IPMC人工肌肉机电性能建模及其在作动器上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子聚合物金属复合物(简称IPMC)是一种新型智能材料,属于电活性聚合物(EAP)范畴,在电压激励下可以产生大变形。它具有驱动电压低、变形大、无噪音、推重比大和柔顺等特点,非常适用于微机械、微电子以及微控制系统;目前,已经成为世界微小型驱动器和传感器的研究热点之一。同时,为达到增大传递效率,简化驱动机构,减小结构尺寸以及提高系统可靠性的目的,其研究目标也向小型化、精细化、灵巧化、柔顺化、知性化等方面发展。
     虽然IPMC具有以上优点,但是其电响应性能不稳定,材料的电激励机理不完善,导致其应用还主要停留在实验室测试阶段。为提高IPMC薄膜电响应性能,本文围绕其电响应特性进行了详细的研究,内容涵盖材料的制备、改性、建模、实验和应用。本文的主要研究工作如下:
     (1)制备了Pt电极型IPMC薄膜;测量了其水溶胀特性、电致变形特性、力学输出特性。同时,改造后的网格Pt电极型IPMC薄膜在5min内(传统IPMC薄膜工作30s内会发生回弹)没有发生回弹现象,提高了IPMC材料的电响应的稳定性。
     (2)发现了Pt电极型IPMC薄膜具有根部弯曲的非线性大变形现象。其自由段即使在无电压激励的情况下,根部在电激励下的变形就可以导致其末端大变形。本文着重研究了此类IPMC的电激励模型,分析了其内部物理变化规律;基于Nemat-Nasser的耦合分析并利用能量守恒定律,推导出集电学、化学、力学和流体的四场耦合IPMC电响应模型,仿真精度提高到13%(传统Nemat-Nasser模型对本文中IPMC计算误差为72%)。
     (3)针对三种IPMC薄膜进行了驱动性能仿真计算,模拟出材料根部和自由段内含水量、内部应力和应变、杨氏模量等关键性能参数的变化规律以及其随激励时间的非线性变化规律;求解出IPMC薄膜末端位移响应与其关键参数之间的关系;最终仿真出IPMC薄膜末端变形随时间变化的关系。实验结果与仿真结果一致性较好,验证了含根部弯曲非线性变形仿真模型的合理性、可靠性和有效性。
     (4)实验发现了IPMC电响应性能(变形、应力和应变)在启动时的三种非线性现象,对其分别进行了仿真计算。仿真结果与实验显示:在启动阶段中,上述三个性能参数与激励电压的关系曲线都近似为指数递增模式,而稳态阶段应力和应变仍然为指数递增模式,但变形却可以近似为线性递增关系。通过设计了薄膜电激励测试实验,验证了导致上述现象的原因来源于材料自身的充电效应。
     (5)开发了三款简易的IPMC手爪,它们具有耗能小、结构简单、柔顺、安静、体积小、推重比大等特点,驱动部件IPMC材料的柔性使其适用于抓取高精度表面的零件。
     本课题由国家自然科学基金面上项目《基于人工肌肉的直线型电机的探索性研究》(50407004)和面上项目《新型IPMC人工肌肉五指灵巧手的研究》(50875123)资助。
Ionic polymer-metal composite (IPMC) is a new type of smart materials, which belongs to one class of electroactive polymers, and it can generate large deformation within voltage. The merits of IPMC are low driving voltage, large deformation, noiselessness, big thrust-weight ratio and flexibility, so it is extremely suitable for micro electronic mechanical system (MEMS); now it becomes one of central research issues as a small actuator or sensor all over the world. Further, to increase the transmission efficiency, simplify the drive mechanism, reduce the structure size and improve system reliability, the research goals are making IPMC materials becoming smaller, more fine, smarter, more flexible, and more intelligence.
