mCRT-vGPCR膜表达融合蛋白应用于肿瘤免疫治疗的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:用基因重组技术在病毒G蛋白偶联受体(vGPCR)N端融合小鼠钙网蛋白(mCRT),获得真核表达质粒pcDNA3.1(+)-mCRT/vGPCR。将此质粒稳定转染至小鼠黑色素瘤细胞B16-F1中,获得膜上高表达融合蛋白mCRT/vGPCR的B16-F1细胞株,然后体外检测高表达融合蛋白的细胞被吞噬效应。用凋亡药物处理这种细胞株后作为免疫原免疫Balb/C小鼠,研究其激发机体抗肿瘤免疫应答的效用。本研究的目的在于探索抗肿瘤免疫预防和治疗的新途径。
     方法:(1)应用RT-PCR技术从小鼠黑色素瘤B16-F1细胞总RNA中克隆获得含mCRT ORF全长序列的DNA片段。(2)从质粒pSG5/vGPCR中克隆获得vGPCR ORF全长片段。(3)构建融合基因mCRT/vGPCR并克隆入真核表达载体pcDNA3.1(+)中。(4)用脂质体转染法将重组质粒转染至小鼠黑色素瘤B16-F1细胞株中,用RT-PCR和Western blotting检测基因的表达,并用流式细胞术和细胞免疫荧光鉴定该融合蛋白在细胞膜上的定位。(5)直接将活的对照B16-F1细胞、转染vGPCR的B16-F1细胞(B16-vGPCR)和转染mCRT/vGPCR的B16-F1细胞(B16-mCRT/vGPCR)接种于Balb/C小鼠皮下,观察肿瘤生长情况。( 6 ) MTT法检测稳定转染质粒pcDNA3.1(+)-vGPCR和pcDNA3.1(+)-mCRT/vGPCR对B16-F1细胞株生长的影响。(7)多胺类似物(BENS)和蒽环类药物(米托蒽醌)分别诱导小鼠黑色素瘤细胞B16-F1和B16-mCRT/vGPCR细胞株凋亡,经皮下注射免疫Balb/C小鼠,免疫8天后,用活的B16-F1皮下接种免疫后的Balb/C小鼠,观察并纪录肿瘤生长状况。(8)ELISA法检测小鼠血清中细胞因子的含量。
     结果:(1)成功构建了重组真核表达质粒pcDNA3.1(+)-mCRT/vGPCR,pcDNA3.1(+)-vGPCR。(2)获得膜稳定表达融合蛋白的细胞株B16-mCRT/vGPCR。(3)体外吞噬实验表明,B16-F1细胞膜上高表达融合蛋白mCRT/vGPCR可增强其被吞噬效应。(4)膜上高表达mCRT的B16-F1细胞在小鼠体内生长受抑制,但体外MTT检测发现mCRT的高表达促进B16-F1细胞的生长。(5)动物实验表明,包被有融合蛋白mCRT/vGPCR的凋亡B16-F1细胞作为免疫原可刺激小鼠产生抗同种肿瘤的免疫效应。
     结论:细胞膜上包被有融合蛋白mCRT/vGPCR的凋亡肿瘤细胞能作为细胞抗原,在动物体内诱导出特异性抗同种肿瘤的免疫杀伤活性。本研究提示了CRT在抗肿瘤研究中的重要的潜在应用价值,为肿瘤预防和治疗提供了新的思路。
Objective In order to develop an universal technique that could make CRT-coating more efficiently in the tumor cells, in this study, a mouse CRT recombinant gene with virus G-protein coupled receptor (vGPCR) was constructed and cloned into vector pcDNA3.1(+). And then the plasmids pcDNA3.1(+)-mCRT/vGPCR were stably transfected into the mouse melanoma B16-F1 cells. Proliferation assay for B16-F1 cell lines transfected with exgenous genes were performed in vivo and in vitro. mCRT/vGPCR mediated phagocytosis was also investigated. When mCRT-vGPCR coated B16-F1 cells were used as a cell-antigen to immunize mice, the specific anti-tumor immune response against the homologous tumor cells was tested. This novel approach may provide a new possibility for CRT-mediated tumor immune prevention and treatment.
