纳米复合Nd_2Fe_(14)B/α-Fe(Fe_3B)永磁合金的结构与磁性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米复合永磁材料是一种新型的永磁材料,它是由高饱和磁化强度的软磁相和高各向异性场的硬磁相在纳米范围内复合组成,通过纳米尺度下软、硬磁性相之间的交换耦合相互作用来获得磁性能。纳米复合Nd-Fe-B系永磁材料和传统的Nd-Fe-B系永磁材料相比,稀土含量较低,化学稳定性较好,而且具有高剩磁、高磁能积的特点,是一种新型的、有广泛应用前景的稀土永磁材料。
     本文利用熔体快淬法结合晶化退火工艺制备了一种具有新型成分范围的Nd_2Fe_(14)B/α-Fe(Fe_3B)型纳米复合永磁合金,通过X射线衍射(XRD)、振动样品磁强计(VSM)、示差扫描量热分析(DSC)、透射电镜(TEM)、热磁分析(TMA)等分析仪器和手段,重点研究了高熔点金属Ti和C添加对其结构和磁性能的影响规律。并在上述基础上,研究了合金中稀土Nd含量、B含量、Pr部分取代Nd以及与Ti性质相似的高熔点金属元素Nb、Zr、Cr和C的联合添加对合金结构和磁性能的影响规律。文章最后对Ti和C联合添加纳米复合磁体的磁化和反磁化过程、纳米复合永磁粉及其粘结磁体的特性进行了研究。
     在研究Ti和C添加对合金结构和磁性能的影响规律中发现,一定量Ti添加能够抑制Nd_2Fe_(23)B_3和Fe_3B相的形成,并且可以在Nd_(9.4)Fe_(79.6)B_(11)合金中形成细小且分布均匀的高熔点TiB_2质点相,细化晶粒,增强晶粒之间的交换耦合相互作用,提高合金的磁性能。综合磁性能较佳的Nd_(9.4)Fe_(75.6)Ti_4B_(11)合金薄带最佳晶化条件下的剩磁Br为0.87T,矫顽力iHc达到931.1kA/m,磁能积(BH)max达115.4kJ/m~3。在Nd_(9.4)Fe_(75.6)Ti_4B_(11)合金中添加一定量的C,能够抑制合金中TiB_2沉淀相的生成,使TiC优先从体系中析出,将减少由于TiB_2析出而从体系中夺取的B元素量,从而在一定程度上增加体系中硬磁性Nd_2Fe_(14)B相的含量。适量Ti和C的联合添加改变了合金的晶化方式,使软磁性α-Fe相和硬磁性Nd_2Fe_(14)B相同时从非晶基体中析出,这种晶化方式避免了先析出相晶粒的长大,利于获得细小均匀的纳米晶结构。综合磁性能较佳的Nd_(9.4)Fe_(75.6)Ti_4B_(10.5)C_(0.5)合金薄带晶化后平均晶粒尺寸在15nm左右,其剩磁Br=0.91T,矫顽力iHc=975.6kA/m,磁能积(BH)max=135.4kJ/m~3。文章从动力学理论的观点揭示了合金显微结构与合金晶化动力学特性之间的关系,指出Ti和C添加改变了Nd_(9.4)Fe_(79.6)B_(11)合金晶相析出时的动力学参量值,使合金晶化时晶相的析出方式由难形核易长大型转变为易形核难长大型,这种易形核而难长大的晶化动力学特征,是Ti和C添加合金获得细小均匀的纳米晶结构的根本原因。
     研究了Nd和B含量及Pr部分取代Nd对Nd-Fe-Ti-B-C合金结构和磁性能的影响规律,结果表明Nd和B含量可以改变合金薄带晶化后的相组成、相分布和晶粒尺寸,因而改变了软硬磁性相之间的交换耦合相互作用,从而使不同Nd和B含量的合金呈现出不同的永磁特性。成分为Nd_9Fe_(76)Ti_4B_(10.5)C_(0.5)的合金晶化后具有最佳的永磁性能。Pr取代Nd没有改变Nd-Fe-Ti-B-C永磁合金晶化后相的组成,但Pr使合金薄带晶化后晶粒变得粗大,不利于合金矫顽力的提高。Pr对合金薄带磁性能影响不大,直接利用稀土矿的次级分离产物Di来制备高性能低稀土含量纳米复合Di-Fe-Ti-B-C永磁合金完全可行,制备出的合金剩磁Br在0.86T与0.90T之间,内禀矫顽力iHc在1000kA/m左右,最大磁能积(BH)max介于130kJ/m~3与136kJ/m~3之间。在此基础上指出当稀土含量为8~9.5at.%,Ti含量约为4at.%,C含量约为0.5at.%,B含量为8.5~12.0at.%,其余为Fe时,Re-Fe-B-Ti-C永磁合金在“过快淬+最佳退火”后可以得到平均磁能积约为130kJ/m~3的纳米复合磁体。当稀土含量达到9at.%时,B含量约10.5at.%时,纳米复合永磁合金的内禀矫顽力可以达到1000kA/m。
     在Nd_(9.4)Fe_(79.6)B_(11)合金中添加高熔点金属元素Ti、Nb、Zr和Cr,均能形成质点相,从而抑制合金中Nd_2Fe_(23)B_3和Fe_3B相的生成,细化晶粒,提高矫顽力。但Ti、Nb和C的联合添加能够在不降低合金薄带剩磁的情况下获得高矫顽力,实现剩磁和矫顽力的有效平衡,而相同含量Zr、Cr和C的添加降低了合金薄带的剩磁,不能实现矫顽力和剩磁的有效平衡。
     通过对合金薄带起始磁化曲线、矫顽力与磁化场的关系、回复曲线、退磁曲线可逆与不可逆行为的研究,发现未添加Ti和C的Nd_(9.4)Fe_(79.6)B_(11)合金的矫顽力同时具有形核和钉扎两种机制,形核场与钉扎场中较大的场决定了合金的矫顽力;而添加Ti的Nd_(9.4)Fe_(75.6)Ti_4B_(11)合金及Ti和C联合添加Nd_(9.4)Fe_(75.6)Ti_4B_(10.5)C_(0.5)合金的矫顽力由畴壁位移的钉扎机制控制。元素添加后在合金中晶粒与晶粒之间形成的薄层晶界相是Ti和C添加合金畴壁运动时的钉扎中心。
     温度稳定性研究结果表明,含Ti和C的纳米复合磁粉在25~100℃之间具有较好的温度稳定性,其温度系数与MQ公司生产的具有较低温度系数的MQP-C和MQP-D磁粉相当,优于MQ公司生产的纳米复合磁粉MQP-15-7和MQP-16-7。Ti和C的纳米复合磁粉温度稳定性的提高源于元素添加后合金显微结构的改变。抗氧化性研究结果表明,含Ti和C的纳米复合磁粉具有比MQP系列磁粉优异的抗氧化性能,更适宜于在复杂环境中的应用。
     文章最后用含Ti和C纳米复合磁粉制备了粘结磁体,在相同制备工艺条件下,纳米复合Nd_9Fe_(76)B_(10.5)Ti_4C_(0.5)粘结磁体与用MQ-D磁粉制备的粘结磁体剩磁和最大磁能积基本一致,但矫顽力更高,稀土含量低,仅为9at.%,且不含战略元素Co,具有性价比高的特点。
Nanocomposite permanent magnetic materials are composed of hard magnetic phases with high anisotropic field and soft magnetic phases with large saturation magnetization. In compared with the traditional sintered Nd-Fe-B magnets, Nd-Fe-B based nanocomposite magnets have received much attention for their potential applications because of their enhanced remanence and maximal energy product, low rare earth content, low cost and high corrosion resistance.
