., Yang H., An Q., Zheng Q. Shear induced self-thickening in chitosan-grafted polyacrylamide aqueous solution, Soft Matter 2013,9(6):1835-1843.
    [239]Philippova O. E., Volkov E. V., Sitnikova N. L., Khokhlov A. R., Desbrieres J., Rinaudo M. Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative, Biomacromolecules 2001,2(2):483-490.
    [240]Bostrom M., Williams D. R., Ninham B. W. Surface tension of electrolytes:specific ion effects explained by dispersion forces, Langmuir 2001,17(15):4475-4478.
    [241]Hayakawa K., Kwak J. C. Surfactant-polyelectrolyte interactions.1. Binding of dodecyltrimethylammonium ions by sodium dextransulfate and sodium poly (styrenesulfonate) in aqueous solution in the presence of sodium chloride, The Journal of Physical Chemistry 1982,86(19):3866-3870.
    [242]Bhattacharyya A., Monroy F., Langevin D., Argillier J. F. Surface rheology and foam stability of mixed surfactant-polyelectrolyte solutions, Langmuir 2000,16(23):8727-8732.
    [243]Jain N., Trabelsi S., Guillot S., McLoughlin D., Langevin D., Letellier P., Turmine M. Critical aggregation concentration in mixed solutions of anionic polyelectrolytes and cationic surfactants, Langmuir 2004,20(20):8496-8503.
    [244]Noskov B., Loglio G.,Miller R. Dilational surface visco-elasticity of polyelectrolyte/surfactant solutions:Formation of heterogeneous adsorption layers, Advances in Colloid and Interface Science 2011,168(1):179-197.
    [245]Shulevich Y. V., Petzold G., Navrotskii A. V., Novakov I. A. Properties of polyelectrolyte-surfactant complexes obtained by polymerization of an ionic monomer in a solution of an oppositely charged surfactant, Colloids and Surfaces A:Physicochemical and Engineering Aspects 2012,415:148-152.
    [246]Petkova R., Tcholakova S., Denkov N. Foaming and foam stability for mixed polymer-surfactant solutions:effects of surfactant type and polymer charge, Langmuir 2012,28(11): 4996-5009.
    [247]Ahmed R., Hsiao M. S., Matsuura Y, Houbenov N., Faul C. F., Manners I. Redox-active mesomorphic complexes from the ionic self-assembly of cationic polyferrocenylsilane polyelectrolytes and anionic surfactants, Soft Matter 2011,7(21):10462-10471.
    [248]Kogej K. Association and structure formation in oppositely charged polyelectrolyte-surfactant mixtures, Advances in Colloid and Interface Science 2010,158(1):68-83.
    [249]Weickenmeier M., "Wenz G., Huff J. Association thickener by host guest interaction of a β-cyclodextrin polymer and a polymer with hydrophobic side-groups, Macromolecular rapid communications 1997,18(12):1117-1123.
    [250]Guo X., Abdala A. A., May B. L., Lincoln S. F., Khan S. A., Prud'Homme R. K. Novel associative polymer networks based on cyclodextrin inclusion compounds, Macromolecules 2005,38(7):3037-3040.
    [251]Coleman A. W., Nicolis I., Keller N., Dalbiez J. P. Aggregation of cyclodextrins:An explanation of the abnormal solubility of β-cyclodextrin, Journal of inclusion phenomena and molecular recognition in chemistry 1992,13(2):139-143.
    [252]Bonini M., Rossi S., Karlsson G., Almgren M., Lo Nostro P., Baglioni P. Self-assembly of β-cyclodextrin in water. Part 1:Cryo-TEM and dynamic and static light scattering, Langmuir 2006,22(4):1478-1484.
    [253]Ren L., He L., Sun T., Dong X., Chen Y, Huang J.,Wang C. Dual-responsive supramolecular hydrogels from water-soluble PEG-grafted copolymers and cyclodextrin, Macromolecular bioscience 2009,9(9):902-910.
    [254]Huh K. M., Cho Y W., Chung H., Kwon I. C, Jeong S. Y, Ooya T., Lee W. K., Sasaki S., Yui N. Supramolecular hydrogel formation based on inclusion complexation between poly (ethylene glycol) modified chitosan and a-Cyclodextrin, Macromolecular bioscience 2004, 4(2):92-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700