     Methods The full length CDS of vGPCR was amplified from plasmid pSG5/vGPCR by PCR technique, and the full-length CDS of mouse calreticulin (mCRT) was amplified by RT-PCR using total RNA derived from mouse B16-F1 cells as the template. Two PCR products were ligated first and then inserted into pcDNA3.1(+). The resulted plasmid pcDNA3.1(+)-mCRT/vGPCR was transfected into B16-F1 cells by LipofectamineTM 2000 reagent. Expression and localization of mCRT/vGPCR fusion protein in the transfected cells was identified by RT-PCR, Western blotting, flow cytometry (FCM) and cell immunofluorescrence (CIF). The possible implication of mCRT/vGPCR in the phagocytosis was investigated by FCM. The different cell lines were inoculated into Bbal/C mouse to test their proliferation rate in vivo. We also assayed the proliferation rate of different cell lines by MTT in vitro. Three different apoptotic B16-F1 cells were prepared and used as the cell antigens to inoculate animals, they are BENS-treated B16-F1, BENS-treated B16-mCRT/vGPCR and mitoxantrone-treated B16-F1. And then the inhibition effects of immuno-inoculation on the growth of B16-F1 live cells inoculated latterly were observed. ELISA assay was used to detect the cytokines in the experimental mouse serum.
     Results 1) Eukaryotic expression plasmid pcDNA3.1(+)-mCRT/vGPCR and pcDNA3.1(+)-vGPCR were constructed succeffuly. 2) A cell line (B16-mCRT/vGPCR) with recombinant mCRT/vGPCR coated on the cell surface was obtained. 3) mCRT/vGPCR on the surface of B16-F1 cells enhanced phagocytosis in vitro. 4) Overexpression of mCRT/vGPCR can decrease proliferation of B16-F1 in vivo while increase proliferation of B16-F1 in vitro. 5) Apoptotic B16-F1 cells coated with mCRT/vGPCR induced a specific antitumor immunological effect against homogeneous tumor cells in mice.
     Conclusion When mCRT-vGPCR coated B16-F1 cells were used as a cell-antigen to immunize mice, the specific anti-tumor immune response against the homologous tumor cells was initiated efficiently. This novel approach may provide a new possibility for CRT-mediated tumor immune prevention and treatment.
引文
[1] Smyth MJ. Tumour immunology [J]. Curr Opin Immunol. 2007, 19:200–202
    [2] Rescigno M, Avogadri F and Curigliano G. Challenges and prospects of immunotherapy as cancer treatment [J]. Biochim Biophys Acta. 2007, 1776: 108–123
    [3] Reiman JM, Kmieciak M and Manjili MH, et al. Tumor immunoediting and immuno-sculpting pathways to cancer progression [J]. Semin Cancer Biol. 2007, 17: 275–287
    [4]Prestwich RJ, Errington F and Hatfield P, et al. The Immune System, is it Relevant to Cancer Development, Progression and Treatment [J]? Clin Oncol. 2008, 20(2):101-12
    [5] Gaipl US, Sheriff A, Herrmann M, et al. Inefficient clearance of dying cells and autoreactivity [J]. Curr Top Microbiol Immunol, 2006, 305:161–176
    [6] Casares N, Pequignot MO, Kroemer G, et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death [J]. J Exp Med, 2005, 202(12):1691–1701
    [7] Blachere NE, Darnell RB, Albert ML. Apoptotic cells deliver processed antigen to dendritic cells for cross-presentation [J]. PLoS Biol, 2005, 3(6):185
    [8] Steinman RM, Mellman I. Immunotherapy bewitched, bothered, and bewildered no More [J]. Science, 2004, 305(9):197–200
    [9] Lake RA, van der Most RG. A better way for a cancer cell to die [J]. N Engl J Med, 2006, 354(8):2503-2504
    [10] Zitvogel L, Tesniere A, Kroemer G. Cancer in spite of immunosurveillance: immunoselection and immunosubversion [J]. Nat Rev Immunol, 2006, 6(10):715–727
    [11] Zitvogel L, Casares N, Kroemer G, et al. Immune response against dying tumor cells [J]. Adv Immunol, 2004, 84:131–179
    [12] Albert ML. Death-defying immunity: do apoptotic cells in?uence antigen processing and presentation [J]? Nat Rev Immunol, 2004, 4:223–231
    [13] Apetoh L, Ghiringhelli F, Zitvogel L, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotehrapy and radiotherapy [J]. Nat Med, 2007, 13(9):1050–1059
    [14] Obeid M, Tesniere A, Kroemer G, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death [J]. Nat Med, 2006, 13(1):54-61
    [15] Gelebart P, Opas M, Michalak M. Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum[J], Int J Biochm Cell Biol, 2005, 37(2):260–266.