     Although IPMC has above advantages, the electrical response properties are of instability and its corresponding drive mechanism is imperfect, inducing that most of its applications remain in the laboratory testing stage. For improving the performance of IPMC actuator, this dissertation will focus on the electrical response characteristics, covering IPMC fabrication, modification, modeling, experiments and applications. The main research contents are as follows:
     (1) IPMC membrane with platinum was fabricated; in order to obtain its water swelling properties, deformation characteristics under electrical stimulation, and mechanical output characteristics, all of them are measured. Further, the grid-based IPMC film with platinum was fabricated for overcoming the relaxation phenomenon of general IPMC material, the former can hold deformation at least 5 minutes without relaxation (general IPMC film occurred relaxation within 30 seconds). Therefore, this new type IPMC can improve the stability of IPMC electrical response.
     (2) It was found that within voltage excitation the general IPMC strips with platinum had nonlinear large deformation in its root. Even in the absence of electrical power in its free part, its tip deformation could also achieve large deformation just resulting from the root electrical response deformation. This dissertation concentrates on this kind of electrical excitation model for simulating and explaining the above phenomenon and analyzing the internal physical changes of IPMC. Based on Nemat-Nasser coupling model, energy conservation law is utilized to derive an improved simulation model by considering electrical, chemical, mechanical and fluid fields together. The results showed a large improvement for simulation accuracy up to 13% (original Nemat-Nasser model’s error for this kind of IPMC is 72%).
     (3) As to three IPMC membranes with different performance, their electrical response simulation had been completed. Both in root and free parts of IPMC strip, the changing principle of the water uptake, the internal stress and strain, Young's modulus and other key performance parameters had been calculated and simulated, and the results showed strong nonlinear relationships; finally the nonlinear relationship between the IPMC tip displacement response and time was solved. The experimental and simulation results are in good agreement, and so it can verify that the above model is reasonable, reliable and validity.
     (4) Three performance parameters (deformation, stress and strain) nonlinear changes of IPMC strips were found in the start-up state, and their simulation results were carried out. In the start-up state, the relationships between these three performance parameters and their excitation voltages were approximately exponential increase trends; in stable state the stress and strain followed the exponential increase trend, but the deformation became an approximate linear increasing relationship. Then, by designing the test of IPMC electrical actuation, it can be testified that the reason leading to the above phenomena are charging effects from the IPMC material itself.
     (5) Three IPMC grippers with simple structures were designed and fabricated. The advantages of them are low energy consumption, simple structure, flexible, quiet, small size, big thrust-weight ratio, etc., and especially for the parts with high accuracy surface the IPMC materials could not damage the surface finish.
     This research activity is funded by National Natural Science Foundation of China General Programs (Grant No.50407004 and Grant No.50875123).
引文
[1]叶云岳.现代驱动技术综述.电机技术. 2005(1): 3-7.
    [2]赵淳生.超声电机技术与应用.北京:科学出版社, 2007.
    [3] Bar-Cohen Y. Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges. Bellingham, Washington USA: SPIE PRESS, 2004.
    [4]马德柱,何平笙,徐种德,等.高聚物的结构与性能.北京:科学出版社, 2004.
    [5]张邦华,朱常英,郭天瑛.近代高分子科学.北京:化学工业出版社, 2006.
    [6] Shahinpoor M, Kim K J. Ionic polymer-metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles. Smart Materials and Structures. 2004, 13(6): 1362-1388.
    [7] Kim K J, Shahinpoor M. Ionic polymer-metal composites: II. Manufacturing techniques. Smart Materials and Structures. 2003, 12(1): 65-79.
    [8] Shahinpoor M, Kim K J. Ionic polymer-metal composites: I. Fundamentals. Smart Materials and Structures. 2001, 10(4): 819-833.
    [9] Shahinpoor M, Kim K J. Ionic polymer-metal composites: IV. Industrial and medical applications. Smart Materials and Structures. 2005, 14(1): 197-214.
    [10]罗玉元,李朝东,张国贤.基于离子聚合物金属复合结构(IPMC)的柔性致动器研究.中国机械工程. 2006, 17(4): 410-413.