     In this dissertation, nanocomposite Nd_2Fe_(14)B/α-Fe(Fe_3B) type hard magnetic alloys have been prepared by melt-spinning technique and subsequent crystallization annealing. With the help of X-ray diffraction (XRD), vibrating sample magnetometer (VSM), differential scanning calorimeter (DSC), transmission electron microscope (TEM), and thermal magnetic analyzer (TMA), the effects of Ti and C additions on the microstructure and magnetic properties of the alloys have been investigated, and the influences of Nd content, B content, partial substitution of Nd by Pr, and the addition of refractory elements such as Nb, Zr, and Cr together with C on the microstructure and magnetic properties of the alloys have also been researched. At the end of this dissertation, the magnetization and demagnetization behavior, the magnetic properties of magnetic powders and their bonded magnets, of Ti and C doped nanocomposite alloys have been studied.
     The results show that the formation of unfavorable soft Nd_2Fe_(23)B_3 and Fe_3B phases can be suppressed effectively by the addition of Ti. When Ti content reaches a certain amount, Ti may precipitate as TiB_2 from the Nd_(9.4)Fe_(79.6)B_(11) alloys, which can refine the structure, thus the exchange coupling between the hard and soft phases is enhanced. As a result, amazing magnetic properties of Br=0.87T, iHc=931.1kA/m, and (BH)_(max)=115.4kJ/m~3 are achieved for Nd_(9.4)Fe_(75.6)Ti_4B_(11) alloy ribbons. Additional C addition in Nd_(9.4)Fe_(75.6)Ti_4B_(11) alloys can suppress the formation of TiB_2 by the preprecipitation of TiC. This can release abundant boron from TiB_2 to insure the formation of hard Nd_2Fe_(14)B phases. The results also show that Ti and C addition changes the crystallization behavior of Nd_(9.4)Fe_(79.6)B_(11) alloys, leading to the simultaneous precipitation ofα-Fe and Nd_2Fe_(14)B phases from amorphous Nd_(9.4)Fe_(75.6)Ti_4B_(10.5)C_(0.5) alloys. This behavior can avoid the growth of the first precipitating phases and let the soft and hard phases grow together, which is of avail for attaining a fine and uniform microstructure. Excellent magnetic properties of Br=0.91T, iHc=975.6kA/m, and (BH)max=135.4kJ/m~3 , together with a fine microstructure with a average grain size of about 15nm have been attained in Nd_(9.4)Fe_(75.6)Ti_4B_(10.5)C_(0.5) ribbons. The relationship between the microstructure and the crystallization behavior of the alloys has been discussed by using the kinetic theories. The results point out that the values of kinetic parameters are altered with the addition of Ti and C, which change the crystallization type from difficult nucleation and easy growth pattern to easy nucleation and difficult growth pattern, and this difficult nucleation and easy growth pattern may be the main reason why fine and even microstructure is gained in Ti and C doped alloys.
     The influences of Nd content, B content, partial substitution of Nd by Pr on the microstructure and magnetic properties have also been researched. The results reveal that the distribution, content, and grain size of hard and soft phases are remodeled with the change of Nd and B contents, thus alter the exchange coupling between hard and soft phases, resulting in ribbons with different magnetic properties. The ribbons with nominal composition of Nd_9Fe_(76)Ti_4B_(10.5)C_(0.5) have the best magnetic properties. Partial substitutions of Nd by Pr do not change the constitution of alloys after crystallization. But microstructures with an inhomogeneous and coarse grain size are gained with the substitution of Pr, which is of disadvantage for the increase of coercivity. Pr has little effect on the magnetic properties of (Nd_(1-x)Pr_x)_(9.4)Fe_(75.6)Ti_4B_(10.5)C_(0.5) ribbons, ribbons with Br between 0.86T and 0.90T, iHc about 1000kA/m, and (BH)max between 130kJ/m~3 and 136kJ/m~3 are all achieved with different ratio of Nd and Pr following their optimal crystallization annealing, which implies that it is possible to prepare high performance, low rare earth content nanocomposite Di-Fe-Ti-B-C permanent alloys with didymium directly. For nanocomposite Re-Fe-B-Ti-C alloys with 8~9.5at.% rare earth metal, 4at.% titanium, 0.5at.% carbon, and 8.5~12.0at.% boron, an average energy product of about 130kJ/m~3 would be attained, following over melt spinning and subsequent crystallization annealing. Especially when the rare earth metal content is 9at.%, and boron content is 10.5at.%, a high coercive above 1000kA/m could be achieved.
     Stable particles can appear in all nanocomposite Nd_(9.4)Fe_(79.6)B_(11) alloys with Ti, Nb, Zr, and Cr addition, which can avoid the formation of Nd_2Fe_(23)B_3 and Fe_3B phase, refine the structure, and thus increase the exchange coupling interaction between the soft and hard phases. The addition of Ti, Nb and C are found to be particularly effective in increasing the coercivity without sacrificing much remanence, but the effects of Zr, Cr and C additions are negative.
     Through the investigation of the initial magnetization curves, the relationship between coercivity and the magnetized field, the recoil curves, the reversible and irreversible portions of demagnetization curves of the ribbons, it founds that the coercivity mechanism of Nd_(9.4)Fe_(79.6)B_(11) alloys is dominated by both nucleation and domain wall pinning, and the larger domain wall pinning field determines the coercivity. But in Ti or Ti and C doped alloys, the coercivity mechanism is only controlled by domain wall pinning. The thin interface phases between the crystal grains may be responsible for the magnetic hardness for alloys with Ti and C additions.
     Excellent thermal stability has been attained in magnetic powders containing Ti and C, whose temperature coefficient of remanence and coercivity between 25~100℃are about the same with that of MQP-C and MQP-D magnetic powders, but better than that of MQP-15-7 and MQP-16-7 nanocomposite magnetic powders. The excellent thermal stability may due to the change of microstructure by Ti and C additions. The results also reveal that nanocomposite magnetic powder containing Ti and C has more outstanding antioxidation properties than that of MQP magnetic powders, and is more suitable for use in high temperature environment.
     At last, bonded magnets are prepared with magnetic powders containing Ti and C and MQ-D. The remanence and maximum energy product of bonded Nd_9Fe_(76)B_(10.5)Ti_4C_(0.5) and MQ-D magnets are about the same, but the former has a larger coercivity. In contrast with MQ-D, Ti and C doped magntic powders has only 9at.% rare earth, and does not contain cobalt, which presents a property of high performance with low cost.
引文
[1] E. A. Nesbit, J. H. Wernick, E. Corenzwit. Magnetic moments of alloys and compounds of iron and cobalt with rare earth metal additions. J. Appl Phys., 1959, 30: 365-367.
    [2] K. J. Strnat. Cobalt-rare-earth alloys as promising new permanent-magnetic materials. Cobalt, 1967, 36: 133-143.
    [3] K. J. Strnat, G. Hoffer, J. Olson, W. Ostertag, J. J. Becker. A family of new cobalt-based permanent magnetic materials. J. Appl. Phys., 1967, 38(3): 1001-1002.
    [4] K. H. J. Buschow, W. Limen, P. A. Naastepad, O. F. F. Westendorp. Magnet material with a (BH)max of 18.5 million gaussorested. Philips Tech. Rev., 1968, 29: 336-337.
    [5] D. Das. Twenty million energy product samarium-cobalt magnet. IEEE Trans.on Magn., 1969,5:214-216.
