复合浸出剂浸取石煤中的钒及矿物中钒分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钒是一种具有战略意义的金属。目前,全世界钒的消费在10万吨以上,据预测2020年将接近15万t。钒在地球中少有单独的矿物,石煤是一种储量极为丰富的含钒资源,其矿物构成和钒分布复杂。过去几十年,钠化焙烧-浸出、钙化焙烧-碳酸盐浸出、氧化焙烧-浸出、氧压酸浸等工艺被用于提取其中的钒。钠化焙烧-浸出工艺由于污染严重和金属回收率低,已不符合发展的需要。其它工艺在环保和金属回收率方面虽然有一定的改进,但各有缺点,特别是适应性不广,提取效果波动大。
     石煤提钒的关键环节是浸出,本文采用本课题组自主创新的硫酸+助浸剂X1+氧化剂X2复合浸出剂,针对贵州某地、湖南某地、甘肃某地和四川某地的石煤进行了浸出研究,其中湖南某地石煤氧化矿是原矿的风化产物。各地石煤的成分、物相和形貌分析发现贵州某地石煤含钒相对较低、白云母较多,湖南某地石煤含钙超过5%、原矿中富含有机质,甘肃某地石煤伊利石含量较高、四川某地石煤有机质含量高达32%,并且含钒硅酸盐被有机质包裹。条件实验结果表明:贵州某地的石煤、湖南某地的石煤原矿和氧化矿随酸浓度、X1浓度、浸出温度、浸出时间等因素的强化,钒浸出率提高,在最佳条件下,浸出率都在80%以上。湖南某地的石煤氧化矿和原矿中钒的浸出率随各因素具有相同的变化规律,这表明风化对石煤中含钒物相性质影响不大,氧化矿和原矿可以一起处理,不必分开。甘肃某地的石煤虽然随各主要因素的强化,钒浸出率具有提高的趋势,但在同等条件下其浸出率明显低于贵州某地和湖南某地的石煤,仅为55%左右。四川某地的石煤在一定条件下,钒随各因素强化钒浸出率提高,但当浸出率增加到65%左右,继续强化浸出条件,浸出率几乎不再增加。这些结果表明,硫酸+助浸剂X1+氧化剂X2复合浸出剂浸取石煤中钒具有一定的适应性和波动性。
     本文还创造性地采用沉积岩中分步测量稀有元素的方法研究了各地石煤中钒在各物相中的分布。结果表明各地石煤中在硅酸盐矿物中的钒都在60%以上,吸附态的钒都少于5%,其它物相中的钒因石煤的性质不同有所不同。钒分布分析结果和浸出结果综合表明,虽然石煤中的钒都以存在于硅酸盐中为主,但是含钒硅酸盐性质存在差别,其浸出效果相差较大。硫酸+助浸剂X1+氧化剂X2复合浸出剂浸出效果与石煤中钒的品位、钙的含量和碳的含量没有直接的联系,主要取决于含钒硅酸盐的性质。
Vanadium is a strategic metal. At present, Vanadium consumption around the world exceed 100,000 tons, according to forecast, it will be close to 150,000 t in 2020. Vanadium is a kind of decentralized element without separate minerals in the earth's crust. Stone coal is extremely rich reserves which contain vanadium resources, their mineral composition and distribution of vanadium complex. Over the past few decades Na-roasting-leaching, calcification roasting-carbonate leaching, oxidation roasting-leaching, oxygen pressure acid leaching process used to extract the vanadium. Na-roasting-leaching process due to the high pollution and little metal recovery in recent years has been limited. Other pressures have developed in environmental protection and metal recovery, but have their own shortcomings, especially in adaptability and stability.
     Leaching is considered to be the key link of the extraction vanadium from stone coal. In this paper, The system of sulfuric acid+infusion X1+oxidizer X2 were chosen to leach the vanadium from the stone coal in Guizhou province, Hunan province, Gansu province and Sichuan province, the stone coal from Hunan province contain Oxide Ore and rude ore.