    [11]谭湘强,钟映春,杨宜民. IPMC人工肌肉的特性及其应用.高技术通讯. 2002, 12(1): 50-52.
    [12]彭瀚旻,杨淋,李华峰,等.离子聚合物-金属复合物发展综述.微特电机. 2008, 36(2): 57-61.
    [13]赵淳生,杨淋.人造肌肉及其在未来微特电机中的应用.微特电机. 2006, 34(10): 1-3, 6.
    [14] Shahinpoor M. Ionic polymer-conductor composites as biomimetic sensors, robotic actuators and artificial muscles--a review. Electrochimica Acta. 2003, 48(14-16): 2343-2353.
    [15] Shahinpoor M, Kim K J. Novel ionic polymer-metal composites equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles. Sensors and Actuators A: Physical. 2002, 96(2-3): 125-132.
    [16] Kim K J, Shahinpoor M. A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles. Polymer. 2002, 43(3): 797-802.
    [17] Lumia R, Shahinpoor M. IPMC microgripper research and development. UK: IOP PublishingLtd., 2008: 12002-12015.
    [18] Shahinpoor M, Kim K J, Leo D J. Ionic polymer-metal composites as multifunctional materials. Polymer Composites. 2003, 24(1): 24-33.
    [19] Bonomo C, Fortuna L, Giannone P, et al. A method to characterize the deformation of an IPMC sensing membrane. Sensors and Actuators A (Physical). 2005, 123-124: 146-154.
    [20]彭瀚旻,丁庆军,李华峰,等.离子聚合物金属复合物IPMC的制造以及性能研究.中国南京: 2007: 79-84.
    [21] Sadeghipour K, Salomon R, Neogi S. Development of a novel electrochemically active membrane and `smart' material based vibration sensor/damper. Smart Materials and Structures. 1992, 1(2): 172-179.
    [22] Kottke E A, Partridge L D, Shahinpoor M. Bio-potential neural activation of artificial muscles. Journal of Intelligent Material Systems and Structures. 2007, 18(2): 103-109.
    [23] Shahinpoor M. Smart thin sheet batteries made with ionic polymer metal composites (IPMCPs). New York, NY, USA: ASME, 2004: 97-102.
    [24] Katchalsky A. Rapid swelling and deswelling of reversible gels of polymeric acids by ionization. Cellular and Molecular Life Sciences. 1949, 5(8): 319-320.
    [25] Levine C A, Prevost A L. Metal plating permselective membranes. FR Patent: 1536414.
    [26] Hitachi. Formation of an electrode film on an ion-exchanging memebrane. JP Patent: 58185790.
    [27] Millet P, Alleau T, Durand R. Characterization of membrane-electrode assemblies for solid polymer electrolyte water electrolysis. Journal of Applied Electrochemistry. 1993, 23(4): 322-331.
    [28] Millet P, Alleau T, Mathonnet P, et al. Solid polymer electrolyte water electrolysis as a means of energy storage for space applications. Paris, France: ESA, 1989: 245-249.
    [29] Millet P, Andolfatto F, Durand R. Design and performance of a solid polymer electrolyte water electrolyzer. International Journal of Hydrogen Energy. 1996, 21(2): 87-93.
    [30] Millet P, Andolfatto F, Durand R. Preparation of solid polymer electrolyte composites: investigation of the precipitation process. Journal of Applied Electrochemistry. 1995, 25(3): 233-239.
    [31] Millet P, Durand R, Piner M. Preparation of new Solid Polymer Electrolyte composites for water electrolysis. International Journal of Hydrogen Energy. 1990, 15(4): 245-253.
    [32] Millet P, Michas A, Durand R. A solid polymer electrolyte-based ethanol gas sensor. Journal of Applied Electrochemistry. 1996, 26(9): 933-937.
    [33] Millet P, Pineri M, Durand R. New solid polymer electrolyte composites for water electrolysis. Journal of Applied Electrochemistry. 1989, 19(2): 162-166.
