崇明岛潮滩湿地土壤微生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“减排温室气体,遏制全球变暖”已经成为国际社会关注的一个热点。如何有效减排温室气体,达到最大化效益也是国内外研究的方向。湿地是具有独特的水文、土壤、植被与生物特征条件,同时是介于陆地生态系统和水域生态系统之间的过渡带的生态系统,因此湿地在涵养水源、调节气候、净化环境等方面具有巨大的环境效益和环境功能,被誉为“地球之肾”。
     以潮滩型湿地崇明西滩和崇明东滩为例,研究崇西和崇东的光滩,芦苇,林地湿地土壤的微生物活性,研究其在生长季与非生长季微生物动态变化。以便为更深一步研究潮滩湿地碳源碳汇的微生物学机制提供研究基础。
     崇明西滩,东滩都属于河口型潮汐滩涂湿地,同时受陆地生态系统与海洋生态系统的影响。河流携带大量的有机质在河口区汇聚,形成了一个庞大的有机质蓄积库及特殊的营养环境,潮汐作用促进了湿地与河流间的有机质交换,从而使河口海岸湿地土壤中碳的生物化学转化过程及其复杂。同时湿地干湿交替的水文特性,使得湿地的水分、氧气及氧化还原电位发生周期性的交替变化,湿地碳循环功能菌群具有周期性动态变化特征,论文从三个方面开展研究湿地碳循环影响因素。
     论文分析土壤的基本理化指标,以及它们在生长季和非生长季土壤酶活变化和微生物活性变化的相关性。探讨不同深度土壤生物酶活性之间的相互联系。
     实验结果表明崇明西滩湿地的酶活和微生物量都要高于崇明东滩的含量,且各个指标在生长季和非生长季变化明显。各个指标受土壤深度变化不明显,但是在土壤层的10-20cm处或者20-30cm处会出现一个累积高峰。
     湿地有机质含量分析表明,有机质在生长季含量较高。土壤总氮、总磷和土壤呼吸强度的测试发现,在植被生长季时,微生物活性较强,土壤总氮和总磷含量较高,但是总氮和总磷含量随土壤深度变化不明显,总氮含量在10-20cm或者20-30cm处相对高些。
     土壤酶活分析表明,土壤蔗糖酶活在植被生长季高于非生长季,土壤过氧化氢酶活、淀粉酶活和纤维素酶活都是非生长季含量略高于生长季酶活,表明这三个酶活受生长季和非生长季影响明显。但是酶活变化随土壤深度变化不是很明显,在土壤层的10-20cm或者20-30cm相对较高。
     土壤微生物量分析表明,土壤微生物量C和土壤微生物量N在植被生长季要明显高于非生长季,土壤微生物量C和土壤微生物量N和有机质的变化呈正相关,且微生物量C和微生物量N含量变化随着土壤深度的变化呈下降趋势。
     通过分析光滩,芦苇和林地各个指标结果分析,可以得出芦苇湿地的各个指标含量在生长季和非生长季都要高于光滩和林地的含量,可能因为芦苇有较庞大的根系组织,林地的含量变化受潮汐和凋落物影响。
" Reduce greenhouse-gas emission,Stop the global warming "has become a hot topic in international community.The way to reduce greenhouse gas emission effectively,and achieve the maximization benefit is also one of the research directions between domestic and foreign. Wetland is an ecosystem which has unique hydrology, soil, vegetation and biological characteristic condition, at the same time it stays at the transitional belt between terrestrial and aquatic ecosystems, so wetlands is known as the" kidney of the earth" because of the great environmental benefits and environmental function in water conservation, climate regulation, purification and other aspects of the environment.
     Take Chongming West Beach and Chongming Dongtan as examples,which are both tidal flat wetlands, to study light beach, reed wetland, woodland soil microbial activity and microbial dynamic changes in growth season among those area,in order to provide research basis for a deeper study of tidal flat wetland carbon sequestration mechanisms of microbiology.
     Chongming West Beach and East Beach both are the Estuary Tidal Mudflat Wetland type, at the same time be effected by the terrestrial ecosystem and marine ecosystem. A large amount of organic matter carried in the river get together in estuary area, form a huge organic matter accumulation library and special nutritional environment, tidal action promotes the organic exchanges between wetlands and rivers, so the estuary and coastal wetland soil carbon biological chemical conversion process becomes more complex. The paper start the research on carbon cycle of wetlands influence factors from three aspects.
     This paper analyses the soil basic pHysicochemical index, and the soil enzyme activity and microbial activity changes in growth season and non growing season to explore the relationship between different depth, salinity, soil enzyme activity.
