斑鳢(♀)和乌鳢(♂)杂交组合的分子遗传特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乌鳢(Channa argus)是我国重要的淡水经济鱼类之一,但在养殖过程中需要投喂冰鲜鱼类,会导致水质恶化。杂交鳢(斑鳢♀×乌鳢♂)可以全程投喂人工饲料养殖,极大减少了对养殖环境的危害,并且在其生长、抗病等方面优于亲本,已在生产上得到广泛推广。本研究利用部分COI、16S及全部ITS序列进行了研究,为两者杂交提供了分子依据,并且测序获得了斑鳢、乌鳢及杂交鳢(斑鳢♀×乌鳢♂)的线粒体DNA全序列,用SRAP分子标记技术研究了斑鳢、乌鳢及杂交鳢(斑鳢♀×乌鳢♂)遗传关系,用SSR技术对杂交鳢F2及其亲本杂交鳢Fl的遗传信息传递进行初探,并分析了5个乌鳢养殖群体的遗传多样性。具体结果如下:
     1.斑鳢和乌鳢杂交的分子依据
     本研究对4种鳢属鱼类的COX1基因和16S基因部分序列进行了分析,发现与其它鱼类研究一样,COX1和16S基因在4种鳢属鱼类中高度保守,种内变异低,种间有明显的不同。种间差异明显大于种内差异。4种鱼类COX1共获得19个单倍型,每个单倍型所获得的COX1序列为652bp,没有发现插入或缺失现象。在K2P模型下,最远的种间遗传距离发生在乌鳢和线鳢之间(0.219),最近的种间距离发生在乌鳢和斑鳢之间(0.091)。4种鱼类16S基因发现有10个单倍型,乌鳢、斑鳢和月鳢单倍型长度为573bp,线鳢单倍型长度为572bp.在K2P模型下,最近的遗传距离发生在乌鳢和斑鳢之间(0.021),最远的遗传距离发生在乌鳢与线鳢之间(0.077)、斑鳢和线鳢之间(0.077)。种内和种间没有重叠,表示COX1基因和16S基因都可以作为条形码鉴定4种鱼类。基于COX1和16S基因ML和NJ进化树显示乌鳢、斑鳢、月鳢和线鳢的单倍型分别聚在一起,然后乌鳢和斑鳢聚在一起,再与其它鱼类聚在一起。这表示乌鳢和斑鳢之间遗传距离最小,亲缘关系最近。
     将所得到的ITS1和ITS2碱基序列进行拼接,得到斑鳢和乌鳢ITS序列长度分别为927bp和902bp。两者ITS的G+C含量高于A+T,占72%左右。两者在ITS有明显的差异性片段(特别是在ITS-2中斑鳢明显多出30bp大小的片段)。乌鳢和斑鳢种内差异较小,两者之间核苷酸差异明显大于种内。采用NJ和ML两种方法建立进化树,两者同时表明乌鳢和斑鳢的遗传距离较近(约0.020),亲缘关系最近,而与同属的月鳢遗传距离相对较远(约为0.073)。
     COX1、16S以及ITS序列都显示乌鳢和斑鳢之间序列差异最小,乌鳢和斑鳢的遗传距离非常近,两者是最晚从鳢属鱼类中分化出来的,这为乌鳢与斑鳢比较容易杂交提供了分子依据。
     2.斑鳢、乌鳢及杂交鳢(斑鳢早×乌鳢♂)线粒体DNA全长
     经过测序拼接,乌鳢、斑鳢及杂交鳢的线粒体全长分别为16558bp,16559bp和16558bp。这三种鱼符合经典脊椎动物线粒体的特征,包含13个蛋白编码蛋白,2个rRNA,22个转运RNA,和一个假定的控制区域。在编码氨基酸的第三个位置没有明显的偏好性。在乌鳢PCG中,CUC (193)是最常见的密码子,而在斑鳢及杂交鳢中CUA(204)是使用最多的密码子。在这三种鳢科鱼类中,亮氨酸是使用最频繁的氨基酸,乌鳢(17.9%)、斑鳢(17.5%)及杂交鳢(17.5%)。COX1起始密码子为GTG,其它12种PCG基因用ATG作为起始密码子。ATP6和ATP8基因有10bp相互重叠,ND4L-ND4, ND5-ND6和ATP6-COX3之间分别有7bp,4bp和1bp的重叠。ND5在乌鳢中的终止密码子是TAG,在斑鳢及杂交鳢线粒体基因组中终止密码子是TAA。ND1、ND2、COX1、ATP6、ATP8、COX3和ND4L终止密码子是TAA, ND6终止密码子为TAG,其余基因(COX2、 ND4和CYTB)有不完整的终止密码子T。
     ML和NJ聚类结果同样表明,在鲈形目中同一个科的鱼类先聚在一起,然后再与其它邻近科聚在一起。同样,杂交鳢因为与斑鳢母性遗传的原因先聚在一起,再与乌鳢聚在一起,最后与其它鲈形目鱼类聚在一起。3种鳢属鱼类为单源性分支,而鲈形目其它科鱼类聚在一起,本研究可以给鳢科鱼类在硬骨鱼类中的分类地位提供一定的基础资料。
     3.斑鳢、乌鳢及杂交鳢的SRAP分析
     选取14对SRAP引物对斑鳢、乌鳢及杂交种F1扩增,在3个群体中共扩增出105个位点,每个组合引物扩增条带从5到11不等。其中有88个位点具有多态性,多态性比率为83.81%,在乌鳢中多态性位点有48个,多态位点比例为45.71%,在斑鳢中多态性位点有27个,多态位点比例为25.71%,在杂交F1中多态性位点有34个,多态位点比例为32.38%。在105个扩增位点中检测到有17个为乌鳢、斑鳢及杂交F1共有位点。斑鳢、乌鳢及杂种F1的群体内Nei's遗传多样性指数(H)为0.0964、0.1489和0.1076。遗传距离结果表明杂交鳢与父本(0.2195)或母本(0.4009)的遗传距离要比其父母本(0.6367)之间的遗传距离近,这表明杂交鳢F1是父母本杂交所产生的后代,杂交鳢F1遗传距离更偏向乌鳢,与乌鳢的亲缘关系更近。
