心脏运动和呼吸对多普勒血流参数测定影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.模拟实验研究心脏运动对多普勒血流频谱的影响
     1.1 实验目的
     通过自行设计和制作心底运动模拟仪,建立体外模拟实验模型,观察模拟心脏运动对模拟心底部血流多普勒频谱速度时间积分(Velocity-time integral,VTI)的影响。
     1.2 实验方法
     1.2.1 实验设备制作
     实验一:用自制的、可产生模拟心底部运动的仪器——TD-3型心底运动模拟仪以及由管道支架、管道系统(内径为5mm的医用硅胶管)和蠕动泵组成的血流模拟器构成模拟实验装置的主体。模拟仪带动模拟心脏可以模拟人体心底部作竖直方向的往复运动;蠕动泵可以保证模拟血管内的血流成脉动性,满足实验中模拟人体心腔内瓣口血流频谱频率和幅度的要求。用6%的淀粉甘油水悬液作为模拟血液,以模拟人体血液红细胞浓度及血液的黏滞性。本实验中超声探头固定不动。
     实验二:超声探头与心底运动模拟仪的滑动板连接,使探头与模拟心脏成为一体(transducer and stimulated heart,TSH),同步运动,以模拟人体血流动力学实验中探头和心底部同步运动的实验过程。
    
    第四军医大学博士学位论文
    1.2.2指标观侧
     实验一:用Sequoia 512超声心动图仪观察并记录心底运动
    模拟仪和血流模拟器两者在不同速度状态下分别运动、非同步和
    同步运动时,模拟血流多普勒流速曲线的特点;观察模拟心脏运
    动对模拟血流流速曲线VTI测定的影响及后者与模拟心脏运动频
    谱vTI间的定量关系。
     实验二:观察并记录探头+模拟心脏与模拟血流同步或非同
    步运动时,模拟血流多普勒流速曲线的特点。
    1.3结果
     实验一:当模拟心腔静止、其内模拟血流单独运动时,脉冲
    多普勒血流流速曲线表现为单方向的、速度相同的脉动液流。单
    独心腔运动的脉冲多普勒速度曲线表现为正弦波样机械运动。模
    拟心腔和其内模拟血流同步运动时,在模拟心脏运动作用下,模
    拟血流改变了原有的流速曲线波形:两者同向运动时,模拟血流
    流速曲线VTI为两者单独运动时的VTI之和,反向运动时为两者
    单独运动的VTI之差,而其中模拟心腔运动所产生的多普勒频移
    信号的速度和频率没有变化。
     实验二:探头十模拟心脏与模拟心腔内的模拟血流同时运动
    时,不论探头十模拟心脏如何运动,模拟心腔内血流多普勒流速曲
    线的形态、Vmax和VTI与模拟血流单独运动时相同。这说明,只
    要探头与模拟血流之间没有相对运动,探头就可以记录到模拟血
    流相对于管壁的真实速度频谱。
    1.4结论
    a.心脏运动对模拟血流频谱的形态及其VTI均产生了影响,多普
    勒超声仪器所记录到的模拟血流的多普勒流速曲线,是经过模拟
    心脏运动按速度时间积分相加或相减规律调制了的、包含了两种
    运动成分的复合波。
    b.模拟心脏运动流速曲线vTI占模拟血流流速曲线vTI的‘25%,
    