     The analysis of stone coal on composition, phase and morphology showed that vanadium in stone coal from Guizhou is relatively low and muscovite more, calcium in stone coal from Hunan surpass 5% and rude ore rich in organic matter, the stone coal from Gansu involve high content of illite, Content of organic matter in the stone coal from Sichuan Approach 32% and silicate-containing vanadium was wrapped by organic matter. The factors experimental results indicate that the leaching rate of vanadium from Guizhou and Hunan incease along with the acid concentration, X1 concentration, leaching temperature, leaching time and other factors strengthen. In the best conditions, the leaching rate exceed 80%.Vanadium leaching rate of Gansu stone coal have the same trend, but in the same conditions, the leaching rate is only about 55% and significantly lower than Guizhou and Hunan stone coal.The leaching rate of Sichuan stone coal under 65% increas when main factors strengthened, if over 65%, There is no way to make it improve in the system of sulfuric acid+infusion X1+oxidizer X2. The results above proove that effects of leaching in the systerm are unstable.
     In order to better understand the distribution of vanadium in stone coal, the method of fractional measurement of rare elements used in sedimentary was frist applied to study the distribution of vanadium in stone coal. The results showed that vanadium in silicate minerals are more than 60%, vanadium in the adsorption less than 5%, and vanadium in other material phase is different due to the different property of stone coal. The results of Vanadium distribution analysis and the leaching certify that vanadium in stone coal occurs mainly in silicate, but the silicates have deiffrence property. The leaching effect of the composite leaching systerm don't depend on grade of vanadium、calcium and carbon in stone coal, but also the property of silicate-breaing vanadium.
引文
[1]R.R.Moskalyk., A.M.Alfantazi., Processing of vanadium:a review[J]. Minerals Engineering.2003(16): 793-805
    [2]王艳萍,史登峰.钒钛资源供需形势及承德地区的开发利用前景分析[J].矿业快报.2007,(463)11:1-3
    [3]刘伟.石煤提钒工艺浅析[J],工程设计与研究.1993,79:46-48
    [3]vine.J.D., Tourelot.E.B., Geochemical investigation of some black shales and associated rocks[J]. U.S. Geol.Surv.Bull.1969,1314-A
    [4]George.N,Breit., Richard.B.wanty.,Vanadium accumulation in carbonaceous rocks:A review of geoch-emical controls during deposition and diagenesis[J].Chemical Geology.1991(91):83-97
    [5]Wanty.R.B.,Geochemistry of Vanadium in an Epigenetic S and stone-Hosted Vanadium-Uranium Deposit, Henry Basin Utah.Ph.D.thesis, Colorado School of Mines, Golden,Colo.1986
    [6]Wehrli, B. and Stumm, W.. Vanadyl in natural waters:Adsorption and hydrolysis promote oxygenation[J]. Geochim. Cosmochim. Acta,1989.53:69-77
    [7]Perrin, D.D.. Stability Constants of Metal Ion Complexes, Part B. Organic Ligands. IUPAC Chem. Data Ser.,22. Pergamon Press[J], New York, N.Y.,1979.1264
    [8]Wehrli,B.. Vanadium in der Hydrosphare; Oberflachenkomplexe and Oxidationskinetik. Ph.D. Dissertati-on,Eidgenossischen Technischen Hochschule, Zurich.1987
    [9]Szalay, A. and Szilagyi, M.. The association of vanadium with humic acids[J]. Cosmochim. Acta,1967, 31:1-6
    [10]Goodman, B.A. and Cheshire,M.V.. The bonding of vanadium in complexes with humic acid:an electron paramagnetic resonance study[J]. Geochim. Cosmochim.Acta,1975,39:1711-1713
    [11]Wilson, S.A. and Weber, J.H.. An EPR study of the reduction of vanadium(V) to vanadium(IV) by fulvic acid[J]. Chem. Geol.,1979,29:345-354
    [12]Sugimura, Y., Suzuki,Y. and Miyake, Y. Chemical forms of minor metallic elements in the ocean. J. Oceanogr[J]. Soc. Jpn.1978.34:93-96
    [13]Orivini, E. and Lodola, L. Determination of the chemical forms of dissolved vanadium in freshwater as determined by 48V radiotracer experiments and neutron activation analysis. Sci[J]. Total Environ.,1979. 13:195-207
    [14]Amdurer, M., Adler,D. and Santschi, P.H. Studies of chemical forms of trace elements in sea water using radiotracers. In:C.S. Wong, E. Boyle,K.W. Bruland, J.D.Burton and E.D.Goldberg(Editors), Trace Metals in Sea Water. Plenum Press, New York, N.Y.1983,.537-562
    [15]Glikson, M., Chappell, B.W., Freeman, R.S. and Webber, E. Trace elements in oil shales, their source and organic association with particular reference to Australian deposits[J]. Chem. Geol.1985,53:155-174.