    [34] Oguro K, Kawami Y, Takenaka H. Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage. Transactions Journal of Micromachine Society. 1992, 5: 27-30.
    [35] Shahinpoor M. Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles. Smart Materials and Structures. 1992, 1(1): 91-94.
    [36] Shahinpoor M, Kim K J. Effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles. Smart Materials and Structures. 2000, 9(4): 543-551.
    [37] Nemat-Nasser S, Wu Y. Tailoring actuation of ionic polymer-metal composites through cation combination. San Diego, CA, United states: SPIE, 2003: 245-253.
    [38] Zheng C, Yantao S, Malinak J, et al. Hybrid IPMC/PVDF structure for simultaneous actuation and sensing. USA: SPIE - The International Society for Optical Engineering, 2006: 61681.
    [39] Vinh K N, Hyoung-Tae L, Jang W L, et al. Effect of nanoparticulate fillers on the deformation behavior of Nafion-based ionic polymer metal composite. USA: SPIE - The International Society for Optical Engineering, 2006: 616811-616813.
    [40] Park I, Kim K J. Multi-fields responsive ionic polymer-metal composite. Sensors and Actuators, A: Physical. 2007, 135(1): 220-228.
    [41] Stoimenov B L, Rossiter J M, Mukai T. Manufacturing of ionic polymer-metal composites (IPMCs) that can actuate into complex curves. USA: SPIE - The International Society for Optical Engineering, 2007: 65211T-65240T.
    [42] Hyung-Kun L, Nak-Jin C, Sunkyung J, et al. Application of ionic polymer-metal composites for auto-focusing compact camera modules. USA: SPIE - The International Society for Optical Engineering, 2008: 69271.
    [43]段天平,夏代宽,刘期崇,等. Pt/Nafion复合膜的研制.高校化学工程学报. 1997, 11(4): 425-429.
    [44]司永超,韩佐青,陈延禧. Pt/Nafion膜制备的研究.化学学报. 1998, 56(10): 1027-1031.
    [45]边历峰,焦正,刘锦淮.离子聚合物人工肌肉材料应用研究进展.传感器世界. 2001, 7(11): 1-10.
    [46]王海霞,余海湖,李小甫,等. Pt-Ni/Nafion膜电致动材料的制备及性能研究.武汉理工大学学报. 2004, 26(12): 5-8.
    [47] Chung C K, Fung P K, Hong Y Z, et al. A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders. Sensors and Actuators, B: Chemical. 2006, 117(2): 367-375.
    [48] Guo-Hua F, Ri-Hong C. Fabrication and characterization of arbitrary shaped IPMC transducers for accurately controlled biomedical applications. Sensors and Actuators: A. Physical. 2008, 143(1): 34-40.
    [49] Guo-Hua F, Ri-Hong C. Improved cost-effective fabrication of arbitrarily shaped IPMC transducers. Journal of Micromechanics and Microengineering. 2008, 18(1): 15011-15016.
    [50]江新民. IPMC人工肌肉制备,改性和建模.南京航空航天大学, 2008.
    [51]沈辉.人工肌肉(IPMC)的性能研究.南京航空航天大学, 2006.
    [52]汤伊黎.人工肌肉(IPMC)的制备及测试研究.南京航空航天大学, 2007.
    [53]唐运军.离子交换树脂金属复合材料基础特性及电致变形模型研究.中南大学, 2007.
    [54]唐运军,唐华平,殷陈锋.一种离子交换树脂金属复合材料(IPMC)的力学参数测定.高技术通讯. 2007, 17(5): 508-511.
    [55]马春秀. Nafion/金属复合材料的制备及电形变性能研究.哈尔滨理工大学, 2008.
    [56]李磊.离子聚合物金属复合材料制备及其结构与性能研究.哈尔滨理工大学, 2008.
    [57]李博,朱子才,陈花玲,等.一种离子聚合物金属复合材料的性能研究.传感器世界. 2008, 14(9): 14-18.
    [58]陈骐,熊克,卞侃,等. Ag型IPMC柔性驱动器的制备及性能.材料科学与工程学报. 2009, 27(03): 426-429.
