湘中桃江锰矿废矿堆环境地球化学特征及其环境效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属矿床开采过程中排放出来的废石,因富含黄铁矿等多种金属硫化物矿物,在地表风化过程中氧化分解,产生酸性矿排水、释放重金属元素等而对环境产生严重影响。而随着人口的急剧增加和经济的高速发展,人类对矿产资源需求不断增加,(金属)矿山固体废弃物的环境污染问题也越来越突出,其有关的环境地球化学研究成为当前研究的热点之一。
     本文以湖南省桃江锰矿的响涛源废矿堆为研究对象,通过采集废矿堆废石、矿区周围土壤、水体等样品,借助稀土元素、微量和重金属元素地球化学分析资料,研究了元素在不同样品中的地球化学征。同时,运用质量平衡原理探讨了废矿堆废石中元素的富集和迁移转换机制。结合对矿区环境质量的评价,判定了废矿堆废石风化过程中元素的活动性与矿区环境质量的关系,得出了如下几点主要成果和认识:
     (1)野外调查和室内实验分析表明,组成废矿堆的废石主要是作为赋矿围岩的黑色页岩,次有少量的碳酸锰矿石。这些废石在表生条件下,正在遭受风化分解。
     (2)剖面废石与轻度风化废石稀土元素标准化后的分配模式都表现为相似的右倾型曲线,与矿区围岩也大致相同;而微量元素组成上,Sc、Ti、Cr、Ga、Ge、Rb、Y、Cs、Hf、Ta、Nb、Th、REE等元素在两类废石中的平均含量相当;而V、Mn、Co、Ni、Cu、Zn、Ba、Pb、U等重金属元素含量变化较大,且剖面废石中的平均含量大于轻度风化废石,表明了废石风化的时间越长,废石中重金属元素的含量相对富集。
     (3)风化锰矿石的稀土元素、微量元素和重金属元素地球化学特征与剖面废石、轻度风化废石都有明显区别。
     (4)剖面废石和轻度风化废石的质量平衡计算显示:剖面中都表现为迁出的元素有Sc、V、Cr,以V的迁移强度最为明显。剖面的第一层(0~60cm处)和第三层(70~95cm处)元素迁出较明显,而下两层(95cm以下)为显著富集层;轻度风化废石中,Sc、V、Cr、Co、Ni、Cu、Zn、Pb、Th、U、Cd等重金属发生了较为明显的迁出,且以V、Zn、U、Cd的迁移程度最强。
     (5)矿区土壤距废矿堆越近,土壤中重金属含量越高。运用地质累积指数和潜在生态危害指数法对矿区土壤重金属污染的评价结果都显示:废矿堆下垫土综合污染程度最高,Mn、Co、Cu、Pb、Cd是污染强度最大和生态风险最高的元素。
     (6)矿区地表水中以矿排水的综合污染最为明显,水体中Fe、Mn、Ni、Tl超过国家地表Ⅱ类水质标准;而地下水尚未受到废矿堆的影响。
     (7)从废矿堆废石中微量重金属元素的总量来看,废矿堆对周围环境已具有潜在的影响。废石中活动性较强的元素,如Co、Ni、Cu、Zn、Cd等在矿区土壤和水体中发生明显富集,有些元素已经构成不同程度的污染。随着废石的风化以及环境条件的改变等,这种影响程度还将日益加剧;另一方面,由于大部分微量重金属未从剖面废石中释放出来,因而对生态环境的影响主要局限在废矿堆周围。
Waste rocks produced by mining, are always enriched with pyrite and other sulfides. The oxidation and decomposing of the sulfides may cause the production of acid mine drainage (AMD), and the dispersion of heavy metals. That may take impacts to the environments. With the rapid growth of population and economic development, mineral resources are of great necessarity for human beings. The pollution problems of solid wastes produced by mining are becoming more and more serious, and the relative environmental geochemistry study is being of a hot talk in recently years.