    [6] T. Ojima, S. Tomizawa. New Type Rare-earth-cobalt Magnets with an Energy Product of 30 MGOe. Jap. J. Appl. Phys., 1977, 4: 671-673.
    [7] G. C. Hadjipanyis, W. Tang, Y. Zhang. High temperature 2:17 magnets: Relationship of magnetic properties to micorstructure and processing. IEEE Trans. Magn., 2000, 36(5): 3382-3387.
    [8] W. Tang, Y. Zhang, G. C. Hadjipanayis. Microstructure and magnetic properties of Sm(CobalFexCu0.128Zr0.02)7.0. J. Magn. Magn. Mater., 2000, 221: 268-272.
    [9] J. F. Liu, M. Walmer. Designing with the high performance rare earth permanent magnets. 18th international workshop on high performance magnets and their application. Annecy (France), 29 August~2 Sept. 2004
    [10] M. Sagawa, S. Fujimura, M. Togawa, H. Yamamoto, Y. Matsuura. New material for permanent magnets on a base of Nd and Fe. J. Appl. Phys., 1984, 55: 2083-2087.
    [11] J. J. Croat, J. F. Herbst, R. W. Lee, F. E. Pinkerton. Pr-Fe and Nd-Fe based materials: A new class of high-performance permanent magnets. J. Appl. Phys., 1984, 55: 2078-2082.
    [12] N. C. Koon, B. N. Das. Crystallization of FeB alloys with rare earths to produce hard magnetic materials. J. Appl. Phys., 1984, 55: 2063-2066.
    [13] J. F. Herbst. R2Fe14B materials: Intrinsic properties and technological aspects. Rev. Mod. Phys., 1991, 63: 819-898.
    [14] NdFeB sintered Magnet Created the world Recod with 1.555T and 474kJ/m3. 2005.07, http://www.neomax.co.jp/pdf/20050712. pdf.
    [15] J. M. D. Coey, H. Sun. Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in anmonia. J. Magn. Magn. Mater., 1990, 87: L251-L254.
    [16]石川尚.高性能Sm-Fe-N系异方性ボシド磁石材料.工业材料, 2003, 51(2): 34-37.
    [17] Y. C. Yang, X. D. Zhang, L. S. Kong. Magnetocrystalline anisotropic RFe11TiNx compounds. Appl. Phys. Lett., 1991, 58: 2042-2044.
    [18] Y. C. Yang, X. Zheng, J. Yang. Magnetic and crystallographic properties of novel Fe-rich rare earth nitrides of the type RTiFe11N1-δ. J. Appl. Phys., 1991, 70: 6001-6003.
    [19] Y. C. Yang, X. D. Zhang, L. S. Kong. New Potential Hard Magnetic Material NdTiFe11Nx. Solid State Commun., 1991, 78(4): 317-320.
    [20] F. M. Yang, B. Nasunjilegal, W. Gong, G. C. Hadjipanayis. Magnetic properties of Sm3(Fe,Ti)29N5 compounds. IEEE Trans. Magn., 1994, 30: 4957-4959.
    [21] F. M. Yang, B. Nasunjilegal, J. L. Wang, J. J. Zhu, W. D. Qin, N. Tang, R. W. Zhao, B. P. Hu, Y. Z. Wang, H. S. Li. Formation and magnetic properties of Sm3(Fe,Ti)29Ny compounds. J. Phys.: Condens Mater., 1995, 7: 1679-168.
    [22] R. Coehoorn, D. B. DeMooij, J. P. W. B. Duchateau. Novel permanent magnetic made by rapid quenching. J. dePhys.C.8 Supplement, 1988, 49: 669-670.
    [23]包小倩,周寿增,王佐诚,张茂才,刘湘华.制备工艺对Pr2Fe14B/α-Fe纳米复合永磁材料组织与磁性的影响,中国稀土学报, 2003, 21(1): 27-30.
    [24] D. Lee, S. Bauser, A. Higgins, C. Chen, S. Liu. Bulk anisotropic composite rare earth magnets. J. Appl. Phys., 2006, 99: 08B516-1-08B516-3.
    [25] D. Lee, J. S. Hilton, C. H. Chen, M. Q. Huang, Y. Zhang, G. C. Hadjipanayis, and S. Liu. Bulk isotropic and anisotropic nanocomposite rare-earth magnets. IEEE Tran. Magn., 2004, 40: 2904-2906.
    [26] D. Lee, J. S. Hilton, S. Liu, Y. Zhang, G. C. Hadjipanayis, C. H. Chen. Hot-pressed and hot-deformed nanocomposite (Nd,Pr,Dy)2Fe14B/α-Fe-based magnets, IEEE Tran. Magn., 2003, 39: 2947-2949.
    [27]姜忠良,森本耕一郎,周宏文,陈秀云,白飞明,马春来,朱静.热压/热变形Nd2Fe14B/α-Fe纳米双相永磁体的研究.粉末冶金技术, 2003, 21(2): 80-85.
    [28]杨白,孙光飞,陈菊芳,乔祎,王浩颉,胡国辉.热压/热变形纳米复合永磁体的制备和磁性能的研究.中国稀土学报, 2005, 23(2): 253-256.
    [29]罗阳,刘世强.新一代磁体——大块完全致密(Nd,Pr,Dy)2Fe14B/α-Fe基纳米复合磁体.磁性材料及器件, 2005, 36(5): 1-6.
    [30] S. Liu, A. Higgins, E. Shin, S. Bauser, C. Chen, D. Lee, Y. Shen, Y. He, M. Q. Huang. Enhancing magnetic properties of bulk anisotropic Nd-Fe-B/α-Fe composite magnets by applying powder coating technologies. IEEE Tran. Magn., 2006, 42: 2912-2914.
    [31] A. Manaf, R. A. Buckley, H. A. Davies. New nanocrystalline high-remanence Nd-Fe-B alloys by rapid solidification. J. Magn. Magn. Mater., 1993, 128: 302-305.
    [32]王佐诚.纳米晶复合Pr2Fe14B/α-Fe永磁合金及磁体的制备、组织结构与磁性能.博士学位论文,北京科技大学, 1999.
    [33] G. C. Hadjipanayis, L. Withanawasam. Nanocomposite R2Fe14B/α-Fe permanent magnets. IEEE Trans. Magn., 1995, 33: 3443-3445.
    [34] A. Inoue, A. Takeuchi, A. Makino, T. Masumoto. Hard magnetic properties of nanocrystalline Fe-rich Fe-Nd-B alloys prepared by partial crystallization of amorphous phase. Mater. Trans. JIM, 1995, 36: 962-971.
    [35] S. Hirosawa,H. Kanekiyo. High-coercivity iron-rich rare-earth permanent magnet materials based on (Fe, Co)3B-Nd-M (M=Al, Si, Cu, Ga, Ag, Au). J. Appl. Phys., 1993, 73: 6488-6490.
    [36] B. G. Shen, J. X. Zhong, L. Y. Yang. Magnetic properties and phase components in amorphours (Nd1-xFex)81.5B18.5 alloy after crystallization. J. Magn. Magn. Mater., 1990, 89: 95-98.
    [37] J. Ding, P. G. McCormick, R. Street. Remanence enhancement in mechanically alloyed isotropic Sm7Fe93-nitride. J. Magn. Magn. Mater., 1993, 124: 1-4.
    [38] K. O’Donnell, C. Kuhrt, J. M. D. Coey. Influence of nitrogen content on coercivity in remanence-enhanced mechanically alloyed Sm-Fe-N. J. Appl. Phys., 1994, 76: 7068-7070.