     The experimental results show that the western part of pHysical and chemical properties, enzyme activities and microbial biomass are higher than Chong Dong's content, and each index in growth season and non growing season changes very much. Each index affected by soil depth is not obvious, but there is a cumulative peak in the soil layer of10~20cm or20~30cm.
     Wetland organic qualitative content analysis shows that, organic matter is higher during the growth season.The test of soil total nitrogen, total pHospHorus and soil respiration intensity finds that microbial activity, soil total nitrogen and total pHospHorus content is higher in vegetation growing season, but the total nitrogen and total pHospHorus content increased with the soil depth does not change obviously, the total nitrogen content is higher in the layer of10~20cm or20~30cm. Soil enzyme activity analysis indicates that soil invertase activity in the vegetation growing season is higher, but soil catalase activity, amylase activity and cellulase activity in non growing season are slightly higher than that in growth season, suggesting that the three enzyme activity is affected by season. But the change of enzyme activity decreases with soil depth is not very clear, in the soil layer of10~20cm or20~30cm is higher.
     Soil microbial biomass analysis shows that, soil microbial biomass C and soil microbial biomass N in vegetation growing season is higher than that of non growing season, there are positively correlation between soil microbial biomass C and soil microbial biomass N and organic matter changes, and microbial biomass C and microbial biomass N content shows a downward trend with the soil depth increases.
     The analysis of each index among optical flat, reed and forest, shows reed wetland in growth season and non growing season are both higher than light beach wetland and woodland wetlands, probably because the reed has a large root tissue, woodland content changes of tidal and litter effect.
引文
[1]宋长春.湿地生态系统碳循环研究进展[J].地理科学.2003,23(05):622-628.
    [2]Verville J H. Response of tundra CH4 and CO2 flux to manipulation of temperature and vegetation[Z]. Biogeochemistry,1998.215-315.
    [3]关蕾,刘平,雷光春.国际重要湿地生态特征描述及其监测指标研究[J].中南林业调查规划.2011,30(02):1-9.
    [4]宋长青,冷疏影.地理学在全球变化研究中的学科地位及重要作用[J].地球科学进展.2000,15(03):318-320.
    [5]胡晓军,徐凤兰.湿地保护与可持续利用.水利科技与经济.2005,11(07).
    [6]Nedwell D B, Taffaelli D G. Advances in ecological research:Estuaries[M]. London:Academic Press,1999.
    [7]梅雪英,张修峰.长江口典型湿地梢被储碳、固碳功能研究——以崇明东滩芦苇带为例.中国生态农业学报.2008,16(02).
    [8]许世远,陈振楼.中国东部潮滩沉积特征与环境功能.云南地理环境研究.1997,9(2):7-10.
    [9]Cermeno P, Dutkiewicz S, Harris R P, et al. The role of nutricline depth in regulating the ocean carbon cycle[J]. Proc Natl Acad Sci U S A.2008,105(51):20344-20349.
    [10]Keller J K. Wetlands and the global carbon cycle:what might the simulated past tell us about the future?[J]. New PHytol.2011,192(4):789-792.
    [11]Mitsch W J. Applying science to conservation and restoration of the world's wetlands[J]. Water Sci Technol.2005,51(8):13-26.
    [12]Bouchard V, Tessier M, Digaire F, et al. Sheep grazing as management tool in western European saltmarshes[J]. C R Biol.2003,326 Suppl 1:S148-S157.
    [13]Rahman R, Plater A J, Nolan P J, et al. Potential health risks from radioactive contamination of saltmarshes in NW England[J]. J Environ Radioact.2011.
    [14]Bridgham SD, Richardson CJ. Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biol Biochem,1992,24:1089-1099.
    [15]Dunfield P, Knowles R, Dumont R, et al. Methane production and consumption in temperate and subarcctic peat soils:response to temperature and pH. Soil Biol Biochem,1993,25:321-326.
    [16]Edwards G C, Dias G M, Thurtell G W, et al. Methane fluxes from a wetland using the flux-gradient technique the measurement of methane flux from a natural wetland pond and adjacent vegetated wetlands using a TDL based flux-gradient technique[J]. Water, Air and Soil Pollution, 2001(1):447-454.
    [17]Kang H, Freeman C. The influence of hydrochemistry on methane emissions from two contrasting northern wetlands[J]. Water, Air and Soil Pollution,2002,141:263-272.
    [18]Larmola T, Jukka A, Jouko S,et al. Floods can cause large interannual differences in lit littoral net ecosystem productivity[J], Limnology and OceanograpHy,2004,49(5):1896-1906.