    第四军医大学博士学位论文
    模拟心脏运动对模拟血流流速曲线VTI测值有明显影响。提示:
    在用多普勒方法测量血流量时应当考虑到心脏运动对多普勒测值
    的影响并加以矫正。
    2.心脏运动对人心脏瓣口多普勒血流频谱润定形响的实验研究
    2.1研究目的
     观察在人体血流动力学实验中,探头与心底部同步运动时主
    动脉瓣口血流VTI的变化以及这些变化与常规该指标测定方法测
    值间的定量关系,为临床多普勒法测量每搏量的校正提供实验依
    据。
    2.2研究方法
    2.2.1实验设备制作
     改制TD一3型心底运动模拟仪,将探头固定于心底运动模拟仪
    的可调运动板上,使探头与模拟心脏成为一体同步运动,并使可
    调运动板与探头的运动方向平行,制成TD一4型心底运动模拟仪。
    调整探头方向,使声束与左室流出道血流方向一致。
    2.2.2指标观测
     对象为58位健康成人自愿者。在心尖五腔心切面,M型超声
    心动图记录主动脉瓣环机械运动曲线,测量心底部平均运动速度
    (即斜率cm/s)、幅度;脉冲多普勒记录主动脉瓣口vmax及vTI:
    计算人体心脏运动的VTI占相应瓣口血流频谱VTI的比例,同步
    描记ECG。对8位自愿进行在体模拟实验者,启动TD一4型心底运
    动模拟仪,以ECG的R波顶端为模拟仪运动触发点,使探头与受
    检者的心底部同步(指时间和幅度相同)或非同步(指时间不同、
    幅度相同)运动时,记录M型曲线及多普勒血流流速曲线的变化。
    2.3结果
     收缩期心底部朝向探头运动,TD一4型心底运动模拟仪带动探
    头随着心脏做同步、同振幅的运动,M型曲线的收缩期朝向心尖
    部运动的波型消失,表现为一直线。模拟仪运动前,主动脉瓣口
    
    第四军医大学博士学位论文
    血流频谱中,心脏运动性多普勒频移信号S波的速度和VTI分别
    为16.3士2.7cm/s,3.83士0.83cm:血流频谱的速度和vTI分别
    为92.7士13.Zem/s,22.8士3.oem;人体心脏运动的vTI占相应
    瓣口血流vTI的16.8%士3.4%。当探头和心脏同步、同振幅运动
    时,s波消失,频谱的速度和VTI均较模拟仪运动前增大,分别
    为107.3士2.7em/s,24.6土2.sem。
    2.4结论
    a.收缩期主动脉瓣环的运动方向和主动脉瓣口血流方向相反,人
    体心脏运动的VTI占相应瓣口血流VTI的16.8%士3.4%。
    b.探头运动时记录的主动脉瓣口血流频谱VTI(即相当于不受心
    脏运动影响的真正的主动脉瓣口血流VTI)恰好是探头未
1. The influence of cardiac motion on the velocity-time integrals of Doppler flow spectrum: in vitro model study
    1.1 Objective
    To design and make cardiac base motion simulated instrument by ourselves , and to establish simulated experimental model to observe the influence of simulated cardiac motion on the measurements of Doppler spectrum velocity- time integral (VTI) of simulated blood flow at the cardiac base.
    1.2 Methods
    1. 2.1 The fabrication of experimental instrument
    Test I We simulated cardiac base motion by using Heart-Motion Simulator Model TD-3 (HMSTD-3) made by ourselves and blood flow simulator which was composed of pipeline plank, tubing and pulsatile pump. The pulsatile pump could make the simulated blood flow through the chamber to be of pulsatile so that it could satisfy the demand of
    
    
    frequence and amplitude of simulated blood flow in vitro. 6% starch-Glycer in water slurry was driven by the pulsatile pump through the tubing to simulate the blood flow in the simulated heart, and the tubing was cyclically moved by HMSTD-3. The transducer was stationary.
    Test II The echotransducer was fixed on the slide board of HMSTD-3 so that the transducer and the simulated heart became one part(transducer + simulated heart) and moved together. 1. 2. 2 Index observation
    Test I Acuson' s Sequoia 512 and Acuson 128 XP/10
    ultrasonographic systems were used in this study to record the Doppler spectrum of simulated heart and simulated blood flow that moved separately , synchronously or unsynchronously, and to quantitatively assess their relations and the influence of simulated heart motion on the determation of Doppler spectrum VTI of the simulated blood flow.
    Test II To observe and note the feature of Doppler
    spectrum of simulated blood flow when the transducer + simulated heart and simulated blood flow moved synchronously or unsynchronously respectively . 1.3 Results
    Test I In the model in vitro, the alterations in the motion of the tubing resulted in apparent changes in the measured maximal velocity and VTI of the fluid. The Doppler spectrum of the combined motion of the tubing and the fluid
    