    [39] K. O’Donnell, J. M. D. Coey. Characterization of hard magnetic two phase mechanically alloyed Sm2Fe17N3/α-Fe nanocomposites. J. Appl. Phys., 1997, 81: 6310-6314.
    [40] H. Tang, J. Zhou, D. J. Sellmyer. Mechanically milled nanostructured (Sm,Pr)12.5Co85.5Zr2 magnets with TbCu7 structure. J. Appl. Phys., 2002, 91: 8162-8164.
    [41] M. Venkatesan, C. B. Jiang, J. M. D. Coey. 1:7-type magnets produced by mechanical milling. J. Magn. Magn. Mater., 2002, 242-245: 1350-1352.
    [42] J. Zhang, S. Y. Zhang. Structure, magnetic properties, and coercivity mechanism of nanocomposite SmCo5/α-Fe magnets prepared by mechanical milling. J. Appl. Phys., 2001, 89: 5601-5604.
    [43] I. Mikio, M. Kazuhiko. Magnetic properties and microstructure of SmCo5+α-Fe nanocomposite magnets prepared by mechanical alloying. J.Alloys Compd., 2001, 329: 272-277.
    [44] S. K. Chen, J. L. Tsai. Nanocomposite Sm2Co17/Co permanent magnets by mechanical alloying. J. Appl. Phys., 1996, 79: 5964-5966.
    [45] E. F. Kneller, R. Hawig. The exchange-spring magnet: A new material principle for permanent magnets. IEEE Trans. Magn., 1991, 27: 3588-3560.
    [46] S. Liu. Effect of nanograin structure on magnetic properties of rare earth permanent magnets,18th International Workshop on High Performance Magnets and their Applications, Annecy, France, 2004.
    [47] T. Schrefl, R. Fischer, T. Fidler. Two- and three-dimensional calculation of remanence enhancement of rare-earth based composite magnets. J Appl. Phys., 1994, 76: 7053-7058.
    [48] T. Schrefl, J. Fidler, H. Kronmüller. Nucleation field of hard magnetic particles in 2D and 3D micromagnetic calculations. J. Magn. Magn. Mater., 1994, 138: 15-30.
    [49] T. Schrefl, H. Kronmüller, J. Fidler. Exchange hardening in nano-structured two phase permanent magnets, J. Magn. Magn. Mater., 1993, 127: L273-L277.
    [50] R. Fischer, T. Schrefl, H. Kronmüller, J. Fidler. Phase distribution and computed magnetic properties of high-remanent composite magnets. J. Magn. Magn. Mater., 1995, 150: 329-344.
    [51] T. Schrefl, J. Fidler, H. Kronmüller. Remanence and coercivity in the isotropic nanocrystalline permanent magnets. Phys. Rev., 1994, B49: 6100-6110.
    [52] R. Fischer, T. Schrefl, H. Kronmüller. J. Fidler. Grain size dependence of remanence and coercive field of isotropic nanocrystalline composite permanent magnets. J. Magn. Magn. Mater., 1996, 153: 35-49.
    [53] R. Fischer, T. Schrefl, H. Kronmüller, J. Fidler. Phase distribution and computed magnetic properties of high-remanent composite magnets. J. Magn. Magn. Mater., 1995, 150: 329-344.
    [54] R. Skomski. Aligned two-phase magnets: permanent magnetism of the future?. J. Appl. Phys., 1994, 76: 7059-7064.
    [55] R. Skomski, J. M. D. Coey. Giant energy product in nanostructured two-phase magnets. Phys. Rev. 1993, B48: 15812-15816.
    [56] R. Skomski, J. M. D. Coey. Nucleation field and energy product of aligned two-phase magnets-progress towards the 1 MJ/m3 magnet. IEEE Trans. Magn., 1993, 29: 2860-2862.
    [57] X. K. Sun, J. Zhang, Y. L. Chu, W. Liu, B. Z. Cui, Z. D. Zhang. Dependence of magnetic properties on grain size ofα-Fe in nanocomposite (Nd, Dy)(Fe, Co, Nb, B)5.5/α-Fe. Appl. Phys. Lett., 1999, 74: 1740-1742.
    [58] T. Hidaka, Y. Yamamoto, T. Yoneyama. Nanostructured magnets by HDDR.日本应用磁学杂志1995, 19: 885-888.
    [59] G. Shi, L. X. Hu, E. D. Wang. Preparation, microstructure, and magnetic properties of ananocrystalline Nd12Fe82B6 alloy by HDDR combined with mechanical milling. J. Magn. Magn. Mater. 2006, 301: 319-324.
    [60]李丽娅,易健宏,彭元东,黄伯云.纳米晶稀土永磁材料的制备技术研究进展.粉末冶金工业, 2005, 15(5): 35-40.
    [61] S. Y. Chu, S. A. Majetich. Synthesis and magnetic behavior of SmCo5(1-x)Fex nanocomposite magnets. J. Appl. Phys., 2003, 93: 8146-8148.
    [62] B. Z. Cui, X. K. Sun. Effects of Ga substitution for Fe on the structure and magnetic properties of Nd8.4Fe87.1-xB4.5(x=0~2.2) alloys prepared by mechanical alloying. J. Appl. Phys., 2000, 87: 5335-5337.
    [63] S. Lileev, A. A. Parilov, M. Reissner. Influence of the spinreorientation transition on the hysteresis characteristics of Nd-Fe-B film and bulk magnets. J. Magn. Magn. Mater., 2004, 270:152-156.
    [64] M. Shindo, M. IshizoneH. Kato, T. Miyazaki. Exchange-spring behavior in sputter-deposited alpha-Fe/Nd-Fe-B multilayer magnets. J. Magn. Magn. Mater., 1996, 161: 1-5.
    [65] S. M. Parhofer, J. Wecker, C. Kuhrt. Remanence enhancement due to exchange coupling in multilayers of hard-and soft magnetic phases. IEEE Trans. Magn., 1996, 32: 4437-4439.
    [66] M. Yu, Y. Liu, S. H. Liou. Nanostructured NdFeB films processed by rapid thermal annealing. J. Appl. Phys., 1998, 83: 6611-6613.
    [67] J. Fidler, T. Schrefl. Overview of Nd-Fe-B magnets and coercivity. J. Appl. Phys., 1996, 79: 5029-5034.
    [68] J. Fidler, J. Bernardi, T. Schrefl, H. Kronm?ller. Proc. 8th Inter. Symposium on Anisotropy and Coercivity in Rare-Earth Transition Metal Alloy, Birmingham, UK, 1994.
    [69] J. Fidler, Proc. 7th Inter. Symposium on Anisotropy and Coercivity in Rare-Earth Transition Metal Alloy, Canberra, Australia, 1992.
    [70] W. Kaszuwara, M. Leonowicz. Grain size control in nanostructured Nd-Fe-B magnets by minor addition other elements. 18th International Workshop on High Performance Magnets and their Applications, Annecy, France, 2004.
    [71] E. Jezierska, W. Kaszuwra. Nanocomosite Re2Fe14B/α-Fe permanent mangents. IEEE Trans. Magn., 1994, 30: 580-583.
    [72] J. I. Betancout, H. A. Davies. Magnetic properties of nanocrystalline didymium (Nd-Pr)-Fe-B alloys. J. Appl. Phys., 1999, 85: 5911-5915.
    [73] S. Lileev, A. G. Ayuyan, W. Steiner. Low-temperature magnetization reversal processes in permanent magnets based on R2T14B. J. Magn. Magn. Mater., 1996, 157-158: 373-375.