    [19]张文菊,童成立,吴金水等.典型湿地生态系统碳循环模拟与预测.环境科学.2007,28(9):1905-1911.
    [20]Koch O, Tscherko D. Seasonal and diurnal net methane emissions from organic soils of the Eastern Alps, Austria:effects of soil temperature, water balance, and plant biomass[J]. Arctic, Antarctic, and Alpine Research 2007,39:438-448.
    [21]聂明华,刘敏,侯立军等.长江口潮滩土壤呼吸季节变化及其影响因素.环境科学学报.2001. 21(04).
    [22]马安娜,陆健健.长江口崇西湿地生态系统的二氧化碳交换及潮汐影响.环境科学研究.2011(07).
    [23]Verville J H, Hobbie S E, Chapin F S, et al. Response of tundra CH4 and CO2 flux to manipulation of temperature and vegetation[J]. Biogeochemistry,1998(41):215-235.
    [24]闫芊,陆健健,何文珊.崇明东滩湿地高等植被演替特征.应用生态学报.2007,18(5):1097-1101.
    [25]黄国宏,肖笃宁,陈冠雄等.芦苇湿地温室气体(CH4)排放研究[J].生态学报,2001,21(9):1494-1497.
    [26]Burns S J. Carbon isotopic evidence for coupled sulfate reduction methane oxidation in Amazon Fan sediments. Geochimica et Cosmochimica Acta,1998,62(5):797-804.
    [27]万忠梅,宋长春.小叶章湿地上壤酶活性分布特征及其与活性有机碳表征指标的关系.湿地科学.2008,6(2):249-257.
    [28]杨文燕,宋长春,张金波.沼泽湿地孔隙水中溶解有机碳、氮浓度季节动态及与甲烷排放的关系.环境科学学报.2006,26(10):1745-1750.
    [29]Bergman I, Klarqvist M, Nilsson M. Seasonal variation in rates of methane production from peat of various botanical origins:effects of temperature and substrate quality[J]. FEMS Microbiol Ecol. 2000,33:181-189.
    [30]Juanli Y, Anzhou M, Yaoming L,et al. Diversity of methanotropHs in Zoige wetland soils under both anaerobic and aerobic conditions. Journal of Environmental Sciences,2010,22(8): 1232-1238.
    [31]Torn, M S, Harte, J. Methane consumption by montane soils:Implications for positive and negative feedback with climatic change. Biogeochemistry,1996.32:53-67.
    [32]徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报.2002,39(1):89-96.
    [33]黄靖宇,宋长春,宋艳宇等.湿地垦殖对土壤微生物量及土壤溶解有机碳、氮的影响.环境科学.2008,26(5):1380-1387.
    [34]Wang Z Y, Xin Y Z, Gao D M, et al. Microbial community characteristics in a degraded wetland of the Yellow River Delta. PedospHere,2010,20(4):466-478.
    [35]Clymo R S.Models of peat growth Clymo[Z].1992.43-127.
    [36]Yu Z C. Modelling long-term peatland dynamics. Concepts review and proposed design Clymo[Z]. 20011:45-197.
    [37]Li C S. A process-oriented model of N2O and NO emissions from forest soils:Sensitivity analysis and validation[J].2000:105-4385.
    [38]Parton W J. Dynamics of C, N, P and S in grassland soils:a model[Z].1988:5-109.
    [39]宋璐璐,樊江文,钟华平,王宁.重庆红池坝地区草地群落生物量及物种丰富度沿海拔梯度格局变化[J].草地学报.2010,(02).
    [40]于占源,曾德慧,姜凤岐,赵琼.科尔沁沙质草地生物量对水、氮、磷添加的响应[J]. Journal of Forestry Research2009, (01).
    [41]张洁,姚宇卿,金轲,吕军杰.保护性耕作对坡耕地上壤微生物量碳、氮的影响[J].水土保持学报.2007,(04).
    [42]彭佩钦,张文菊,童成立等.洞庭湖湿地上壤碳、氮、磷及其与土壤物理性状的关系.应用生态学报.2005,10(16).
    [43]王洋,刘景双,窦晶鑫,赵光影.三江平原典型小叶章湿地土壤微生物量碳的动态变化特征. 浙江大学学报.2009,35(6):691-698.
    [44]赵先丽,周广胜,周莉等.盘锦芦苇湿地凋落物土壤微生物量碳研究.农业环境科学学报.2007,26.
    [45]关松荫.土壤酶及其研究法[M].北京:农业出版社.1986:274-300.