    
    was the algebraic sum of their Doppler signals. The velocity and frequency of Doppler spectrum generated by simulated heart motion did not change.
    Test II When transducer + simulated heart and simulated blood flow moved together, the shape, Vmax and VTI were the same as those when simulated blood flow moved along whether their motions were in phase or not. 1.4 Conclusions
    The motion of the simulated heart has a great influence on the form and the value of simulated Doppler blood flow spectrum VTI. The Doppler flow tracing which recorded by echocardiography was already modulated according to the VTI adding or subtracting by the simulated heart motion. The VTI of simulated heart accounted for 25% of the VTI of simulated Doppler blood flow spectrum and this effect should be considered when blood flow volume is measured by using Doppler' s methods.
    2. Influence of cardiac motion on the measurement of Doppler flow spectrum through the valve: in vivo model study 2.1 Objective
    To quantitatively observe the changes of blood flow VTI through the aortic valve with the transducer moving in the same direction with the motion of cardiac base, and so as to help the correction of the way of measuring the stroke volume by Doppler methods. 2. 2 Methods 2. 2.1 The fabrication of experiment instrument
    
    
    To change the HMSTD -3 mode simulator into the HMSTD-4 mode cardiac base motion simulator model in vitro by fixing the transducer on the sliding board of the HMSTD -3 and to make the direction of sonar beam parallel to the direction of blood flow of left ventricular outflow tract. The frequency and amplitude of HMSTD-4 mode simulator were the same as those of the human subjects' cardiac base motion. HMSTD-4 simulator was used to move the transducer with a water-balloon so that the transducer is relative stable to the sample volume at the aortic annulus when aortic Doppler flow at apex-five chamber view was recorded in su
引文
1.Williams等著 杨林,高英茂主译.格式解剖学.沈阳:辽宁教育出版社,1999.1943-1945
    2.王新房 主编.超声心动图学.第3版.北京:人民卫生出版社,1981.40
    3.郑斯竞 主编.系统解剖学.第3版.北京:人民卫生出版社,215
    4.凌凤东,林奇 主编.心脏临床解剖学.西安:陕西科学技术出版社,1996.42-47
    5. Yoshida T, Mori M, Nimura Y, Taka Gishi S, Nakanishi K, Satomura S. Analysis of heart motion with ultrasonic Doppler method and its clinical application. Am heart J, 1961, 61:61-75
    6. Kostis JB, Mavrogeorgis E, Slater A, Bellet S. Use of a range-gated, pulsed ultrasonic Dopper technique for continuous measurement of velocity of the posterior heart wall. Chest, 1972, 62:597-604
    7. Brutsaert DL, Parmley WW, Sonnenblick EH. Effects of various inotropic interventions on the dynamic properties of the contractile elements in heart muscle of the cat. Circ Res. 1970, 27(4):513-522
    8. Kostis J, Macrogeorgis M, Slater A, Bellet S. Rage of a Range-gated, Pulsed Ultrasonic Doppler Technique for Continuous Measurement of Velocity of the Posterior Heart Wall. Chest, 1972, 62(5): 597-604
    9. Isaaz K, Thompson A, Thevenot G, Cloez J, Brembilla B, Pernot C. Doppler echocardiographic measurement of low velocity motion of the left ventricular posterior wall. Am
    