    [17]Honeyman,B.D.,Cation and Anion Adsorption at the Oxide/Solution Interface in Systerms Containing Binary Mixtures of Adsorbents:AN Invvestigation of the Concept of Adsorptive Additivity.Ph.Dthesis St-anford University,Stanford,Calif.1984
    [18]Shiller,A.M.and Boyle,E.A.,1987.Dissolved vanadium inrivers and estuaries[J]. Earth Planet.Sci. lett, 1987,86:214-224
    [19]Heckel,H.D.,Origin of Phosphatic black shale facies in Pennsylvanian cyclothems of mid-continent No-rth America[J].Am.Assoc.Pet.Geol.Bull.,1977,61:1045-1068.
    [20]段炼,田庆华,郭学益.我国钒资源的生产及应用研究进展[J].湖南有色金属,2006,(22)6:17-20
    [21]顾坚.石煤的综合利用和石煤提钒[J].能源政策研究通讯,1989(3):32-36
    [22]《有色金属提取冶金手册》编辑委员会.有色金属提取冶金手册-稀有高熔点金属(下)[M],北京:冶金工业出版社,1999
    [23]蔡晋强,巴陵.石煤提钒的几种新工艺[J].矿产保护与利用.1993,5:30-33
    [24]李旻廷,李存兄,邓志敢等.加压酸浸法回收黑色页岩中的钒[J].中国有色金属学报.2008,18(s1):s74-s78
    [25]范德廉,张涛,叶杰等.中国黑色岩系及其矿床[M].北京:科学出版社,2004
    [26]Pettijohn F J.,sedimentary rocks[M]. New York:Happer International Edition,1975
    [27]王真乐,浙西石煤的矿物组成[J],煤田地质与勘探.1980,3:5-9
    [28]张爱云,翁成敏.黑色页岩型钒矿提钒的主导矿物[J].地球化学-中国地质大学报,1989,14(4):391-397
    [29]许国镇.石煤中钒的价态及物质组成对提钒工艺的指导作用[J].煤炭加工与综合利用,1989(5):5~8
    [30]J.D.MEUNIER.THE COMPOSITION AND ORIGIN OF VANADIUM-RICH CLAY MINERALS IN COLORADO PLATEAU JURASSIC SANDSTONES[J].Clays and Clay Minerals,1994,(42)4:391-401
    [31]张爱云.海相黑色页岩建造地球化学与成矿意义[M].北京:科学出版社,1987.12:240
    [32]DONALD R.PEACOR, RAYMOND M. COVENEY, JR, GENGMEI ZHAO. AUTHIGENIC ILLITE AND ORGANIC MATTER:THE PRINCIPAL HOSTS OF VANADIUM IN THE MECCA QUARRY SHALE AT VELPEN, INDIANA[J].Clays and Clay Minrals,2000,(48)3:311-316
    [33]Breit, G.N., Wanty, R.B., and Tuttle, M.L. Geochemical Control on the Abundance of Vanadium in Black Shales and Other Carbonaceous Rocks, R.I. Grauch and H.L.O. Huyck, eds. U.S. Geological Survey Circular 1058, Washington, D.C.,1989,6-8
    [34]Desborough, G.A., Hatch, J.R., and Leventhal, J.S. Geochemical Comparison of the Upper Pennsylvani-an Stark Shale Member of the Dennis Limestone, East Central Kansas, with the Middle Pennsylvanian Mecca Quarry Shale Member of the Carbondale Formation Illinois and of the Linton Formation in India-na, R.I. Grauch and H.L.O.Huyck, eds., U.S. Geological Survey Circular 1058, Washington,D.C.,1989, 12-30