     Based on literatures and field investigation, the Xiangtaoyuan waste dumps at the Taojiang Mn-ore deposit in central Hunan was selected for this study. The waste rocks of different weathered degrees, the relative soils, and the waters distributed throughout the ming area were sampled during field work in July 2005. Major elements, heavy metals, trace elements and rare-earth elements (REE) of all the samples were analyzed in laboratory using ICP-MS technique. The results were geochemical studied using mass balance principles and other methods, and then the heavy metal contaminations developed on soils and surface waters were evoluted based on understanding the mobility and transformation of all the elements during waste rocks weathering. The quality of soils and surface water of the mining area was assessed based on data of ICP-MS analyzing. The possible relation of heavy metal contamination of soils and surface water to the waste rock pile was investigated. Based on our above investigation, research and discussion, we can offer some information about the study as follows:
     (1) Observing in the field and the analytic results indicate that: the black shales and rhodochrosite ores make up the main materials of the waste rock dump. The waste rocks were weathering and decomposing during supergene geochemical condition.
     (2) Waste rocks from selected profile and light weathered waste rocks show similar normalized REE pattern of right-inclined curve as same as wall-rock. The contents of Sc, Ti, Cr, Ga, Ge, Rb, Y, Cs, Hf, Ta, Nb, Th, and REE were considerable in the waste rocks. However, concentrations of V, Mn, Co, Ni, Cu, Zn, Ba, Pb, and U vary in a large range. The higher averaging contents in the waste rocks from selected profile, it indicated that the longer weathering period, the higher contents of heavy metals in the waste rocks.
     (3) The weathered rhodochrosite ores were differing from other waste rocks in the geochemistry of REE, trace elements and heavy metals.
     (4) Based on the mass-balance calculation of waste rocks, we conclude that: Sc, V, and Cr were released from waste rocks from selected profile, especially for V. In the profile, most of elements were more activity in the first and third layers but enriched in the downmost two layers. Heavy metals, such as Sc, V, Cr, Co, Ni, Cu, Zn, Pb, Th, U, and Cd were released distinctly in the light waste rocks, and V, Zn, U, Cd for the most.
     (5) The concentration of heavy metals in the soils increase gradually by getting closer to the mining area. Using the Igeo index and potential ecological risk index assess heavy metals contamination. Both of the results suggested that soils under waste dumps were suffered the most serious contamination, and Mn, Co, Cu, Pb, and Cd show the most heavy contamination and ecological risk.
     (6) The mine drainage samples show the most obvious contamination, Fe, Mn, Ni, T1 exceed the NationalⅡClass Groundwater Standard, and the underground water was uncontaminated.
     (7) According to the total contents of heavy metals containing in the waste rocks, we can conclude that waste rock pile have imposed potential harm on surrounding environment. Co, Ni, Cu, Zn, Cd and other heavy metals showing more mobility in the waste rocks, are apparently enriched in soils and water of the mining area. By the change of environmental condition and increasing effect of waste rocks weathering, all above mentioned contamination will become stronger. On the other hand, the negative impact on the ecosystem are mainly surrounding the waste dump, due to most of the heavy metal were not released from waste rocks from selected profile.
引文
[1] 常勤明,顾颖顶湖南桃江奥陶纪锰矿某矿段物质组成研究[J].安徽地质1998,8(4):74~77
    [2] 陈怀满 土壤-植物系统中的重金属污染[M].北京:科学出版社,1996.