    [59]龚亚琦. IPMC电致动特性分析及其相关结构数值模拟.华中科技大学, 2009.
    [60] Tadokoro S, Yamagami S, Takamori T, et al. An actuator model of ICPF for robotic applications on the basis of physicochemical hypotheses. Piscataway, NJ, USA: IEEE, 2000: 1340-1346.
    [61] Nernat-Nasser S, Jiang Y L. Electromechanical response of ionic polymer-metal composites. Journal of Applied Physics. 2000, 87(7): 3321-3331.
    [62] Nemat-Nasser S. Micromechanics of actuation of ionic polymer-metal composites. Journal of Applied Physics. 2002, 92(5): 2899-2915.
    [63] Yongxian W. Experimental characterization and modeling of ionic polymer-metal composites as biomimetic actuators, sensors, and artificial muscles.University of California, San Diego, 2005.
    [64] Kanno R, Kurata A, Hattori M, et al. Characteristics and modeling of ICPF actuator. Kyoto, Japan: Inst. Syst. Control & Inf. Eng, 1994: 691-698.
    [65] Yu X, Bhattacharya K. Modeling electromechanical properties of ionic polymers. USA: SPIE-Int. Soc. Opt. Eng, 2001: 292-300.
    [66] Lee S, Park H C, Kim K J. Equivalent modeling for ionic polymer - Metal composite actuators based on beam theories. Smart Materials and Structures. 2005, 14(6): 1363-1368.
    [67] Lee S, Kim K J. Muscle-like linear actuator using an ionic polymer-metal composite and its actuation characteristics. USA: SPIE - The International Society for Optical Engineering, 2006: 616820-616821.
    [68] Kanno R, Tadokoro S, Takamori T, et al. Linear approximate dynamic model of ICPF (ionic conducting polymer gel film) actuator. Minneapolis, MN, USA: IEEE, 1996: 219-225.
    [69] Xiaoqi B, Bar-Cohen Y, Shyh-Shiuh L. Measurements and macro models of Ionomeric Polymer-Metal Composites (IPMC). USA: SPIE-Int. Soc. Opt. Eng, 2002: 220-227.
    [70] Newbury K. Characterization, Modeling, and Control of Ionic Polymer Transducers.Doctoral Dissertation Virginia Polytechnic Institute and State University, 2002.
    [71] Chen Z, Kwon K, Tan X. Design of integrated IPMC/PVDF sensory actuator and its application to feedback control. USA: SPIE - The International Society for Optical Engineering, 2008: 693210-693211.
    [72]安逸,熊克,顾娜.离子聚合物金属复合材料的力电耦合模型.材料研究学报. 2009(04).
    [73]安逸,熊克,顾娜.采用梯度功能方法的IPMC弹性模量改进模型.复合材料学报. 2009(06).
    [74]安逸,熊克,顾娜.一种离子聚合物金属复合材料拉伸试验研究.航空学报. 2009(05).
    [75] Shahinpoor M. Electro-mechanics of iono-elastic beams as electrically-controllable artificial muscles. USA: SPIE-Int. Soc. Opt. Eng, 1999: 109-121.
    [76] Bar-Cohen Y, Leary S. Electroactive polymers (EAP) characterization methods. USA: SPIE-Int. Soc. Opt. Eng, 2000: 12-16.
    [77] Bar-Cohen Y, Leary S, Yavrouian A, et al. Challenges to the application of IPMC as actuators of planetary mechanisms. Proceedings of SPIE - The International Society for Optical Engineering. 2000, 3987: 140-146.
    [78] Enikov E T, Nelson B J. Electrotransport and deformation model of ion exchange membrane based actuators. Proceedings of SPIE - The International Society for Optical Engineering. 2000, 3987: 129-139.
    [79] Asaka K, Oguro K. Bending of polyelectrolyte membrane platinum composites by electric stimuli. Part II. Response kinetics. Journal of Electroanalytical Chemistry. 2000, 480(1-2): 186-198.
