基于电机矢量控制的黏着方法研究与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文是依托国家科技支撑项目“牵引传动控制策略优化研究”的子课题“黏着控制方法研究”而开展的。黏着控制性能不仅直接关系到列车设计的牵引和制动能力能否充分发挥,而且关系到列车运行的安全性,例如列车发生空转与滑行故障都是因为黏着破坏引起的。尤其是近年来我国铁路实施高速客运和重载货运,使得机车牵引负荷日益增大,因此研究如何有效利用轮轨间的黏着力,实现其优化控制具有重要的理论意义和工程实际价值。
     首先,本论文详细分析了机车的机械构造,采用Simpack构建转向架、车体以及轨道,分析受力情况,建立完整的机车结构模型,并完成模型初始化分析,通过仿真检验所建模型的正确性。
     其次,定义了SIMPACK下机车模型的输入和输出,利用MATLAB/Simulink建立机车电力牵引传动及电机控制模型。并将列车牵引传动及电机控制模型引入机车结构模型中,构建了更贴近列车实际运行工况的机车黏着控制联合仿真模型。采用国际通用的SIMPACK-MATLAB仿真工具为黏着控制方法研究搭建了一个良好的仿真平台,并成功实现联合仿真。
     最后,利用搭建的联仿平台,定义了具有不同黏着特性的轨面状态,结合黏着控制基本理论和现有控制方法,采用组合校正法和模糊法进行联仿,成功抑制了机车空转/打滑,改善了机车的运行状况,实现在复杂路面对机车的防空转、防滑控制,验证了组合校正法和模糊控制法的控制有效性和联合仿真平台的可用性。
     构建的联合仿真平台真实反映了控制效果的优劣,为新的控制策略和控制算法提供研究平台。与物理样机相比,联合仿真平台的引入降低了试验成本,缩短了开发周期,为寻求优化黏着控制提供了一种有效的研究工具。
This paper is relying on the national support projects of science and technology "Optimization of Traction Drive Control". The research of the methods of adhesion control was carried out. Adhesion control performance not only directly related to the traction and braking ability of the train design, but also to the security of the trains running. For example, the failure of iding and slide are caused by adhesion damage. Especially in recent years, our country implementation of the strategy of high speed and over loading, resulting in locomotive traction load increasing, therefore, the research that how to effectively use the adhesive force between wheel and rail, and to achieve optimal control has important theoretical significance and engineering practical value.
     First, in this thesis, detailed analysis of the mechanical contruction of the locomotive. Using SIMPACK bulid bogies, body and orbit, and establishment of a complete locomotive model to analyze the force, then initialized the system. Through simulation shows the correctness of the model.
     Second, defined the inputs and outputs of the locomotive model in SIMPACK and built locomotive electric traction drive and motor control model in MATLAB/Simulink. The traction drive and motor control was introduced to the locomotive model, and constructed the co-simulation model that closer to the actual operating conditions of the locomotive. Adopting internationally accepted SIMPACK-MATLAB simuliation tools provide a good simuliton platform for receach of adhesion control, and successfully co-simulation.
     Finally, after definition of the different rail conditions in platform of co-simulation, according to the basic theory and the existing control method of adhesion control, and used combined correction method and fuzzy control method successfully inhibited the locomotive iding/slipping, improved the operational status. The control methods and the platform of co-simulation feasibility were confirmed.
     The platform of co-simulation truly reflected the control effect, and laid the foundation for the new control strategy and control algorithm. Compared with the physical prototype, the platform of co-simulation reduces the test cost, shortens the development period and provides an effective research tool for research of optimization adhesion methods.
引文
[1]鲍维千.关于机车黏着的一些概念及提高机车粘着性能的措施[J].内燃机车.1999(1):8-13.
    [2]刘杰.基于二型模糊系统的机车粘着控制[D].西南交通大学硕士论文.2010.
    [3]李江红,马建,彭辉水.机车粘着控制的基本原理和方法[J].机车电传动.2002(6):4-7.
    [4]赵红卫.机车粘着自适应控制系统的研究[J].中国铁道科学.1998,12(19):33-40.
    [5]孙峰,莫钧,鲁廷英.提速客车制动技术TFX1G型防滑器使用手册[J].2003,23(2):60-66.
    [6]Hiro-o Yamazaki, Masao Nagai, Takayoshi. A study of adhesion force model for wheel slip prevention control [J]. JSME International Journal, 2004, 47(2):496-501.
    [7]李云峰.基于最优蠕滑率的粘着控制方法研究.西南交通大学硕士论文.2011.
    [8]殳企平.城市轨道交通车辆制动技术[M].中国水利水电出版社,2009,3.
    [9]陈哲明,曾京,罗仁.列车空气制动防滑控制及其仿真.铁道学报.2009,31(4):25-28.
    [10]T.Ohyama. Some basic studies on the influence of surface contamination on adhesion force between wheel and rail at high speed [J]. Q.Rep.Railway Tech.Res.Inst,1989(30): 127-135.
    [11]万广.机车粘着控制技术现状与发展.机车电传动.1996,22(3):1-4.
    [12]王颖超.高速动车组粘着控制算法研究.北京交通大学硕士论文.2009.
    [13]廖双晴.基于虚拟样机技术的机车粘着控制仿真平台研究[D].西南交通大学硕士论文.2007.
    [14]张玉心.关于我国制动技术的几个问题[J].国外铁道车辆,1993,8:(32).
    [15]Anon. Adhesion Tests of Spring 1975 with the Test Machine 1800 Converted to 16(?)Hz Traction. ORE Report B44/RP 13 Utrecht April 1977.