    [35]CAROLINE L. PEACOCK and DAVID M. SHERMAN. Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12:A surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy[J]. Geochimica et Cosmochimica Acta,2004,(68) 8:1723-1733
    [36]鲍超.石煤发电烟尘沸腾钠化焙烧提钒过程的分析[J].矿冶工程,1990,10(9):40-44
    [37]蔡世民,彭声谦,侯兰杰.四川广旺地区石煤资源开发利用研究[J],矿产综合利用,1998(4):44-47
    [38]蔡进功,著.泥质沉积物和泥岩中有机黏土复合体.北京;科学出版社,2004
    [39]A. U. GEHR1NG, V. FRY, J. LUSTER, AND GARRISON SPOSITO. THE CHEMICAL FORM OF VANADIUM (Ⅳ) IN KAOLINITE[J] Clays and Clay Minerals,1993,(41) 6:662-167
    [40]许国镇,陈波珍,韩晓梅等.黄山石煤中钒价态及提提取技术研究[J].有色金属(冶炼部分).1994(1):32-35,41
    [41]许国镇.石煤中钒的价态及物质组成对提钒工艺的指导作用[J].煤炭加工与综合利用,1989(5):5~8
    [42]陆芝华,周邦娜,余仲兴等.石煤氧化焙烧-稀碱溶液浸出提钒工艺研究[J].稀有金属,1994,18(5):321-327
    [43]刘世森.石煤提钒工艺评述[J],工程设计与研究.1995(60):12-16
    [44]胡杨甲,张一敏,刘涛,等.复合添加剂对石煤提钒焙烧过程影响的研究[J].金属矿山.2009,1:167-168.
    [45]邓庆云,刘松英.石煤钠化焙烧、酸浸、离子交换提钒新工艺的实验研究[J].稀有金属与硬质合金.1993,115:27-33
    [46]沈恩喜.上饶八都石煤直接酸浸提钒工艺研究[J].江西煤炭科技.1997(3):57-59
    [47]许国镇,陈波珍,李京,等.石煤钠盐焙烧气氛对钒转化的研究[J].现代地质,1990,4(4):97-112
    [48]林海玲,范必威,庾化龙,等.石煤中影响钒转浸率的主要因素研究[J].成都理工学院学报.1999,26(3):317-320
    [49]符迈群,石煤提钒[J].钒钛.1992(5):12-14,8
    [50]蒋馥华,张萍,申照全.石煤中提钒的无污染新工艺[J].化学世界.1992(12):538-540
    [51]黄克桃,王兴桐.氧化钙化焙烧法应用于从钒云母矿中提钒的研究[J],武汉钢铁学院学报.1992,15(4):335-339
    [52]米玺学,兰玮锋.从石煤钒矿石中提取五氧化二钒工艺综述[J].湿法冶金,2008,(27)4:208-210
    [53]戴文灿,朱柒金,陈庆邦,等.石煤提钒综合利用新工艺的研究[J].有色冶炼(选矿部分),2000(3):15-17,14
    [54]陈庆根.石煤钒矿提钒工艺技术的研究进展[J].矿产综合利用.2009(2)30-34
    [55]宾智勇,钒矿石无盐焙烧提取五氧化二钒试验[J].钢铁钒钛,2006.(27)1:21-26
    [56]邹晓勇,欧阳玉祝,彭清静,等.含钒石煤无盐焙烧酸浸生产五氧化二钒工艺的研究[J].化学世界.2001,3:117-119,141
    [50]谭爱华.某石煤钒矿空白焙烧~碱浸提钒工艺研究[J].湖南有色金属.2008,(24)1:24-26,57
    [57]何东升,冯其明,张国范,等.减法从石煤中浸出钒试验研究[J].有色金属(冶炼部分).2007(4):15-17
    [58]何东升,冯其明,张国范,等.含钒石煤的氧化焙烧机理[J].中国有色金属学报.2009,(19)1:195-200
    [59]A.M.Amer. HydXomeetalluXgical processing of Egyptian black shale of the Quseir-Sefaga region[J]. hyderometallurgy.1994(36)95-107
    [60]Minting Li ChangWei,GangFan etc.Extraction of vanadium from black shale using pressure acid leac-hing[J].Hydrometallurgy.2009(98):308-313.