    [74] Z. W. Liu, H. A. Davies. Composition and microstructure dependent spin reorientation for nanocrystalline (Nd/Pr)-(Fe/Co)-B alloys. IEEE Trans. Magn., 2004, 40: 2898-2900.
    [75] H. J. Buschow. New developments in hard magnetic materials. Rep. Prog. Phys., 1991, 54: 1123-1213.
    [76] E. Jezierska, W. Kaszuwra. R2Fe14B/α-Fe permanent mangents. IEEE Trans. Magn., 1994, 30: 580-583.
    [77] B. M. Ma, R. F. Krause. Microstructure and magnetic properties of sintered Nd- Dy-Fe-B magnets. Proc. 5th Int. Symposium on Anisotropy and Coercivity in Rare-Earth Transition Metal Alloys, Deutsche Physikalische, FRG. 1987.
    [78]潘树明,马如璋,李国保等. Nd-Fe(Co,Al,Ga)-B合金的磁性及Al, Co, Ga原子的晶位占据研究.中国科学, 1991, A5: 538-545.
    [79] S. Hirosawa. High-coercivity iron-rich rare-earth permanent magnet material based on (Fe,Co)3B-Nd-M (M=Al, Si, Cu, Ga, Ag, Au). J. Appl. Phys., 1993, 73: 6488-6492.
    [80] J. F. Liu. H. A. Davies. Magnetic properties of cobalt substituted Nd2Fe14B/α-Fe nanocomposite magnets processed by overquenching and annealing. J. Magn. Magn. Mater., 1996, 157-158: 29-30.
    [81] W. C. Chang, D. Y. Chiou, C. O. Bounds. High performanceα-Fe/R2Fe14B-type nanocomposites with nominal compositions of (Nd,La)9.5Fe78-xCoxCr2B10.5 (x=0-10). J. Magn. Magn. Mater., 1998, 189: 55-61.
    [82] F. E. Camp, A. S. Kim. Effect of microstructure on the corrosion behavior of NdFeB and NdFeCoAlB magnets. J. Appl. Phys., 1991, 70: 6348-6351.
    [83] A. Micski, B. Uhrenius. A contribution to the knowledge of phase equilibria and the magnetic properties of the Nd-Fe-B-X systems (X=Al,Co,V). J. Appl. Phys., 1994, 75: 6265-6268.
    [84]王东玲,赵韦人,祝景汉. Nd2(Fe,Al)14B/α-Fe纳米复相永磁体的显微结构和磁性能.粉末冶金工业. 2002, 12(1): 11-14.
    [85] R. Grmêssinger, S. Heib, G. Wiesinger. The effect of substitutions on the hard magnetic properties of Nd-Fe-B based materials. J. Magn. Magn. Mater., 1989, 80: 61-69.
    [86] J. W. Hu, Z. X. Wang, Y. Z. Zhao, J. G. Rao, X. L. Zhang. Study of the coercivity for Nd-Fe-B-Ga sintered magnets. IEEE Trans. Magn., 1989, 25: 3429-3430.
    [87] B. Gried B, K. Fritz. As-cast magnets based on Fe-Nd-C. J. Appl. Phys., 1991, 70: 6447-6450.
    [88] M. Tokunaga, H. Kogure, M. Endoh, H. Harada. Improvement of thermal stability of Nd-Dy-Fe-Co-B sintered magnets by additions of Al, Nd and Ga. IEEE Trans. Magn., 1987, 23: 2287-2289.
    [89] J. Fidler, J.B Bernardi. Transmission electron microscope characterization of cast and hot-worked R-Fe-B-Cu(R=Nd,Pr) permanent magnets. J. Appl. Phys., 1991, 70: 6456-6459.
    [90] J. Bernardi, J. Fidler. Preparation and transmission electron microscope investigation of sintered Nd15.4Fe75.7B6.7Cu1.3Nb0.9 magnets. J. Appl. Phys., 1994, 76: 6241-6245.
    [91] K. Raviprasad, N. Ravishankar, K. C. Padhyay. Magnetic hardening mechanism in nanocrystalline Nd2Fe14B with 0.1at.% addition of Cr, Cu, or Zr. J . Appl. Phys., 1998, 83: 916-920.
    [92] H. Kanekiyo, M. Uchara, S. Hirosawa. Microstructure and magnetic properties of high-remanence Nd5Fe71.5Co5B18.5M (M=Al, Si, Ga, Ag, Au) rapidly solidified and crystallized alloys for resin-bonded magnets. IEEE Trans. Magn. 1993, 29: 2863-2865.
    [93] R. W. McCallum, D. J. Branagan. Altering the cooling rate dependence of phase formation during rapid solidification in the Nd2Fe14B system. J. Magn. Magn. Mater., 1995, 146: 89-102.
    [94] Y. Kitano, J. Shimomura, M. Shimotomai. Analytical electron microscopy of Ti-doped Nd-TM-B magnet. J. Appl. Phys., 1991, 69: 6055-6057.
    [95] D. J. Branagan, T. A. Hyde, C. H. Sellers. A new generation of gas atomized powder with improved levels ofenergy product and processability. IEEE Trans. Magn., 1996, 32: 5097-5099.
    [96] J. Yao, T. Chin, C. Lin. Coercivity of melt-spun Nd-Fe-B-Ti alloys with large volume fraction of free-iron dispersoid. Jpn. J. Appl. Phys., 1994, 33: 3443-3447.
    [97] W. C. Chang, S. H. Wang, S. J. Chang. The effects of refractory metals on the magnetic properties ofα-Fe/R2Fe14B-type nanocomposites. IEEE Trans. Magn., 1999, 35: 3265-3267.
    [98] S. Hirosawa, H. Kanekiyo, T. Miyoshi. Unusual effects of Ti and C additions on structural and magnetic properties of Nd-Fe-B nanocomposite magnets in a B-rich and Nd-poor composition range. J. Magn. Magn. Mater., 2004, 281: 58-67.
    [99]杨森,宋晓平,都有为. Cu/Ti复合添加对Nd2Fe14B/α-Fe纳米双相磁体磁性能和相分解的影响.金属功能材料, 2002, 9(6): 14-17.
    [100] Z. M. Chen, Y. Q. Wu, M. J. Kramer, B. R. Smith, B. M. Ma, M. Q. Huang. A study on the role of Nb in melt-spun nanocrystalline Nd-Fe-B magnets. J. Magn. Magn. Mater., 2004, 268: 105-113.
    [101] Y. Q. Wu, M. J. Kramer, Z. Chen, Member, B. M. Ma, M. K. Miller. Behavior of Nb atoms in Nb substituted Nd2Fe14B nanocrystalline alloys investigated by atom probe tomography. IEEE Trans. Magn., 2004, 40: 2886-2888.
    [102]王占勇. Nd2Fe14B/α-Fe纳米复合永磁材料结构和磁性能的研究.博士学位论文,上海大学, 2006.
    [103]付猛,连法增,王继杰,裴文利,陈玉兰,杜宇,杨洪才. Nb的添加对Fe3B/Nd2Fe14B纳米永磁体磁性能与微观结构的影响.功能材料,2005, 36(2): 184-186.
    [104] Z. C. Wang, M. C. Zhang, S. Z. Zhou. High-coercivity (NdDy)2(FeNb)14B/α-Fe nanocrystalline alloys. J. Appl. Phys., 1997, 81: 5097-5099.