    J Cardiol, 1989, 64(1):66-75
    10. Isaaz K, Munoz del Romeral, Lee E, Schiller NB. Quantitation of the motion of the cardiac base in normal subjects by Doppler echocardiography. J Am Soc Echocardiogr. 1993, 6(2): 166-176
    11. McDicken WN, Sutherland GR, Moran CM, Gordon LN. Colour Doppler velocity imaging of the myocardium. Ultrasound Med Biol, 1992, 18:651-654
    12. Miyatake K, Yamagishi M, Tanaka N, Uematsu M, Yamazaki N, Mine Y, Sano A, Hirama M. New methods for evaluating left ventricular wall motion by color-coded tissue Doppler imaging: in vitro and in vivo studies. J Am Coll Cardiol, 1995, 25:717-724
    13. Sutherland GR, Stewart MJ, Groundstroem KW, Moran CM, Fleming A, Guell-Peris FJ, Riemersma RA, Fenn LN, Fox KA, McDicken WN.. Colour Doppler myocardial imaging: A new technique for the assessment of myocardial function. J Am Soc Echocardiogr, 1994, 7:441-458
    14. Hisao MU, Miyatake MK, Tanaka N, Sano A, Yamazaki N, Hirama M, Yamagishi M. Myocardial Velocity Gradient as a New Indicator of Regional Left Ventricular Contraction: Detection by a Two-Dimensional Tissue Doppler Imaging Technique. J Am Coll Cardiol, 1995, 26(1):217-223
    15. Tellbrink C, Breithardt OA, Franke A, Sack S, Bakker P, Auricchio A, Pochet T, Salo R, Kramer A, Spinelli J. Impact of cardiac resynchronization therapy using hemodynamically optimized pacing on left ventricular remodeling in patients with congestive heart failure and ventricular conduction disturbances. J Am Coll Cardiol,
    
    2001, 38:1957-1965
    16. Peter S, Henrik E, Kim Y, Jensen HK, Pedersen AK, Kristensen B, Mortensen PT. Tissue doppler imaging predicts improved systolic performance and reversed left ventricular remodeling during long-term cardiac resynchronization therapy. J Am Coll Cardiol, 2002, 40(4): 723-730
    17. Ohte N, Narita H, Akita S, Kurokawa K, Hayano J, Kimura G. Striking effect of left ventricular high filling pressure with mitral regurgitation on mitral annular velocity during early diastole: A study using colour M-mode tissue Doppler imaging. European Journal of Echocardiography, 2002, 3(1):52-58
    18. Oki T, Tabata T, Yamada H, Wakatsuki T, Shinohara H. Clinical application of pulsed Doppler tissue imaging for assessing abnormal left ventricular relaxation. Am J Cardiol, 1997, 79(7):921-928
    19. Strotmann JM, Richter A, Kukulski T, Voigt JU, Fransson SG, Wranne B, Hatle L, Sutherland GR. Doppler myocardial imaging in the assessment of regional myocardial function in longitudinal direction pre- and post-PTCA. Eur J Echocardiogr 2001 Sep:2(3):178-86
    20.白静,孙有刚,王芳,王晋明,李庚山,郭瑞强,郝力丹,初洪刚.多普勒组织成像技术对缺血心肌再灌注前、后室壁运动的定量研究.中华超声影像学杂志,2000,9(12):709-710
    21. Tabat T, Okit, Yamada H. Subendocardial motion in Hypertrophic cardiomyopathy: assessment from long and short vieas by pulsed tissue Doppler imaging, J Am Soc Echocardicagr 2000, 13(2): 108-115
    22. Garcia MJ, Rodriguez L, Ares M, Griffin BP, Thomas JD,
    
    Klein AL. Differentiation of constrictive pericarditis from restrictive cardiomyopathy: assessment of left ventricular diastolic velocity in longitudeinal axis by Doppler tissue imaging. J Am Coll Cardiol, 1996, 27(1):108—114
    23.曹铁生,段云友,杨炳昂.心脏运动对多普勒血流速度频谱分析的影响.中国超声医学杂志,1991,7:84-86.
    24.曹铁生,里利SL,普拉波特T,拉斯基W,萨顿M.下腔静脉血流的多普勒频谱分析.中华物理医学杂志,1987,9(2):83-86
    25. Cao T, Shapiro SM, Bersohn MM, Steve CK, Ginzton LE. Influence of cardiac motion on Doppler measurements using in vitro and in vivo models. J Am Coll Cardio, 1993, 22(1): 271-276
    26.曹铁生,袁丽君,阮骊韬,段云友,Shapiro SM,GinztonLE.体外模拟实验研究心脏运动对频谱多普勒血流速度测定的影响.中华超声影像学杂志,2001,10(4):241-243
    27.曹铁生,袁丽君,阮骊韬,段云友,Shapiro SM,GinztonLE.人体心脏运动对多普勒血流速度频谱测定的影响.中华超声影像学杂志,2001,10(12):712-714
    28. Ingels NB, Daughters GT, Stinson EB, Alderman EL. Evaluation of methods for quantitating left ventricular segmental wall motion in man using myocardial markers as a standard. Circulation, 1980, 61(5):966-972
    29. Pai RG, Gill KS. Amplitudes, durations, and timings of apically directed left ventricular myocardial velocities: Ⅰ. Their normal pattern and coupling to ventricular filling and ejection. J Am Soc Echocardiogr, 1998, 11(2):105-111
    