    [16] Michalak M, Groenendyk J, Opas M, et al. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum [J]. Biochem J, 2009, 417 (3):651-666
    [17] Johnson S, Michalak M, Opas M, et al. The ins and outs of calreticulin:from the ER lumen to the extracellular space [J], Cell Biology, 2001, 11(3):122-129.
    [18] Michalak M, Corbett EF, Mesaeli N, et al. Calreticulin: one protein, one gene, many functions [J], Biochem J, 1999, 344(Pt2):281-292.
    [19] Gardai SJ, McPhillips KA, Henson PM, et al. Cell-Surface Calreticulin Initiates Clearance of Viable or Apoptotic Cells through trans-Activation of LRP on the Phagocyte [J]. Cell Vol, 2005, 123:321-334
    [20] Martins I, Kepp O, Kroemer G, et al. Surface-exposed calreticulin in the interaction between dying cells and phagocytes [J]. Ann N Y Acad Sci, 2010, 1209:77-82
    [21] Apetoh L, Mignot G, Zitvogel L, et al. Immunogenicity of anthracyclines:moving towards more personalized medicine [J]. Trends Mol Med, 2008, 14(4):141-51.
    [22] Cao C, Han Y, Ren Y, Wang Y. Mitroxantrone-mediated apoptotic B16-F1 cells induce specific anti-tumor immune response [J]. Cell Mol Immunol, 2009, 6: 469-75.
    [23] Obeid M, Panaretakis T, Kroemer G, et al. Calreticulin exposure is required for the immunogenicity ofγ-irradiation and UVC light-induced apoptosis [J]. Cell Death Differ, 2007, 14:1848-1850
    [24] Panaretakis T, Joza N, Kroemer G, et al. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death [J]. Cell Death Differ, 2008, 15:1499-1509
    [25] Clarke C, Smyth MJ. Calreticulin exposure increases cancer immunogenicity [J]. Nature Biotechnology, 2007, 25:192-193
    [26] Liu C, Sandford G, Nicholas J, et al. Ga protein selectivity specified by a viral chemokine receptor-conserved region in the C tail of the human herpesvirus 8 G protein-coupled receptor [J]. Journal of virology, 2004, 78(5):2460-2471
    [27] Pledgie-Tracy A, Billam M, Casero RA, et al. The role of the polyamine catabolic enzymes SSAT and SMO in the synergistic effects of standard chemotherapeutic agents with a polyamine analogue in human breast cancer cell lines [J]. Cancer Chemocher Pharmacol, 2010, 65:1067-1081
    [28] Waterhouse NJ, Pinkoski MJ. Calreticulin: raising awareness of apoptosis [J]. Apoptosis, 2007, 12(4):631-634
    [29] Zhu N, Wang Z. Calreticulin Expression Is Associated with Androgen Regulation of the Sensitivity to Calcium Ionophore-induced Apoptosis in LNCaP Prostate Cancer Cells [J]. Cancer Research, 1999, 59:1896-1902
    [30] Lim S, Chang W, Hwang K C, et al. Enhanced calreticulin expression promotes calcium-dependent apoptosis in postnatal cardiomyocytes [J]. Mol Cells, 2008, 25(3):390-396
    [31] Cao C, Han Y, Ren Y, Wang Y. Aoptosis B16-F1 cells coated with recombinant calreticulin mediated antitumor immune response in mice[J]. Chin J Cancer Res, 2010, 22:253-259
    [32]Gold LI, Rahman M, Cadacio CL, et al. Overview of the role for calreticulin in the enhancement of wound healing through multiple biological effects [J]. Investigative Dermatology Symposium Proceeding, 2006, 11:57-65
    1. Bellamy CO, Malcomson RD, Wyllie AH, et al. Cell death in health and disease: the biology and regulation of apoptosis[J]. Semin Cancer Biol, 1995, 6(1):3-16
    2. Thompson CB. Apoptosis in the pathogenesis and treatment of disease[J]. Science, 1995, 267(5203):1456-1462
    3. Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis[J]. Nat Rev Cancer, 2002, 2(4):277-288
    4. Hanayama R, Tanaka M, Nagata S, et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice[J]. Science, 2004, 304(5674):1147-1150