    [105]查五生,刘颖,高升吉,涂铭旌.添加Zr的(Nd,Pr)10.5Fe81.5-xZrxCo2B6合金显微结构与磁性能.稀有金属材料与工程, 2005, 34(5): 717-720.
    [106]连利仙,刘颖,高升吉,涂铭旌.添加Zr元素对纳米复相Nd10.5Fe78.4-xCo5ZrxB6.1粘结永磁体结构和磁性能的影响.稀有金属材料与工程, 2005, 34(8): 1326-1329.
    [107] G. Rieger, M. Seeger, S. Li, H. Kronmüller. Micromagnetic analysis applied to melt-spun NdFeB magnets with small additions of Ga and Mo. J. Magn. Magn. Mater., 1995, 151: 193-201.
    [108] C. Wang, M. Yan, W. Y. Zhang. Effects of Nb and Zr additions on crystallization behavior, microstructure and magnetic properties of melt-spun (Nd,Pr)2Fe14B/α-Fe alloys. J. Magn. Magn. Mater., 2006, 306: 195-198.
    [109]王晨,文玉华,严密. Nb和Zr对(Nd,Pr)2Fe14B/α-Fe磁体晶化行为和磁性能的影响.稀有金属材料与工程, 2005, 34(11): 1782-1785.
    [110] M. Leonowicz. Magnetic properties and microstructure of Nd16Fe76?xMxB8 magnets (M = Ga, Cr, Nb, Bi, Sn, Zr, W, V, Mo, Mn). J. Magn. Magn. Mater., 1990, 83: 211-213.
    [111] C. Y. You, D. H. Ping, K. Hono. Magnetic properties and microstructure of Fe3B/Pr2Fe14B-type nanocomposite magnets with Co and Cr additions. J. Magn. Magn. Mater., 2006, 299: 136-144.
    [112] M. Jurczyk, J. Jakubowicz. Nanocomposite Nd2(Fe,Co,Cr)14B/α-Fe materials. J. Magn. Magn. Mater., 1998, 185: 66-70.
    [113] H. W. Chang, C. H. Chiu, C. W. Chang, C. H. Chen. Effect of substitution of refractory elements for Fe on the magnetic properties of melt-spun Pr9.5Fe80.5B10 nanocomposites. J. Alloy Compd., 2006, 407: 53-57.
    [114] B. Z. Cui, X. K. Sun , W. Liu , D. Y. Geng, Z. Q. Yang, Z. D. Zhang. Effects of a partial substitution of Fe by Mo and Mo plus Co on the structure and magnetic properties of Nd8.4Fe87.1B4.5 alloys prepared by mechanical alloying. J. Alloys Compd., 2000, 302: 281-286.
    [115] M. Daniil, H. Okumura, G. C. Hadjipanayis. Effect of carbon substitution on the magnetic properties of Nd-Fe-(B,C) nanocomposite magnets. J. Magn. Magn. Mater., 2003, 267: 316-324.
    [116] X. C. Kou, X. K. Sun, Y. C. Chuang. Structure and magnetic properties of R2Fe14B1-xCx compounds (R=Y,Nd). J. Magn. Magn. Mater., 1989, 80: 31-36.
    [117] W. Liu, Z. Zhang, X. K. Sun. Room temperature magnetic anisotropic of rare-earth transitin-metal intermetallics R2Fe14C and R2Fe14B (R=Gd,Nd). Solid State Commun., 1990, 76: 1375-1379.
    [118] C. Liu, H. H. Stadelmaier, G. Schneider. High intrinsic coercivities in iron-rare earth-carbon-boron alloys through the carbide or boro-carbide Fe14R2X (X=BxC1-x). J. Appl. Phys., 1987, 61: 3754-3756.
    [119] N. C. Liu, H. H. Stadelmaier. High coercivity permanent magnet materials based on iron-rare-earth-carbon alloys. Mater. Lett., 1986, 4: 377-380.
    [120] M. Daniil, H. Okumura, G. C. Hadjipanayis. Nanocomposite Nd-Fe carbides made by melt-spinning. IEEE Trans. Magn., 2000, 36: 3315-3317.
    [121] S. Hirosawa, H. Kanekiyo, T. Miyoshi, Y. Shigemoto, K. Murakami, Y. Senzaki, T. Nishiuchi. Development of high-coercivity nanocomposite permanent magnets based on Nd2Fe14B and FexB. J. Alloy Compd., 2006, 408-412: 260-265.
    [122] S. Hirosawa, H. Kanekiyo, T. Miyoshi, K. Murakami, Y. Shigemoto, T. Nishiuch. Structure and magnetic properties of Nd2Fe14B/FexB-type nanocomposites prepared by strip casting, IEEE Trans. Magn., 2004, 40: 2883-2885.
    [123] D. J. Branagan, R. W. McCallum. Solubility of Ti with C in the Nd2Fe14B system and controlled carbide precipitation. J. Alloy Compd., 1995, 218: 143-148.
    [124] D. J. Branagan, R. W. McCallum. The effects of Ti, C, and TiC on the crystallization of amorphous Nd2Fe14B. J. Alloy Compd.,1996, 245: 15-19
    [125] H. Hashino, Y. Tazaki, H. Ino, T. Ohkubo, K. Hono. Effects of Zr and C additions on the magnetic properties and structures of melt-spun Fe83Nd10B7-based nanocomposite magnets. J. Magn. Magn. Mater., 2004, 278: 68-75.
    [126] Z. C. Wang, S. Z. Zhou, M. C. Zhang. Effects of as-quenched structures on the phase transformations and magnetic properties of melt-spun Pr7Fe88B5 ribbons. J. Appl. Phys., 1999, 86: 7010-7016.
    [127] X. Y. Zhang, J. W. Zhang, W. K. Wang. Crystallization kinetics and phase transition under high-pressure of amorphous Sm8Fe85Si2C5 alloy. Acta Mater., 2001, 49: 3889-3897.
    [128] Z. C. Wang, S. Z. Zhou, M. C. Zhang. High performanceα-Fe/Pr2Fe14B-type nanocomposite magnets produced by hot compaction under high pressure. J. Appl. Phys., 2000, 88: 591-593.
    [129] J. S. Fang, T. S. Chin, S. K. Chen. Nanocrystalline Nd6Fe88-xMxB6 (M=Ti or V) magnets by rapid thermal annealing. IEEE Trans. Magn., 1996, 32: 4401-4403.
    [130]计齐根.磁场热处理对Nd2Fe14B/α-Fe纳米材料磁性和微磁结构的影响.材料科学与工艺, 2000, 8(4): 22-25.
    [131] C. J. Yang, E. B. Park. The effect of magnetic field treatment on enhancedexchange coupling of Nd2Fe14B/Fe3B magnet. IEEE Trans. Magn., 1996, 32: 4428-4430.
    [132] A. Akira, K. Hiroshi, K. Koji. Magnetic properties of (Nd,Dy)-(Fe,Co)-B-Nb and Nd-(Fe,Co)-B magnets made by the melt-Spinning method with grooved and ceramic-coated roll. IEEE Trans. Magn., 2002, 38: 2964-2966.
    [133]周文生.磁性测量原理.北京:电子工业出版社, 1988.
    [134]侯增寿,卢光熙.金属学原理.上海:上海科学技术出版社, 1990.
    [135]范雄.金属X射线学.北京:机械工业出版社, 1998.
    [136]刘振海,徐国华,张洪林.热分析仪器.北京:化学工业出版社, 2006.
    [137]黄孝瑛.电子显微镜图像分析原理与应用.北京:宇航出版社, 1989.