    [3] 陈天虎,矿山尾矿矿物学研究进展[J].安徽地质2001,11(1):64~70
    [4] 陈天虎,冯军会,徐晓春等国外尾矿酸性排水和重金属淋滤作用研究进展[J].环境污染治理技术与设备 2001,2(2):41~46
    [5] 陈骏,季峻,仇纲.陕西洛川黄土化学风化程度的地球化学研究[J].中国科学D辑1997,27(6):531~536
    [6] 蔡美芳,党志,文震 矿区周围土壤中重金属危害性评估研究[J].生态环境2004,13(1):6~8
    [7] 崔龙鹏,白建峰,史永红等采矿活动对煤矿区土壤中重金属污染研究[J].土壤学报 2004,41(6):896~904
    [8] 党志,刘丛强,尚爱安矿区土壤中重金属活动性评估方法的研究进展[J].地球科学进展 2001,16(1):86~92
    [9] 傅群和.桃江式锰矿床地质特征及其地球化学特征[J].湖南地质2001,20(1):15~20
    [10] 范德廉,张焘,叶杰.中国的黑色岩系及其有关矿床[M].北京,科学出版社,2004
    [11] 付善明,周永章,高全洲 等 金属硫化物矿山环境地球化学研究述评[J].地球环境2006,34(3):23~29
    [12] 蒋德和,杨振强,赵时久.湘中地区中奥陶统的稀土元素地球化学[J].沉积学报1994,12(1):107~111
    [13] 蒋德和,杨振强,赵时久.湘中地区奥陶统“桃江式”锰矿的成矿作用研究[J].沉积学报 1995,13(1):59~68
    [14] 郭朝晖,朱永官 典型矿冶周边地区土壤重金属污染及有效性含量[J].生态环境 2004,13(4):553~555
    [15] 季宏兵,欧阳自远,王世杰,等.白云岩风化剖面的元素地球化学特征及其对上陆壳平均化学组成的意义—以黔北新蒲剖面为例[J].中国科学D辑1999,29(6):504~513
    [16] 匡清国,赵银海,吴永胜,等构造对“桃江式”锰矿空间分布的影响及其找矿意义探讨[J].地质与勘探 2003,39(1):32~35
    [17] 刘英俊,曹励明.元素地球化学[M].北京:科学出版社,1984.1~548
    [18] 李芬南 论桃江响涛源锰矿的褶皱构造[J].中国锰业 1994,12(2):3~10
    [19] 卢龙,王汝成,薛纪越.黄铁矿风化过程中元素的活性及对环境的影响[J].地质论评 2001,47(1):96~101
    [20] 马振东,闭向阳,张凌,等.长江中游鄂东南铜矿集区铜等重金属元素水环境地球化学特征[J],地球化学2003,32(1):55~61
    [21] 毛兴华 常用水质评价方法的选择[J].水科学与工程技术 2006,(1):21~23
    [22] 倪师军,张成江,滕彦国,等.矿业环境影响的地球化学研究[J].矿物岩石2001,21(3),190~193
    [23] 潘佑民,杨国治湖南土壤背景值及研究[M].北京,中国环境科学出版社,1988.
    [24] 潘汉军,侯景儒,张廷勋.湘中桃江式锰矿含锰岩系的定量研究及找矿意义[J].地质找矿论丛,1995,10(2):16~27
    [25] 彭渤,吴甫成,肖美莲,等.黑色页岩的资源功能和环境效应[J].矿物岩石地球化学通报 2004,24(2):153~158
    [26] 饶雪峰,范德廉.湘中桃江中奥陶统黑色岩系岩石地球化学及成因[J].岩石学报 1990(3):79~86
    [27] 宋照亮,湖南下寒武黑色页岩风化的环境地球化学初步研究[D].北京:中国科学院,2003
    [28] 宋照亮,彭渤,刘丛强 黑色页岩风化过程中元素的活动性及参照系的选取初探——以湖南省麻田、桃花江剖面为例[J].地质科技情报 2004,23(3):24~29
    [29] 宋书巧,周永章,周兴,等.土壤砷污染特点与植物修复探讨[J].热带地理2004,24(2):6~9
    [30] 谭凯旋,王岳军,郭锋,等.湘西金矿尾矿一水相互作用环境地球化学效应[J].矿物学报 2001,21(1):53-58
    [31] 滕彦国,庹先国,倪师军应用地质累积指数评价攀枝花地区土壤重金属污染[J].重庆环境科学2002,22(4):25~31
    [32] 武汉地质学院地球化学教研室.地球化学[M].北京:地质出版社,1979.120-188.