    [80] Paquette J W. Ionic polymer-metal composites : Fabrication, modeling and experimentation.University of Nevada, Reno, 2003.
    [81] Pugal D, Kasemagi H, Kruusmaa M, et al. An advanced finite element model of IPMC. USA: SPIE - The International Society for Optical Engineering, 2008: 692711.
    [82] Cilingir H D, Menceloglu Y, Papila M. The effect of IPMC parameters in electromechanical coefficient based on equivalent beam theory. USA: SPIE - The International Society for Optical Engineering, 2008: 69270-69271.
    [83] Asaka K, Mori N, Hayashi K, et al. Modeling of the electromechanical response of ionic polymer metal composites (IPMC). USA: SPIE-Int. Soc. Opt. Eng, 2004: 172-181.
    [84] De Gennes P G, Okumura K, Shahinpoor M, et al. Mechanoelectric effects in ionic gels. Europhysics Letters. 2000, 50(4): 513-518.
    [85] Bonomo C, Fortuna L, Giannone P, et al. A circuit to model the electrical behavior of an ionic polymer-metal composite. IEEE Transactions on Circuits and Systems I: Regular Papers. 2006, 53(2): 338-350.
    [86] Branco P J C, Dente J A. Derivation of a continuum model and its electric equivalent-circuit representation for ionic polymer-metal composite (IPMC) electromechanics. Smart Materials and Structures. 2006, 15(2): 378-392.
    [87] Lee D Y, Kim K J, Heo S, et al. Application of an equivalent circuit model for ionic polymer-metal composite (IPMC) bending actuator loaded with multiwalled carbon nanotube (M-CNT). Trans Tech Publications Ltd, 2006: 593-596.
    [88] Paquette J, Kim K J, Nam J D, et al. An Equivalent Circuit Model for Ionic Polymer-Metal Composites and their Performance Improvement by a Clay-Based Polymer Nano-Composite Technique. New Orleans, LA, United states: American Society of Mechanical Engineers, 2002: 27-35.
    [89] Punning A, Anton M, Kruusmaa M, et al. Empirical model of a bending IPMC actuator. USA: SPIE - The International Society for Optical Engineering, 2006: 61681.
    [90] Jung J, Kim B, Tak Y, et al. Undulatory Tadpole Robot (TadRob) using ionic polymer metal composite (IPMC) actuator. Las Vegas, NV, United states: Institute of Electrical and Electronics Engineers Inc., 2003: 2133-2138.
    [91] Jung J, Tak Y, Kim B, et al. Tadpole Robot (TadRob) using ionic polymer metal composite (IPMC) actuator. San Diego, CA, United states: SPIE, 2003: 272-280.
    [92] Peng Hanmin,Ding Qingjun,Li Huafeng. Fabrication of ionic polymer-metal composites(IPMCs) and robot design. Frontiers of Mechanical Engineering in China. 2009, 4(3): 332-338.
    [93]郝丽娜,徐夙,刘斌.基于IPMC驱动器的小型遥控机器鱼的研制.东北大学学报(自然科学版). 2009, 30(6): 773-776.
    [94] Guo S, Hata S, Sugumoto K, et al. A new type of capsule micropump using ICPF actuator. Piscataway, NJ, USA: IEEE, 1998: 255-260.
    [95] Guo S, Sugimoto K, Fukuda T, et al. A new type of capsule medical micropump. Piscataway, NJ, USA: IEEE, 1999: 55-60.
    [96] Guo S, Asaka K. Polymer-based new type of micropump for bio-medical application. Taipei, Taiwan: Institute of Electrical and Electronics Engineers Inc., 2003: 1830-1835.
    [97] Guo S, Hata S, Sugumoto K, et al. Development of a new type of capsule micropump. Piscataway, NJ, USA: IEEE, 1999: 2171-2176.
    [98] Guo S, Nakamura T, Fukuda T, et al. A new type of micropump using ICPF actuator. New York, NY, USA: IEEE, 1997: 5.