    [46]Flemi, R.L. et al. Water content,bulk density, and coarse fragment content measurement in forest soils. Soil Sci.Soc.Am.J.,1910,57(1):261-270.
    [47]Kiss.I. The invertase activity of earthworm casts and soils from anthills. Agrokem Talajtan,1957, 6:65-85.
    [48]Burns RG, Dick RP. Enzymes in the Environment:Ecology, Activity and Applications. New York: Marcel Dekker, Inc.,2001.
    [49]Burns R.G. Enzyme activity in soil:location and a possible role in the microbial ecology.Soil Biol& Biochem,1982,14:423-427.
    [50]Dick RP, et al. Influence of long-term residue management on soil enzyme activity in relation to soilchemical properties of a wheat-fallow system[J].Soil Biology & Biochemistry.1988,6:159 -164.
    [51]周世萍,段昌群,刘守庆.氯氰菊酯、毒死蜱两种农药单独及复合胁迫对上壤淀粉酶的影响.昆明理工大学学报(理工版).2008(08).
    [52]牛世全,李君锋,杨婷婷,达文燕等.甘南玛曲沼泽湿地土壤微生物量、理化因子与土壤酶活的关系.冰川冻土.2010,32(05).
    [53]田幼华,谢辉,吕光辉.艾比湖湿地典型群落土壤酶分布规律初探.干旱区资源与环境.2010,24(09).
    [54]杨文英,邵学新,梁威,吴明.土壤酶活性分布特征及其与活性有机碳组分的关系.湿地科学与管理.2011,7(02).
    [55]张祥霖,石盛莉,潘根兴等.互花米草入侵下福建漳江口红树林湿地土壤生态化学变化.地球科学进展.2008,23(09).
    [56]崔伟,张勇,黄民生.复合垂直流人工湿地脲酶和磷酸酶活性与黑臭河水净化效果.安徽农业科学.2011,39(13).
    [57]黄承才,葛滢,常杰,等.中亚热带东部三种主要木本群落土壤呼吸的研究[J].生态学报.1999,19(3):324-328.
    [58]HOWES B L, DACEY J W H, TEAL J M. Annual carbon mineralization and belowground production of Spartina alterniflora in a New England Salt Marsh[J]. Ecology.1985,66(2):595-605.
    [59]严俊霞,汤亿,李洪建.城市绿地土壤呼吸与土壤温度土壤水分的关系研究[J].干旱区地理.2009, (04).
    [60]王小国,朱波,王艳强,郑循华.不同土地利用方式下土壤呼吸及其温度敏感性[J].生态学报.2007,(05).
    [61]宋长春,杨文燕,徐小锋.沼泽湿地生态系统土壤C02和CH4排放动态及影响因素.环境科学.2004,25(04).
    [62]杨继松,刘景双,孙丽娜.三江平原草甸湿地土壤呼吸和枯落物分解的C02释放.生态学报.2008,28(02).
    [63]杜紫贤,曾宏达,黄向华.城市沿江芦苇湿地上壤呼吸动态及影响因子分析.亚热带资源与环境学报.2010,5(03).
    [64]Bartlett H, Howells O, Eperjesi F. The role of macular pigment assessment in clinical practice:a review[J]. Clin Exp Optom.2010,93(5):300-308.
    [65]Wang S Q,Xu J F. Influence of changing land coverage to carbon circulation:circulation:A case study in the Yellow River Delta. Acta Remote Sens Sin [Z].2011:142-148.
    [66]Cermeno P, Dutkiewicz S, Harris R P, et al. The role of nutricline depth in regulating the ocean carbon cycle[J]. Proc Natl Acad Sci USA.2008,105(51):20344-20349.
    [67]Walter. Modeling modern methane emissions from natural wetlands[Z].2001:D24,34189-34206.
    [68]IPCC. The PHysical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M][Z]. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press.
    [69]Flavel T C, MurpHy D V. Carbon and nitrogen mineralization rates after application of organic amendments to soil[J]. J Environ Qual.2006,35(01):183-193.
    [70]Peltier,Tushing lam. The Science of Climat e Change[M][Z]. Cambridge:Cambridge University Press,1996.
    [71]白军红,邓伟,朱颜明等.霍林河流域湿地土壤碳氮空间分布特征及生态效应[J].应用生态学报.2003,14(9):1494-1498.
    [72]Xiao Hui-lin. Climate Change in Relation to Soil Organic Matter[M]. Soil and Environment Sciences.1999.
    [73]Mullen R W, Thomason W E, Raun W R. Estimated increase in atmospHeric carbon dioxide due to worldwide decrease in soil organic matter. Communications in Soil Science and Plant Analysis, 1999,30:1713-1719.