    [33] 王振刚,何海燕,严于伦.石门雄黄矿地区居民砷暴露研究[J].卫生研究 1999,28(1):6~8
    [34] 王一先,白正华 矿山尾砂表生地球化学过程实验研究[J].矿物学报2003,23(1):51~56
    [35] 吴朝东,储著银.黑色页岩微量元素形态分析及地质意义[J].矿物岩石地球化学通报 2000,20(1):14~20
    [36] 吴攀,刘丛强,杨元根,等.矿山环境中(重)金属的释放迁移地球化学及其环境 效应[J].矿物学报2001,21(2):213~218
    [37] 巫锡勇,贺玉龙,魏有仪黑色岩层的风化特征研究[J].地质地球化学2001,29(2):17~23
    [38] 吴永胜 湘中中奥陶式优质锰矿主要地质特征[J].湖北地矿 2001,15(4):32~44
    [39] 吴攀,刘丛强,张国平,等.黔西北炼锌地区河流重金属污染特征[J].农业环境保护 2002,21(5):443~446
    [40] 吴永胜,曹景良 湘中中奥陶世优质锰矿地球化学特征[J].湖南地质2003,22(2):101~106
    [41] 肖唐付,洪业汤,郑宝山,等.黔西南Au-As-Hg-T1矿化区毒害金属元素的水地球化学[J].地球化学2000,29(6):571~577
    [42] 肖启云,李胜荣 湘黔下寒武统矿化黑色岩系中元素的表生迁移和环境效应[J].海淀走读大学学报,2002,59(3):44~52
    [43] 杨元根,刘丛强,张国平等.铅锌矿山开发导致的重金属在环境介质中的积累[J].矿物岩石地球化学通报 2003,22(4):305~309
    [44] 杨大欢,李方林遵义铜锣井锰矿区土壤锰等元素的环境地球化学特征[J].贵州地质 2005,22(2):117~124
    [45] 叶玉瑶,张虹鸥,谈树成个旧城区土壤中重金属潜在生态危害评价[J].热带地理 2004,24(1):14~17
    [46] 曾孟君 桃江式锰矿地质特征及成矿地质条件[J].地质与勘探 1992,(8):13~18
    [47] 祝寿泉 桃江式碳酸锰矿床成因探讨[J].地质找矿论丛 1992,7(3):83~90
    [48] 周永章,涂光炽,E.H.Chown等.热液围岩蚀变过程中数学不变量的寻找及元素迁移的定量估计[J].科学通报 1994,39(11):1026-1028
    [49] 祝寿泉.桃江式锰矿的热水沉积特征[J].地质论评1996,42(5):397~404
    [50] 张立城 水环境化学元素[M].北京,中国环境科学出版社,1996
    [51] 张宝贵,张忠,张兴茂,等贵州兴仁滥木厂锭矿床环境地球化学研究[J].贵州地质 1997,14(1):71~76
    [52] 张辉,马东升.长江(南京段)现代沉积物中重金属的分布特征及其形态研究[J].环境化学 1997.16(5):429~434
    [53] 朱恺军,姚国龙,黄金水桃江锰矿锰帽形成的地球化学过程[J],地质找矿论丛1998,13,(3):1~8
    [54] 张忠,陈国丽,张宝贵,等滥木厂铊矿床及其环境地球化学研究[J].中国科学D辑 1999,29(5):433~442
    [55] 张忠诚,张忠玺,张荣广.锰与人体健康[J].微量元素与健康研究2003,20(2):59~60
    [56] 张慧智,刘云国,黄宝荣 等锰矿尾渣污染土壤上植物受重金属污染状况调查[J].生态学杂志 2004,23(1):111~113
    [57] 张国平,刘丛强,吴攀,等贵州万山汞矿尾矿堆及地表水的环境地球化学特征[J].矿物学报 2004,24(3):231~238
    [58] 周建民,党志,司徒粤,等.大宝山矿区周围土壤重金属污染分布特征研究[J].农业环境科学学报 2004,23(6):1172~1176
    [59] 张鑫,周涛发,袁峰,等.铜陵矿区土壤中镉存在形态及生物有效性[J].生态环境2004,13(4):572~574
    [60] 张鑫,周涛发,袁峰,等.铜陵矿区水系沉积物中重金属污染及潜在生态危害评价[J].环境化学2005,24(1):106~107
    [61] 赵沁娜,徐启新,杨凯潜在生态危害指数法在典型污染行业土壤污染评价中的应用[J].华东师范大学学报(自然科学版)2005,(1):111~116
    [62] 周永章,宋书巧,杨志军,等.河流沿岸土壤对上游矿山及矿山开发的环境地球化学响应[J].地质通报 2005,24(10-11):945~951
    [63] 朱继保,陈繁荣,卢龙等 凡口Pb-Zn尾矿中重金属的表生地球化学行为及其对矿山环境修复的启示[J].环境科学学报 2005,25(3):414~413
    [64] 张晓军,胡明安 大冶铁山地区河流水体及水系沉积物中重金属元素分布特征[J].地质科技情报 2006,25(2):89~92
    [65] Bhatia, M. R. Rare earth elements geochemistry of Australian Paleozoic grayrocks and mudrocks: Provenance and tectonic control[J]. Sed. Gol. 1985, 45(1/2): 97~113
    [66] Brimhall G, Dietrich W E. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain inmetasomatic hydrochemical systems: Results on weathering and pedogenesis[J]. Geochim Cosmochim Acta, 1987, 51: 567~587
    [67] Brimhatl G. H, Lewis C. J, Ague J. J, et al. Metal enrichment in bauxites by deposition of chemically mature aeolian dust[J]. Nature, 1988, 333: 819~824