    [99] Pak J J, Kim J, Oh S W, et al. Fabrication of ionic-polymer-metal-composite (IPMC) micropump using a commercial Nafion. San Diego, CA, United kingdom: SPIE, 2004: 272-280.
    [100]Lee S, Kim K J. Design of IPMC actuator-driven valve-less micropump and its flow rate estimation at low Reynolds numbers. Smart Materials and Structures. 2006, 15(4): 1103-1109.
    [101]Lee S, Kim K J, Park H C. Design and performance analysis of a novel IPMC-driven micropump. San Diego, CA, United states: SPIE, 2005: 439-446.
    [102]Soltanpour D, Shahinpoor M. Synthetic muscle based diaphragm pump apparatuses. 6682500.
    [103]Vohnout S, Kim S, Park I S, et al. IPMC-assisted miniature disposable infusion pumps with embedded computer control. USA: SPIE - The International Society for Optical Engineering, 2007: 65241U-65247U.
    [104]Nguyen T T, Goo N S, Nguyen V K, et al. Design, fabrication, and experimental characterization of a flap valve IPMC micropump with a flexibly supported diaphragm. Sensors and Actuators, A: Physical. 2008, 141(2): 640-648.
    [105]http://www.eamex.co.jp/index_e.html.2010.
    [106]Shahinpoor M, Bar-Cohen Y, Simpson J O, et al. Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review. Smart Materials and Structures. 1998, 7(6): R15-R30.
    [107]Lumia R, Shahinpoor M. Microgripper design using electro-active polymers. Proceedings of SPIE - The International Society for Optical Engineering. 1999, 3669: 322-329.
    [108]Dcole U, Lumia R, Shahinpoor M. Grasping flexible objects using artificial muscle microgrippers. Seville, Spain: TSI Press, 2004: 191-196.
    [109]Lumia R, Shahinpoor M. IPMC microgripper research and development. UK: IOP Publishing Ltd., 2008: 12002-12015.
    [110]Yun K S. A novel three-finger IPMC gripper for microscale applications.Texas A&M University, 2007.
    [111]Haga Y, Mineta T, Esashi M. Active catheter, active guide wire and related sensor systems. Albuquerque, NM, USA: TSI Press, 2002: 291-296.
    [112]Bonomo C, Brunetto P, Fortuna L, et al. A tactile sensor for biomedical applications based on IPMCs. IEEE Sensors Journal. 2008, 8(8): 1486-1493.
    [113]Fang B, Ju M, Lin C K. A new approach to develop ionic polymer-metal composites (IPMC) actuator: Fabrication and control for active catheter systems. Sensors and Actuators, A: Physical. 2007, 137(2): 321-329.
    [114]Lin H, Fang B, Ju M, et al. Control of ionic polymer-metal composites for active catheter systems via linear parameter-varying approach. Journal of Intelligent Material Systems and Structures. 2009, 20(3): 273-282.
    [115]Yoon W J, Reinhall P G, Seibel E J. Analysis of electro-active polymer bending: A component in a low cost ultrathin scanning endoscope. Sensors and Actuators, A: Physical. 2007, 133(2 SPEC. ISS.): 506-517.
    [116]Keshavarzi A, Shahinpoor M, Kim K J, et al. Blood pressure, pulse rate, and rhythm measurement using ionic polymer-metal composite sensors. USA: SPIE-Int. Soc. Opt. Eng, 1999: 369-376.
    [117]Shahinpoor M, Kim K J. Design, development and testing of a multi-fingered heart compression/assist device equipped with IPMC artificial muscles. Newport Beach, CA, United states: SPIE, 2001: 411-420.
    [118]Shahinpoor M. A review of patents on implantable heart-compression/assist devices and systems. Recent Patents on Biomedical Engineering. 2010, 3(1): 54-71.
    [119]Biddiss E, Chau T. Electroactive polymeric sensors in hand prostheses: Bending response of an ionic polymer metal composite. Medical Engineering and Physics. 2006, 28(6): 568-578.