    
    30. Palmes PP, Masuyama T, Yamamoto K, Kondo H, Sakata Y, Takiuchi S, Kuzuya T, Hori M. Myocardial longitudinal motion by tissue velocity imaging in the e valuation of patients with myocardial infarction. J Am Soc Echocardiogr, 2000, 13:818-826
    31. Ganz W, Swan HJ. Measurement of blood flow by thermodilution. Am J Cardiol, 1972, 29(2): 241-245
    32.夏宏器,刘国权.实用心功能学[M].北京:中国医药科技出版社,1993,299~307.
    33. Sharkey SW. Beyond the wedge: Clinical physiology and the Swan-Ganz catheter [J] Am J Med, 1987, 83: 111-122.
    34.毛焕元,杨心田.心脏病学[M].北京:人民卫生出版社,1995.283-294
    35.王加恩 超声心动图与血流动力学.中华物理学杂志,1986,8(4):249-252
    36.王新房 主编.超声心动图学.第3版.北京:人民卫生出版社,1999,281-283
    37.张运 主编.介入性超声心动图学.济南:山东科学技术出版社 2000,5 567-569
    38. Coucelo J, Joaquim N, Coucelo J. Calculation of volumes and systolic indices of heart ventricle from Halobatrachus didactylus: echocardiographic noninvasive method. J Exp Zool, 2000, 286(6):585~595.
    39. Teichholz LE, Kreulen T, Herman MV, Gorlin R. Problems in echocardiographic volume determination: echocardiographic-angiographic correlations in the presence of absence of asynergy. Am J Cardiol, 1976, 37(1): 7-11
    
    
    40. Sawada H, Fujii J, Kato K, Onoe M, Kuno Y. Three-dimention reconstruction of the left ventricle from multiple cross sectional echcardiograms. Br Heart J, 1983, 50:438-442
    41. Fazzalari NL, Goldblatt E, Adams A. A composite three-dimensional echocardigraphic technique for left ventricular volume estimation in children: Comparison with angiography and established echographic methods. J Clin Ultrasound, 1986, 14(9): 663-674
    42.赖玉琼,周令仪,陆方.三维超声心动图对冠心病患者左心功能的研究并与核素心血池造影、二维及M型超声相对照.中国超声医学杂志,1994,10:1-5
    43. Peter MS, Klaus MS, Aasha SG, Mikel DS, Anthony ND, Donald LK. Comparison of two- and three-dimensional echocardiography with cineventriculography for measurement of left ventricular volume in patients. J Am Coll Cardiol, 1994, 24:1054-1063
    44. Li J, Li X, Mori Y, Rusk RA, Lee JS, Davies CH, Hashimoto I, El-Sedfy GO, Li XN, Sahn DJ. Quantification of flow volume with a new digital three-dimensional color Doppler flow approach: an in vitro study. J Ultrasound Med, 2001, 20(12):1303-1311
    45.孙鲲,王新房,邢晋放,袁士莹,袁霞萍,吴棘,谢明星,利埃里,吕清.彩色多普勒超声在心搏出量计算方面的实验性研究.中华超声影像学杂志,2001,10:368-371
    46. Mehwald PS, Rusk RA, Mori Y, Li XN, Zetts AD, Jones M, Sahn DJ. A validation study of aortic stroke volume using dynamic 4-dimensional color Doppler: an in vivo study. J Am Soc Echocardiogr, 2002, 15(10 Pt 1):1045-1050
    47. Goldberg SJ, Sahn DJ, Allen HD, Valdes-Cruz LM, Hoenecke
    