    5. Gaipl US, Sheriff A, Herrmann M, et al. Inefficient clearance of dying cells andautoreactivity[J]. Curr Top Microbiol Immunol, 2006, 305:161–176
    6. Vakkila J, Lotze MT. In?ammation and necrosis promote tumour growth[J]. Nat Rev Immunol, 2004, 4:641–648
    7. Casares N, Pequignot MO, Kroemer G, et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death[J]. J Exp Med, 2005, 202(12):1691–1701
    8. Blachere NE, Darnell RB, Albert ML. Apoptotic cells deliver processed antigen to dendritic cells for cross-presentation[J]. PLoS Biol, 2005, 3(6):1070-1078
    9. Steinman RM, Mellman I. Immunotherapy bewitched, bothered, and bewildered no More[J]. Science, 2004, 305(9):197–200
    10. Lake RA, van der Most RG. A better way for a cancer cell to die[J]. N Engl J Med, 2006, 354(8):2503-2504
    11. Zitvogel L, Tesniere A, Kroemer G. Cancer in spite of immunosurveillance: immunoselection and immunosubversion[J]. Nat Rev Immunol, 2006, 6(10):715–727
    12. Zitvogel L, Casares N, Kroemer G, et al. Immune response against dying tumor cells[J]. Adv Immunol, 2004, 84:131–179
    13. Albert M L. Death-defying immunity: do apoptotic cells in?uence antigen processing and presentation[J]? Nat Rev Immunol, 2004, 4:223–231
    14. Apetoh L, Ghiringhelli F, Zitvogel L, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotehrapy and radiotherapy[J]. Nat Med, 2007, 13(9):1050–1059
    15. Cao C, Han Y, Ren Y, Wang Y. Mitroxantrone-mediated apoptotic B16-F1 cells induce specific anti-tumor immune response[J]. Cell Mol Immunol, 2009, 6: 469-75.
    16. Apetoh L, Mignot G, Zitvogel L, et al. Immunogenicity of anthracyclines:moving towards more personalized medicine[J]. Trends Mol Med, 2008, 14(4):141-51.
    17. Obeid M, Tesniere A, Kroemer G, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death[J]. Nat Med, 2006, 13(1):54-61
    18. Liu H, Bowes RC 3rd, Stevens JL, et al. Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2t disturbances, and cell death in renal epithelial cells[J]. J Biol Chem, 1997, 272 (35):21751-21759
    19. Carpio MA, Durand ES, Hallak ME, et al. The arginylation-dependent association of calreticulin with stress granules is regulated by calcium[J]. Biochem J, 2010, 429 (1):63-72
    20. Michalak M, Groenendyk J, Opas M, et al. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum[J]. Biochem J, 2009, 417(3):651-666
    21. Gardai SJ, McPhillips KA, Henson PM, et al. Cell-Surface Calreticulin Initiates Clearance of Viable or Apoptotic Cells through trans-Activation of LRP on the Phagocyte[J]. Cell Vol, 2005, 123:321-334
    22. Obeid M, Panaretakis T, Kroemer G, et al. Calreticulin exposure is required for the immunogenicity ofγ-irradiation and UVC light-induced apoptosis[J]. Cell Death Differ, 2007, 14:1848-1850
    23. Panaretakis T, Joza N, Kroemer G, et al. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death[J]. Cell Death Differ, 2008, 15:1499-1509
    24. Clarke C, Smyth MJ. Calreticulin exposure increases cancer immunogenicity[J]. Nature Biotechnology, 2007, 25:192-193
    25. Hojrup P, Roepstorff P, Houen G. Human placental calreticulin characterization of domain structure and post-translational modifications[J]. Eur J Biochem, 2001, 268(9):2558–2565.
    26. Panaretakis T, Kepp O, Kroemer G, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death[J]. EMBO J, 2009, 28(5):578–590
    27. Martins I, Kepp O, Kroemer G, et al. Surface-exposed calreticulin in the interaction between dying cells and phagocytes[J]. Ann N Y Acad Sci, 2010, 1209:77-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700