    [16]龚积球,张定贤.轮轨间的粘着与滑动(下)[J].电传动,1987(01):135-141.
    [17]杨颖.交流传动机车粘着控制技术探讨[J].电传动.2003,33(4):8-11.
    [18]V.Sergeant影响粘着利用的因素[J].交流技术与电力牵引.2000(4):11-15.
    [19]骆巧珍.由钢轨方面引起的空转及其防止措施[J].国外内燃机车.1984(10).
    [20]Tado OHYAMA. Adhesion Characteristics of Wheel Rail System and Its Control at High Speeds [J]. OR of RTRL 1992,33(01):31-34.
    [21]C.F.Logston Jr.等.机车摩擦-蠕滑的研究[J].国外内燃机车.1982(10).
    [22]申鹏,王文健,张鸿斐,郭俊,刘启跃.撒砂对轮轨粘着特性的影响[J].机械工程学报.2010(16).
    [23]II.JI. Thmopeeb机车粘着性能的改进[J].国外内燃机车.1995(5):21-23.
    [24]龚积球,陈大瀛,陈石华.机车轴重转移最佳参数的确定[J].内燃机车.1979(04).
    [25]龚积球,张定贤.轮轨间的粘着与滑动(上)[J].机车电传动.1986(05):16-21.
    [26]赵红卫.机车粘着自适应控制系统的研究[J].中国铁道科学.1998(4):33-40.
    [27]裴有福,金元生,温诗铸.轮轨粘着的影响因素及其控制措施[J].国外铁道车辆.1995(02):5-11.
    [28]Yosuke Takaoka, Atsuo Kawamura. Disturbance observer based adhesion control for Shikansen. IEEE Advanced Motion Control.2000,06:169-174.
    [29]Daniel Frylmark and Stefan Johnsson. Automatic Slip Control for Railway Vehicles. Linkopings universitet.2003.
    [30]R.Palm and K. Storjohann. Torque optimization for a locomotive using fuzzy logic [J]. Proceedings of the 1994 ACM symposium on Applied Computing, 1994, 4:105-109.
    [31]王辉,肖建.机车模糊粘着控制及其仿真研究[J].机车电传动,2002(03):19-23.
    [32]M. Garcia-Riviera, R.Sanz, J.A. Perez-Rodriguez. An anti-slipping fuzzy logic controller for a railway traction system. Proceedings of the Sixth IEEE International Conferance on Fuzzy Systems.1997,5(1):119-124.
    [33]D-Y.Park, M-S.Kim, D-H.Hwang, and Y-J.Kim, J-H.Lee. Hy-brid re-adhesion control method for traction system of high-speed railway. IEEE Proceeding of the Fifth International Conference on Eletrical Machines and Systems.2001,2:739-742.
    [34]李培曙.高速车辆的防滑控制与滑行检测[J].铁道车辆.1996(12):10-15.
    [35]S. Kadowaki, K.Ohishi, I.Miyashita, S.Yasukawa. Re-adhesion control of electric motor coach based on diturbance observer and sensor-less vector control. IEEE Proceeding of the POWER Conversion Conference.2002,3(4):1020-1025
    [36]李亚军,黄浩.虚拟样机技术及其应用[J].航空制造技术,2002(02):36-38.
    [37]李瑞涛,方湄,张文明.虚拟样机技术的概念及应用[J].机电一体化.2000(05):17-19.
    [38]胡烽.基于虚拟样机技术的电动转向架系统动力学研究.武汉理工大学硕士论文.2006.
    [39]高利,迟毅林,曾谢华.虚拟产品开发中的虚拟样机技术和数字样机技术[J].机械研究与应用.2005,18(05):6-7.
    [40]缪炳荣.方向华,傅秀通SIMPACK动力学分析基础教程[M].西南交通大学出版社.2008.
    [41]郑凯飞,沈钢.基于SIMPACK的四轴电力机车运行平稳性分析[J].城市轨道交通研究.2012(01):80-83.
    [42]傅秀通.专家级动力学软件分析-SIMPACK[J]. CAD/CAM与制造业信息化.2004(04):69-70.
    [43]陈立平,张云清,任卫群.机械系统动力学分析及ADAMS应用教程[M].清华大学出版社.2005.
    [44]缪炳荣,罗仁,王哲,阳光武SIMPACK动力学分析高级教程[M].西南交通大学出版社.2010.
    [45]刘建新,王开云,封全保.机车车辆二系横向止挡动力学模型[J].交通运输工程学报.2007,7(05):12-14.
    [46]冯晓云.电力牵引交流传动及其控制系统[M].高等教育出版社.2009.
    [47]黄金.异步牵引电机无速度传感器矢量控制系统研究[D].西南交通大学硕士论文.2010
    [48]廖永衡.交流传动电力机车直接转矩控制及其全速区控制方法的研究.西南交通大学硕士论文.2009.
    [49](美)博斯.现代电力电子学与交流传动.北京:机械工业出版社,2003.
    [50]吕兴华.轮轨关系与极值控制.铁道机车车辆[J].机车电传动.1997(2):34-36.
    [51]J.M.Mendel. Uncertain Rule-Based Fuzzy logic Systems:Introduction and New Directions[M]. Upper Saddle River, NJ:Prentice-Hall.2001.
    [52]何可.机车制动系统防滑技术研究[D].北京交通大学硕士论文.2008.
    [53]王秀红.机车防滑控制关键技术的研究[D].北京交通大学硕士论文.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700