    [120]Ando B, Bonomo C, Fortuna L, et al. A bio-inspired device to detect equilibrium variations using IPMCs and ferrofluids. Sensors and Actuators, A: Physical. 2008, 144(2): 242-250.
    [121]Kim S, Kim C, Park N, et al. Design and position control of AF lens actuator for mobile phoneusing IPMC-EMIM. USA: SPIE - The International Society for Optical Engineering, 2008: 69271K.
    [122]Noor A K. Structures technology for future aerospace systems. Reston, Va: American Institute of Aeronautics and Astronautics, 2000.
    [123]Kim B, Ryu J, Jeong Y, et al. A ciliary based 8-legged walking micro robot using cast IPMC actuators. Taipei, Taiwan: Institute of Electrical and Electronics Engineers Inc., 2003: 2940-2945.
    [124]Anton M, Punning A, Aabloo A, et al. Towards a biomimetic EAP robot: In Proc. of Towards the Autonomous Mobile Robots (TAROS 2004)[Z]. Clochester, UK: 2004: 06, 1-7.
    [125]Kamamichi N, Yamakita M, Asaka K, et al. A snake-like swimming robot using IPMC actuator/sensor. Orlando, FL, United states: Institute of Electrical and Electronics Engineers Inc., 2006: 1812-1817.
    [126]Yamakita M, Kamamichi N, Kozuki T, et al. A snake-like swimming robot using IPMC actuator and verification of doping effect. Piscataway, NJ, USA: IEEE, 2005: 2035-2040.
    [127]http://www.eamex.co.jp/index_e.html.2010.
    [128]http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/.2010.
    [129]郝丽娜,周轶然. IPMC的制备研究.东北大学学报(自然科学版). 2009, 30(12): 1727-1730.
    [130]孙力群,赵耀. IPMC制备方法和计算模型的研究进展.材料科学与工程学报. 2008, 26(3): 473-478.
    [131]代丽君. IPMC的制备及其电极结构的表征.化学与黏合. 2007, 29(6): 401-403, 441.
    [132]Doyeon K. Electrochemically Controllable Biomimetic Actuator.University of Nevada, Reno, 2006.
    [133]Goriely A, Destrade M, Ben Amar M. Instabilities in elastomers and in soft tissues. Quarterly Journal of Mechanics and Applied Mathematics. 2006, 59(4): 615-630.
    [134]何平笙.高聚物的力学性能.中国科学技术大学出版社, 2008.
    [135]潘道成,鲍其鼐,于同隐.高聚物及其共混物的力学性能.上海科学技术出版社, 1988.
    [136]Zhang L, Yang Y. Modeling of ionic polymer-metal composite (IPMC) beam on human tissues. San Diego, CA, United states: SPIE, 2006: SPIE; ASME.
    [137]Peng H M, Ding Q J, Hui Y, et al. Three nonlinear performance relationships in the start-up state of IPMC strips based on finite element analysis. Smart Materials and Structures. 2010, 19(3).
    [138]Lee S, Kim K J. Design of IPMC actuator-driven valve-less micropump and its flow rate estimation at low Reynolds numbers. Smart Materials and Structures. 2006, 15(4): 1103-1109.
    [139]Barramba J, Silva J, Costa Branco P J. Evaluation of dielectric gel coating for encapsulation of ionic polymer-metal composite (IPMC) actuators. Sensors and Actuators, A: Physical. 2007, 140(2): 232-238.
    [140]谢海斌.基于多波动鳍推进的仿生水下机器人设计、建模与控制.国防科学技术大学, 2006.
    [141]Sfakiotakis M, Lane D M, Davies J B C. Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering. 1999, 24(2): 237-252.
    [142]Mcgovern S T, Spinks G M, Xi B, et al. Fast bender actuators for fish-like aquatic robots. San Diego, CA, United states: SPIE, 2008: The International Society for Optical Engineering (SPIE); American Society of Mechanical Engineers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700