    [68] Braun J J, PagelM, Muller J P, et al. Ceriumanomalies in lateritic profiles[J]. Geochemi. Cosmichi. Acta, 1990, 54: 781~795
    [69] Blowes D W, Jambor J L. The pore-water geochemistry and the mineralogy of the vadose zone of sulfide tailings, Waite Amulet, Quebec, Canada[J]. Appl. Geochem. 1990, 5: 327~346
    [70] Broshears R E, Runkel R L and Kimball B A, et al.Reactive solute transport in an acidic stream: Experimental pH increase and simulation of controls on pH, aluminum, and iron. Environ [J].Sci. Technol.1996, 30:3016—3024
    [71] Berger A C, Bethke C M, Krumhansl J L. A process model of natural attenuation in drainage from a historic mining district [J].Apply Geochemistry, 2000,15: 655-666.
    [72] Dalai T.K, Singh S.K et al Dissolved rhenium in the Yamuna River system and the Ganga in the Himalaya: Role of black shale weathering on the budgets of Re, Os, and U in RIVERS and CO_2 in the atmosphere [J]. Geochimica et Cosmoch.Acta 2002, 66(1):29—43
    [73] Edwards K.J., Bond RL. Druschel GK.et al.Geochemical and biological aspects of sulfide mineral dissolution: lessons from Iron Mountain, California [J].Chemical Geology 2000,169:383—397.
    [74] Forstner U, Muller G Concentrations of heavy metals and polycyclic Aromatic hycarbons in river sediments: geochemical background man's influence and environmental impact [J]. Geojournal, 1981, (5): 417
    [75] Hochella Jr M F and White A F. Mineral-water interface geochemistry: An overview [J].Reviews in Mineralogy, 1990, 23:1 — 16
    [76] Hodson M E. Experimental evidence for mobility of Zr and other trace elements in soils[J]. Geochim.Cosmochim.Acta 2002, 66(5): 819—828.
    [77] Jung MC, Thornton I. Heavy metal contamination of soils and plants in the vicinity of a lead zinc mine, Korea. Appl Geochem. 1996, (11): 53—59
    [78] Jennings S R, Dollhopf D J and Inskeep W P. Acid production from sulfide minerals using hydrogen peroxide weathering [J].Appl.Geochem.,2000, 15: 235—243
    [79] Johnson R H, Blowes D W, Robertson W D. et al. The hydrogeochemistry of the Nickel Rim mine tailing impoundment, Sudbury, Ontario, Canada [J].Comtam. Hydrol., 2000, 41:49—80
    [80] John E. G, James G. C, David L. F Environmental geochemistry of abandoned mercury mines in West-Central Nevada, USA [J]. Applied Geochemistry 17 2002, 17:1069—1079
    [81] Jaffe L.A, Peucker-Ehrenbrink B, Petsch S.T Mobility of rhenium ,platinum group elements and organic carbon during balck shale weathering[J].Earth and Planetary Science Letters,2002, 198 (3-4):339—353
    [82] Lars Hakanson L.An ecological risk index for aquatic pollution control A sediment logical approach [J]. Water Research, 1980,14(2):975—1001.