    [138] Z. C. Wang, H. A. Davies, S. Z. Zhou. Effects of C content on the formation and magnetic properties of Nd2Fe14(BC)/α-Fe nanocomposite magnets. J. Appl. Phys., 2002, 91: 3769-3774.
    [139] Z. C. Wang, H. A. Davies, S. Z. Zhou, M. C. Zhang, Y. Qiao. Preparation and magnetic properties of melt-spun Nd2Fe14(BC)/α-Fe nanocomposite magnets. J. Appl. Phys., 2002, 91: 7884-7886.
    [140] Y. L. Sun, C. H. Chiu, C. W. Chang, H. W. Chang, W. C. Chang. Magnetic properties and microstructure of nanocomposite Pr2Fe14(B,C)/α-Fe melt-spun ribbons. J. Appl. Phys., 2005, 97: 10K309-1-10K309-3.
    [141]桂立丰,唐汝钧.机械工程材料测试手册.辽宁:辽宁科学技术出版社, 1999.
    [142] D. J. Branagan, R. W. McCallumn. Precipitation phenomenon in stoichiometric Nd2Fe14B alloys modified with titanium and titanium with carbon. J. Alloy Compd., 1995, 230: 67-75.
    [143] Z. Chu, W. B. Yelon, B. M. Ma, Z. Chen, D. N. Brown. Neutron diffraction analysis of melt spun 2:14:1 type (NdPr)-Fe-B compounds with Ti and Zr additions. J. Appl. Phys., 2002, 91: 7878-7880.
    [144]王一禾,杨膺善.非晶态合金.北京:冶金工业出版社, 1990.
    [145] C. H. Chiu, H. W. Chang, C. W. Chang, W. C. Chang. Magnetic properties, phase evolution and coercivity mechanism of Pr-Fe-Ti-B-based nanocomposites with Co/C cosubstitution . Scripta Mater., 2007, 56: 429-432.
    [146] C. Wang, M. Yan, W. Y. Zhang. Effects of Nb and Zr additions on crystallization behavior, microstructure and magnetic properties of melt-spun (Nd,Pr)2Fe14B/α-Fe alloys. J. Magn. Magn. Mater., 2006, 306: 195-198.
    [147] C. H. Chiu, H. W. Chang, C. W. Chang, W. C. Chang. Investigation of magnetic properties, phase evolution, and microstructure of melt spun PrFeTiBC nanocomposites. J. Alloy Compd., 2006, 424: 376-381.
    [148] E. P. Wohlfarth. Relations between Different Modes of Acquisition of the Remanent Magnetization of Ferromagnetic Particles. J. Appl. Phys., 1958, 29: 595-596.
    [149] I. Panagiotopoulos, L. Withanawasam, G. C. Hadjiapanayis.‘Exchange spring’behavior in nanocomposite hard magnetic materials. J. Magn. Magn. Mater., 1996, 152: 353-358.
    [150]高汝伟,李卫,张建成.纳米晶复合永磁材料的交换耦合相互作用和磁性能.自然科学进展, 2000, 10(6): 509-514.
    [151] S. Yang, X. P. Song, B. X. Gu, Y. W. Du. Enhancement of the exchange coupling interaction of nanocomposite Nd2Fe14B/α-Fe magnets by a small amount of Sm substitution for Nd. J. Alloy Compd., 2005, 394: 1-4.
    [152] R. David. Lide, Janaf Thermochemical Tables, 3rd edn., American Chemical Society and the American Institute of Physics, Vol. 14, 1985
    [153]李顺,白书欣,张虹,陈柯,肖加余. Ti和C复合添加对Nd9.4Fe79.6B11合金晶化方式、结构和磁性能的影响.中国稀土学报, 2008, 12(6): 723-727.
    [154] T. Schrefl, R. Fischer, T. Fidler. Two- and three-dimensional calculation of remanence enhancement of rare-earth based composite magnets, J. Appl. Phys., 1994, 76: 7053-7058.
    [155] H. Hashino, T. Inoue, K. Gotouda, H. Ino, Forming ability of the 2-14-1 phase in melt-spun Fe-Nd-(C,B) alloys. J. Jpn. Inst. Met., 2002, 66: 905-909.
    [156] M. Daniil, H. Okumura, G. C. Hadjipanayis, D. J. Sellmyer. Effect of carbon substitution on the magnetic properties of Nd-Fe-(B,C) nanocomposite magnets. J. Magn. Magn. Mater., 2003, 267: 316-324.
    [157] A. Gschneidner, L. R. Erying. Handbook on the physics and chemistry of rare earths. New York: Elsevier, 1991.
    [158] D. R. Lide. Handbook of chemistry and Physics, 71st edn., CRC Press, Ann Arbor, MI. 1990-1991.
    [159] D. Nagahama, T. Ohkubo, T. Miyoshi, S. Hirosawa, K. Hono. Effect of Ti and C additions on the microstructure and magnetic properties of Nd6Pr1Fe80B13 melt-spun ribbons. Acta Mater., 2006, 54: 4871-4879.
    [160] T. Ohkuboa, T. Miyoshi, S. Hirosawa, K. Honoa. Effects of C and Ti additions on the microstructures of Nd9Fe77B14 nanocomposite magnets. Mater. Sci. Eng., 2007, A449-451: 435-439.
    [161] H. E. Kissinger. Variation of peak temperature with heating rate in differential thermal analysis. Res. Nat. Bur. St., 1956, 36: 866-868.
    [162]李余增.热分析.北京:清华大学出版社, 1987.
    [163]黄永杰.非晶态磁性物理与材料.陕西:电子科技大学出版社, 1991.
    [164] W. Zhang, X. Y. Zhang, F. R. Xiao, J. H. Liu, Y. Z. Zheng. Influence of additive element Nb and Mo on the crystallization process of amorphous alloy Fe76.5Cu1Si13.5B9. Mater. Lett., 1998, 36: 223-228.
    [165] H. Fukunaga, H. Nakamura. Micromagnetic approach for relationship between nanostructure and magnetic properties of nanocomposite magnets. Script Mater., 2001, 44: 1341-1345.
    [166] Y. H. Gao, J. H. Zhu, Y. Q. Weng, E. B. Park, C. J. Yang. The enhanced exchange coupled interaction in nanocrystalline Nd2Fe14B/Fe3B+α-Fe alloys with improved microstructure. J. Magn. Magn. Mater., 1999, 191: 146-152.
    [167] W. C. Chang, D. M. Hsing, Magnetic properties and transmission electron microscopy microstructures of exchange coupled Nd12-xFe82+xB6 melt spun ribbons. J. Appl. Phys., 1996, 79: 4843-4845.
    [168] W. C. Chang, D. M. Hsing, B. M. Ma, C. O. Bound. The effect of boron content on the microstructure and exchange coupling effect of Nd9.5Fe85.5+xBx melt spun ribbons. IEEE Trans. Magn., 1996, 32: 4425-4427.
    [169] M. Gabay, G. A. Popov, V. S. Gaviko, Y. V. Belozerov, A. S. Yermolenko. The structure and magnetic properties of rapidly quenched and annealed multi-phase nanocrystalline Nd9Fe91-xBx ribbons. J. Alloy Compd., 1996, 245: 119-124.
    [170] H. A. Davies. Nanocrystalline exchange-enhanced hard magnetic alloys. J. Magn. Magn. Mater., 1996, 157-158: 11-14.
    [171] W. C. Chang, D. Y. Chiou, S. H. Wu, High performanceα-Fe/Nd2Fe14B type nanocomposites . Appl. Phys. Lett., 1998, 72: 121-123.