    H, Carnahan Y. Evaluation of pulmonary and systemic blood flow by 2-dimensional Doppler echocardiography using fast Fourier transform spectral analysis. Am J Cardiol, 1982, 50:1394-1400
    48. Dittmann H, Voelker W, Karsch K R, Seipel L. Influence of sampling site and flow area on cardiac output measurements by Doppler echocardiography. J Am Coll Cardiol, 1987, 10(4): 818-823
    49. Ihlen H, Amlie JP, Dale J, Forfang K, Nitter-Hauge S, Otterstad JE, Simonsen S, Myhre E. Determination of cardiac output by Doppler echocardiography. Br Heart J, 1984, 51(1): 54-60
    50. Jonathan D, Donald C, Wallerson C, Robert J, Richard B. Comparative accuracy of Doppler echocardiographic methods for clinic stroke volume determination. Am Heart J, 1990, 120:116-123
    51. Darse JR, Walter PF, Bray DA, Butter DO. Comparision of Doppler, echocardiographic, angiographic, thermodilution and Fick methods of measuring cardiac output in patients with coronary disease and dskinetic myocardial segments. Chest, 1979, 76: 350
    52. Rossvoll O, Samstsd S, Torp HG, Linker DT, Skjaerpe T, Angelsen BA, Hatle L. The velocity distribution in the aortic annulus in normal subject: A quantitative analysis of two-dimensional Doppler maps. J Am Soc Echocardiogr, 1991, 4(4): 367-378
    53. Samstad SO, Torp HG, Matre K, Rossvoll O, Segadal L, Piene H. Instantaneous cross-sectional flow velocity
    
    profiles: A comparative study of two ultrasound Doppler methods applied to an in vitro pulsatile flow model. J Am Soc Echocardiogr, 1990, 3: 451-464
    54. Haugen BO, Berg S, Brecke KM, Torp H, Slordahl SA, Skjrpe T, Samstad SO. Blood flow velocity profiles in the aortic annulus: A 3-dimensional freehand color flow Doppler imaging study. J Am Soc Echocardiogr 2002, 15:328-333
    55. Fujimoto S, Mizuno R, Hashimoto T, Dohi K, Hirai A, Nakanishi S, Nakano H. Contribution of velocity profiles at the left ventricular outflow tract to calculations of stroke volume: A magnetic resonance imaging study. Echocardiography, 1999, 16(1): 11-16
    56.唐杰 董宝玮 主编.腹部和外周血管彩色多普勒诊断学.2版 北京:人民卫生出版社,1999,151-153
    57.陆恩祥 任卫东 主编.血管超声诊断图谱.第1版.沈阳:辽宁科学技术出版社,1999:32-35
    58. Jansen H, Trevino C, William D. Hemodynamic alterations in venous blood flow produced by external pneumatic compression. J Cardiovasc Surg, 1993, 34: 441-447
    59. Strandness DE. Duplex scanning in vascular disorders. New York: Raven. 1990; 167-178
    60. Krahenbuhl B, Restellini A, Frangos A. Peripheral venous pulsatility detected by Doppler method for diagnosis of right heart failure. Cardiology, 1984, 71: 173-175
    61. Abu-Yousef MM, Mufid M, Woods KT, Brown BP, Barloon. Normal lower limb venous Doppler flow phasicity. AJR, 1997, 169: 1721-1725
    