    [61]向小艳,王明玉,肖连生,等.石煤酸浸提钒工艺研究[J].稀有金属与硬质金.2007,(35)3:9-13
    [62]郑祥明,田学达,张小云,等.湿法提取石煤中钒的新工艺研究[J].湘潭大学自然科学学报,2003,25(1):13-45,56
    [63]李晓健.酸浸-萃取工艺在石煤提钒工业中的设计与应用[J].湖南有色金属冶金,2000,(16)3:21-23
    [64]鲁兆伶.用酸法从石煤中提取五氧化二钒的试验研究与工业实践[J],湿法冶金,2002,(21)4:175-183.
    [65]巫锡勇,朱宝龙,罗建.黑色岩层的风化过程及其热力学分析[M].北京:科学出版社.2007
    [66]吴惠玲.常压下从含钒石煤中浸取钒的新技术研究(硕士论文):昆明理工大学,2008.
    [67]刘建朋,张一敏,陈铁军,等.石煤提钒水浸过程的动力学研究.有色金属(选矿部分),2008,4:15-18,24.
    [68]何东升,冯其明,张国范等.石煤钠化焙烧料酸浸动力学[J].北京科技大学学报.2008,(30)9:977-980
    [69]张小云,田学达.石煤提钒湿法工艺的动力学研究[J].湘潭大学自然科学学报,2005,(27)2:104-107.
    [70]范必威,林海玲.方山口石煤提钒焙烧工艺研究[J],湿法冶金,2001,20(2):79-83.
    [71]蔡世民,彭声谦,侯兰杰.四川广旺地区石煤资源开发利用研究[J],矿产综合利用.1998(4):44-47.
    [72]H.Hecht.,M.Kolling.,Investigation of pyrite-weathering processes in the vadose zone using optical oxygen sensors[J], Environmental Geology,2002,(42):800-809
    [73]Lewan.M.D.,Factors controlling the proportionality of vanadium and nickel;rations in crude oils[J]. Geochim.cosmochim. Acta,1984,48:2231-2238
    [74]邓志敢,李存兄,魏昶,等.含钒石煤氧压酸浸提钒新工艺研究[J].金属矿山.2008,7:30-33,161
    [75]Trefry J,H. and Metz S. Role of hydrothermal precipitates in the geochemical cycling of vanadium [J]. Nature.1989,342 (6249),531-533.
    [76]Elderfield H. and Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Ann. Rev[J]. Earth Planet. Sci.1996(24):191-224.
    [77]CAROLINE L. PEACOCK., DAVID M. SHERMAN.Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12:A surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy[J]. Geochimica et Cosmochimica Acta,2004,(68) 8:1723-1733,
    [78]许国镇,司徒安力,陈农等.湖北杨家堡石煤中钒的价态研究.地球化学,1984(4):379-389
    [79]E.Grosjean,. P,Adam., J Connan,.etc. Effects of weathering on nickel and vanadyl porphyrins of a Lower Toarcian shale of the Paris basin[J] Geochimica et Cosmochimica Acta,2004,68(4):789-804
    [80]靳晓珠,含钒碳质页岩中钒的物相分析[J].分析试验室,200,19(3):50-52
    [81]A.Tessier,P.G.C.Campball, and M.Bisson. Sequenital Extraction Procedure for the Speciation of Particulate Trace Metals[J].Analytical chemistry,1979,51(7):844-855
    [82]A.Tessier,P.G.C.Campball, and M.Bisson. Sequenital Extraction Procedure for the Speciation of Particulate Trace Metals [J].Analytical chemistry,1979,51(7):844-855
    [83]Carolyn Kheboian and Christopher F.Bauer.Accuracy of Selective Extraction Procedures for Metal Speciation in Model Aquatic Sediments[J]. Analytical chemistry,1987,59 (10):1417-1423
    [84]Francols Rapin.andre Tessier,etal.Potential Artifacts In the Determination of Metal Partitioning In Sediments by a Sequential Extraction Procdedre[J].Environ.Sci.Technol,1986,20(8):836-840.
    [85]Justyna Poledniok, franciszek Buhl. Speciation of vanadium in soil[J].Talanta,2003,59:1-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700