    [74]鲁如坤.土壤农业化学分析方法[M].中国农业科技出版社,2000:228-235.
    [75]刘存歧,陆健健,李贺鹏.长江口潮滩湿地土壤酶活性的陆向变化以及与环境因子的相关性[J].生态学报.2007,27(09).3663-3669.
    [76]白军红,邓伟,朱颜明等.土壤有机质和总氮在湿地分布的研究—以向海自然保护区为例.地理科学.2002.22(2):232-237.
    [77]Molyneux D E. Rooting pattern and water relations of three pasture grasses growing in drying soil.Oecologia,198358:220-224.
    [78]Knudson L. The secretion of invertase by plant root[J].1920,7:317-329.
    [79]杨炎生,信有诠.中国红壤地区农业综合发展与对策[M].中国农业科技出版社.1995.
    [80]李勇.试论土壤酶活性与土壤肥力.土壤通报.1989,20(4):190-193.
    [81]黄昌勇.土壤学[M].北京:中国农业出版社,2000:192-194.
    [82]杨成德,陈秀蓉,龙瑞军.东祁连山高寒草地牧草返青期土壤酶活性特征[J].草地学报.2010(03).
    [83]刘建华,刘振花,董晓文.红松阔叶混交林不同演替阶段土壤过氧化氢酶活性的研究.防护林科技.2010(04).
    [84]Li CH, Ma BL, Zhang TQ. Soil bulk density effects on soil microbial populations and enzyme activities during the growth of maize planted in large pots under field exposure. Canadian Journal of Soil Science.2002,82:147-154.
    [85]Sun R L, Zhao B Q, Zhu L S, et al. Effects of long-term fertilization on soil enzyme activities and its role in adjusting controlling soil fertility[J]. Plant Nutrition and Fertility Science.2003,9(4):406-410.
    [86]Dick RP, Breakwell DP, Turco RF. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators.SSSA Special Publication. No.49, Madison W I,1996:247-271.
    [87]关松荫.土壤酶及其研究法[M].北京:农业出版社.1986:274-300.
    [88]严昶升主编.土壤肥力研究法.北京:农业出版社.1988,277-279.
    [89]吴凤芝,栾非时,王东凯.大棚黄瓜连作对根系活力及其根际土壤酶活性影响的研究.东北农业大学学报.1996,27(03):255-258.
    [90]廖禧,邱忠平,童菲.周丽萍垃圾降解过程中淀粉酶活性测定条件优化.环境污染与防治.2011,33(02).
    [91]Singh J S, Gupta S R. Plant decomposition and soil respiration in terrest rial ecosystems[J]. Bot Rev.1997,43:449-528.
    [92]黄承才,葛滢,常杰,等.中亚热带东部三种主要木本群落土壤呼吸的研究[J].生态学报.1999,19(3):324-328.
    [93]王立刚,邱建军,李维炯.黄淮海平原大区夏玉米农田上壤呼吸的动态研究[J].土壤肥料.2002,6:13-17.
    [94]J ia B R, Zhou G S, Wang FY, et al. Affecting factors of soilmicroorganism and root resp iration. Chinese Journal of Applied Ecology,2005,16 (8):1547-1552.
    [95]马安娜,陆健健.长江口崇西湿地生态系统的二氧化碳交换及潮汐影响.环境科学研究.2011(07).
    [96]刘绍辉,方精云.上壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报.1997,17(5):469-476.
    [97]YIN Shi xue. A review of soil microbial biomass and the relations to the nutrients circulations[J]. Progress in Soil Science.1993,21(4):1-8.
    [98]WANG Yan, SHEN Qi rong, SHI Rui he, et al. Soil microbial biomass and ecological effects [J]. Journal of Nanjing Agricultural University.1996,19 (4):45-51.
    [99]闫颖,何红波,解宏图等.总有机碳分析仪测定土壤中微生物量方法的改进[Z].理化检验-化学分册,2008,44(3):279-280.
    [100]Barbhuiya A R, Arunachalam A, Pandey H N, et al.Dynam ics of soil microb ial biomass C, N and P in disturbed and undisturbed stands of a tropical wet evergreen fores t [J]. European Journal of Soil Biology.2004,40:113-121.
    [101]唐玉霞,贾树龙,孟春香.土壤微生物生物量氮研究综述.中国生态农业学报.2002.10(2):76-78.
    [102]Bonde A T, Schniirer J,Rosswall T. Microbial biomam as a fraction of potentially mineralizable N in soil from longter field experiments[J].Soil Biochem.1988,20(4):447-452.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700