    
    62. Baldt MM, Bohler K, Zontsich T, Bankier AA, Breitenseher M, Schneider B, Mostbeck GH. Preoperative imaging of lower extremity varicose veins: color coded duplex sonography or venography. J Ultrasound Med, 1966, 15(2):143-154
    63.查长松,赵玉华,杜晓华,李静伟,隋向梅.彩色多普勒血流显像检测下肢静脉瓣返流.中国医学影像技术.1998,14(12):922-924
    64. Araki CT, Back TL, Padberg FT Jr, Thompson PN, Duran WN, Hobson RW 2nd. Refinements in the ultrasonic detection of popliteal vein reflux. J V asc Surg, 1993, 18(5): 742—748
    65.陆信武,徐秋华,蒋米尔 彩色多普勒超声评价下肢静脉倒流时间阈值的研究 中华超声影像学杂志 2002,11:743-745
    66. Abu-Yousef MM, Kakish ME, Mufid M. Pulsatile venous Doppler flow in lower limbs: highly indicative of elevated right atrium pressure. Am J Roentgenol, 1996, 167(4): 977-980
    67. Kakish ME, Abu-Yousef MM, Brown PB, Warnock NG, Barloon TJ, Pelsang. Pulsatile lower limb venous Doppler flow: prevalence and value in cardiac disease diagnosis. J Ultrasound Med, 1996, 16(6):445-446
    68. Alimoglu E, Erden A, Gursel K, Olcer T. Correlation of right atrial pressure and blood flow velocities in the common femoral vein obtained by duplex Doppler sonography. J Clin Ultrasound. 2001, 29(2): 87-91
    69. Isaaz K, Munoz del Romeral L, Lee E, Schiller NB. Quantitation of the motion of the cardiac base in normal subjects by Doppler echocardiography. J Am Soc
    
    Echocardiogr. 1993, 6(2): 166-176.
    70. Hammarstrom E, Wranne B, Pinto FJ, Puryear J, Popp RL. Tricuspid annular motion. J Am Soc Echocardiogr, 1991, 4: 131-139
    71.丁康,曹铁生,段云友,王作军 模拟实验研究心脏运动对多普勒血流频谱速度时间积分的影响 中华超声影像学杂志,2004,13(4):49-52
    72. Nishimura RA, Appleton CP, Redfield MM, Ilstrup DM, Holmes DR Jr, Tajik AJ. Noninvasive Doppler echocardiographic evaluation of left ventricular filling pressures in patients with cardiomyopathies: a simultaneous Doppler echocardiographic and cardiac catheterization study. J Am Coll Cardiol, 1996, 28(5): 1226-1233.
    73. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: A comparative simultaneous Doppler-catheterization study. Circulation, 2000, 102(15):1788-1794.
    74. Alpaslan M, Onrat E, Evcik D. Doppler echocardiographic evaluation of ventricular function in patients with rheumatoid arthritis. Clin Rheumatol. 2003, 22(2):84-88.
    75. Rowland T, Obert P. Doppler echocardiography for the estimation of cardiac output with exercise. Sports Med. 2002, 32(15):973-986.
    76. Huntsman L. L, Stewart D. K, Barnes S. R, Cent. Bioeng. Noninvasive Doppler determination of cardiac output in man. Circulation, 1983, 67(3): 593-602
    
    
    77. Kagiyama M, Ogasawara Y, Tadaoka S, Kajiya F. Measurement accuracy of the flow velocity in pulsed ultrasound Doppler velocimeter. Ultrasound in Medicine & Biology, 1999, 25(8): 1265-1274
    78.段云友,宾建平,贺声,李军,曹铁生 脉冲多普勒外周血管血流定量可信性的实验研究 中国超声医学杂志,1994,10(3):33-38
    79.王文平,徐智章,刘利民,潘国强 彩色Doppler和频谱Doppler体外模拟血流实验研究中华物理医学杂志,1991,13(3):153-157
    80.丁康,曹铁生,段云友,袁丽君.三尖瓣返流患者股总静脉血流频谱特点.中国超声医学杂志,2004,20:118-120
    81.张运主编 介入性超声心动图学.济南:山东科学技术出版社,2000.5:154
    82. McClure M. J, Kelly BE, Campbell, et al. Duplex Doppler ultrasonography of lower limb veins: detection of cardiac abnormalities. Clin Radiol, 2000, 55:533-536
    83. Gilron I, Magder S. Monitoring complication due to a pulsatile femoral vein from tricuspid regurgitation. Can J Anaesth, 1995, 42(2): 141-143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700