    [83] Lin Z. Mineralogical and chemical characterization of wastes from sulfuric acid industry in Falun, Sweden [J]. Environmental Geology 1997, 30(3/4): 152-162
    [84] Muller G. Index of geoaccumulation in sediments of the Rhine River [J]. Geojournal, 1969,2:108-118
    [85] Middelberg J .J, VanDerWeijdenCH, Woittiez JRW. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks [J]. Chem. Geol., 1988, 68: 253—273
    [86] Murraty R.W. Buchholtz T.,Jones, D.L et al. Rare earth elements as indicaters of different marine depositional environment in chert and shale[J] .Geology 1990, 18. (3): 268—271.
    [87] McFarlane A W. REE chemistry and Sm-Nd systematics of late Archean weathering profiles in the Fortescue Group, western Australia [J].Geochim Cosmochim Acta 1994, 58: 1 777—1 794
    [88] Mcgregor R Q Blowes D W, Jambor J L et al. The solid-phase controls on themobility of heavy metals at the Copper Cliff tailings area, Sudbury, Ontario, Canada [J]. Contaminant Hydrol. 1998a, 33: 247—271
    [89] Mcguire M.M., Edwards K.J., Banfield J.F. et al, surface chemistry and Structural evolution of microbially mediated sulfide mineral dissoution [J]. Geochimica Cosmochimica Acta, 2001, 65(8): 1243—1258
    [90] McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust [J]. Geochem.Geophys.Geosyst. 2001,2:2000GC000109, 1—24
    [91] Nesbitt H W. Mobility and fractionation of rare earth elements during weathering of a granodiorite [J].Nature, 1979, 279:206—210
    [92] Peucker-Ehrenbrink B,Hannigan R Effects of black shale weathering on mobility of rhenium and platinum group elements [J]. Geology 2000, 28: 475 —478
    [93] Pasava J, Kribek B, Zak K, Li C,et al Preliminary results of the study of toxic elements in soils and crop plants in areas of Ni-Mo black shale-hosted deposits (Zunyi region, south China). Mineral Exploration and Substantial Development (Eliopoulos and others eds), 2003:53—56
    [94] Peng Bo, Zhaoliang Song, Xiangling Tu et al. Release of heavy metals during weathering of the Lower Cambrian black shales in western Hunan, China [J]. Environ Geol, 2004, 45(8): 1139—1147
    [95] Pengbo, Adam P, Jadwiga P et al Mineralogical and geochemical constraints on environmental impacts from waste rock at Taojiang Mn-ore deposit, central Hunan, China [J]. Environ Geol, 2007, (1) [96] Sullivan P.J.and Yelton J.L.Iron sulfide oxidation and the chemistry of acid generation [J] Environ.Geol. Water Sci., 1988,11(3): 289—295. [97] Schemel L E, Kimball B A and Bencala K E. Colloid formation and Transport through two mixing zones affected by acid mine drainage near Silverton, Colorado [J]. Apply Geochemistry, 2000,15: 1003-1018. [98] Sullivan P J, Yelton J L.Iron sulfide oxidation and the chemistry of acid generation [J]. Environ. Geol.Water Sci., 1988,11(3):289-295 [99] Taylor S R, McLennan S M. The continental crust: its composition and evolution [M]. Oxford : Blackwell Scientific Publications,1985.9-55
    [100] Turpeinen, Pantsar-Kallio M, Kairesalo T. Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils[J]. The science of the total environment, 2002, 285: 133—145 [101] Tokunaga S, Hakuta T, Acid washing and stabilization of an artificial arsenic-contaminated soil [J].Chemosphere, 2002, 46: 31-38
    [102] Tiwary R. K. Dhakate R. Ananda R.V et.al Assessment and prediction of contaminant migration in ground water from chromite waste dump [J]. Environmental Geology, 2005,48(4/5): 420—429
    [103] Vine J.D, Tourtelot E.B, Geochemistry of balck shale deposits: A summary report [J]. Economic Geolgogy, 1970, 65:253—272

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700