    [172] Z. C. Wang, H. A. Davies, C. L. Harland. Crystallization behavior and magnetic properties of melt-spun Prx(Fe0.8Co0.2)94-xB6 alloys. IEEE Trans. Magn., 2002, 38: 2967-2969.
    [173]崔保志. Nd2Fe14B/α-Fe型纳米复合磁体的结构与磁性.博士学位论文,中科院金属研究所, 2000.
    [174] W. Y. Zhang, S. Y. Zhang, A. R. Yan, H. W. Zhang, B. G. Shen. Effect of the substitution of Pr for Nd on the microstructure and magnetic properties of nanocomposite Nd2Fe14B/α-Fe melt spun ribbons. J. Magn. Magn. Mater., 2001, 225: 389-393.
    [175]刘颖,查五生,高升吉,涂铭旌.镨元素对(Nd,Pr)10.5(FeCoZr)83.5B6合金显微结构和磁性能的影响.中国稀土学报, 2003, 21(6): 660-663.
    [176] S. Li, S. X. Bai, H. Zhang, K. Chen, J. Y. Xiao. Effects of Nb and C additions on the crystallization behavior, microstructure and magnetic properties of B-rich nanocrystalline Nd-Fe-B ribbons. J. Alloy Compd., 2008, in press.
    [177]潘树明,平爵云,刘金芳,马如璋.含铌钕铁硼永磁体的纳米晶粒微观结构与矫顽力机制模型.中国稀土学报,2003, 21(Spec.): 125-129.
    [178] Y. Tazaki, H. Ino, K. Oda. Changes in Lattice Parameters of Nd2Fe14B by the Addition of Zr Atoms. J. Jpn. Inst. Met., 2003, 67: 259-262.
    [179] J. Jakubowicz, M. Jurczyk. Temperature dependence of magnetic properties for nanocomposite Nd2(Fe,Co,M)14B/α-Fe magnets. J. Magn. Magn. Mater., 2000, 208: 163-168.
    [180]连利仙,刘颖,高升吉.添加Zr元素对纳米复相Nd10.5Fe78.4-xCo5ZrxB6.1粘结永磁体结构和磁性能的影响.稀有金属材料与工程, 2005, 34(8): 1326-1329.
    [181] I. Betancourt, H. A. Davies. Enhanced magnetic properties in Zr-containing rare earth-rich Didymium (Nd/Pr)-based nanocrystalline hard magnetic alloys. J. Alloy Compd., 2004, 369: 152-154.
    [182] T. Schrefl, J. Fidler, H. Kronmüller. Remanence and coercivity in isotropic nanocrystalline permanent magnets. Phys. Rev., 1994, B49: 6100-6110.
    [183] H. Kronmüller, R. Fischer, M. Seeger, A. Zern. Micromagnetism and microstructure of hard magnetic materials. J. Phys. D: Appl. Phys., 1996, 29: 2274-2283.
    [184] J. Bauer, M. Seeger, H. Kronmüller. Nanocrystalline FeNdB permanent magnets with enhanced remanence. J. Appl. Phys., 1996, 80: 1667-1673.
    [185] K. Billoni, S. E. Urreta, H. R. Bertorello. Dependence of the coercivity on the grain size in a FeNdB+α-Fe nanocrystalline composite with enhanced remanence. J. Magn. Magn. Mater., 1998, 187: 371-380.
    [186]周寿增,董清飞.超强永磁体——稀土铁系永磁材料.北京:冶金工业出版社, 1999.
    [187] M. Emura, J. M. Gonza’lez, F. P. Missell. On the role of dipolar coupling in themagnetization reversalprocess in hard-soft nanocomposite magnets. IEEE Trans. Magn., 1997, 33: 3892-3894.
    [188] F. Liu, G. C. Hadjipanayis. Demagnetization curves and coercivity mechanism in Sm(CoFeCuZr)z magnets. J. Magn. Magn. Mater., 1999, 195: 620-626.
    [189] K. Raviprasad, N. Ravishankar, K. C. Padhyay. Magnetic hardening mechanism in nanocrystalline Nd2Fe14B with 0.1at% addition of Cr, Cu, or Zr. J. Appl. Phys., 1998, 83: 916-920.
    [190] D. Livingston. Nucleation fields of permanent magnets. IEEE Trans Magn. 1987, 23: 2109-2113.
    [191] H. Kronmüller, K. D. Durst, M. Sagawa. Analysis of the magnetic hardening mechanism in RE-FeB permanent magnets. J. Magn. Magn. Mater., 1988, 74: 291-302.
    [192]张茂才,乔祎,王佐诚,周寿增.成份及组织结构对Pr2Fe14B/α-Fe纳米晶复合永磁材料晶粒间相互作用的影响.自然科学进展, 2001, 11(7): 735-739.
    [193] X. B. Du, H. W. Zhang, C. B. Rong, J. Zhang, S. Y. Zhang, B. G. Shen, Y. Yan, H. M. Jin. Magnetization and demagnetization behaviours of melt-spun Pr12Fe82B6 and Pr8Fe87B5 ribbons. Chinese Phys., 2004, 13(4): 552-555.
    [194] McGraw-Hill. American Institute of Physics Handbook. New York, 1972.
    [195] M. Gabay, Y. Zhang, G. C. Hadjipanayis. Effect of Cu and Ga additions on the anisotropy of R2Fe14B/α-Fe nanocomposite die-upset magnets (R=Pr,Nd). J. Magn. Magn. Mater., 2006, 302: 244-251.
    [196]陈允忠,贺淑莉. Ga添加对纳米晶双相永磁材料Pr2(FeCo)14B/α-(FeCo)的磁化行为及晶间交换耦合作用的影响.首都师范大学学报(自然科学版), 2005, 27(3): 20-24.
    [197] E. F. Kneller, R. Hawig. The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans.Magn., 1991, 27: 3588-3600.
    [198]陈允忠,贺淑莉,张宏伟,陈仁杰,荣传兵,孙继荣,沈保根.纳米复合永磁Pr9Fe74Co12B5Snx (x=0, 0.5)的磁化行为与磁黏滞性.物理学报, 2005, 12: 5890-5894.
    [199] H. H. Stadelmaier, N. C. Liu. Effect of mechanical comminution on the intrinsic coercivity of Fe-Nd-B sintered magnets. Mater. Lett., 1986, 4: 304-308.
    [200]王集成,强文江,乔袆.热处理对烧结NdFeB磁体机械破碎磁粉的影响.北京科技大学学报, 2000, 22(3): 216-218.
    [201]刘旭波,肖耀福,张正义. HDDR各向异性NdFeB磁粉的粒度效应.功能材料, 2000, 31(5): 466-475.
    [202]白书欣.粘结Nd-Fe-B永磁材料制造原理与技术.博士学位论文,国防科学技术大学, 2007.
    [203] G. Martinek, H. Kronmüller. Influence of grain orientation on the coercive field in Fe-Nd-B permanent magnets, J. Magn. Magn. Mater., 1990, 86: 177-183.
    [204]钟文定.技术磁性理论简编——基础与进展.中国电子学会培训中心教材,中国电子学会应用磁学分会.
    [205]王晨.纳米复合Nd2Fe14B/α-Fe永磁材料微结构与磁性能研究.博士学位论文,浙江大学, 2006.
    [206] S. Hock, H. Kronmüller. Instric magnetic properties of Fe14Nd2B single crystals, The 5th international symposium on magnetic anisotropy and coercivity in rare earth-transition metal alloys. Bad Soden, FRG, 1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700