     4.杂交F2与亲本F1的遗传信息传递初探
     采用10个SSR位点对3组Fl亲本及F2子代30个体进行了研究,发现有7个位点(WL-28、CHA13、CHA25、CHA31、CHA41、CarC7和CarD139)的遗传符合孟德尔定律,子代分别遗传了父母本的信息,而在其它3个位点(WL-8、CarD108和CarD121)中,发现有相当数量的子代个体没有基因型,没有遗传父母本相关的遗传信息。3个位点在3个重复组合90个个体中有近一半的个体没有发现基因型,这说明这3个位点所在的1条或几条染色体在近一半个体中不存在。这表明Fl亲本在进行有性繁殖时有1条或几条染色体虽然不能配对,但在其它同源染色体相互分离移向两极时可能随机进入其中一个细胞,进行第二次减数分裂。本研究丰富了鱼类有性繁殖理论的内容。
     5.5个养殖乌鳢群体的遗传多样性
     采用10个SSR位点对5个养殖乌鳢群体(LQ、YJ、YH、XS、YG)的遗传多样性进行了分析。10个位点共发现有160个等位基因,平均期望杂合度(He)和表观杂合度(Ho)分别为0.65-0.91和0.67-0.85,说明5个养殖群体具有较高的遗传多样性,YJ群体遗传多样性最高。经Hardy-Weinberg平衡分析,在YJ、YG和LQ群体中都发现有个别位点偏离平衡。YJ群体偏离了突变-漂移平衡,近期可能经历了遗传瓶颈。为更好地育种策略,建议补充YJ群体有效个体数目。除XS与YH群体间没有发现分化,LQ群体与其它群体之间出现中等程度分化(0.05Channa argus is an important economic freshwater fish. During the breeding process, it needs to be fed chilled fish, resulting in deterioration of water quality. The hybrids (C. maculata(?) and C. argus(?)) can be fed with artificial feed, which greatly reduces the harm to the environment farming. The hybrids also obtained excellent traits from its parents, which has been promoted in the production. We studied the taxonomic status of C. maculata and C. argus by part sequence of COX1gene and16S gene and full length sequence of ITS, which could be provided for the molecule basis for hybrid. And we also sequenced the whole mtDNA length for C. maculata, C. argus and the hybrid (C. maculata (?) and C. argus (?)).-By the technology of SRAP to study the genetic raltionships of C. maculata, C. argus and the hybrid (C. maculata (?) and C. argus (?)), and by the technology of SSR to research the transfer of genetic information from F1parents to F2generations. Finally, we analysised the gentic diversity for five cultured population of C. argus. The results are summarized as follows:
     1. The molecule basis for hybrid between C. maculata (?) and C. argus (?)
     Four kinds of snakehead fish were analyzed using part gene of COX1and16S. High conservative in four kinds of snakehead fish, low intraspecific variation and large differences between species were detected. The interspecific K2P distances were higher than intraspecific distances. A total of19haplotypes were identified in COX1gene in this study. And each haplotype is652bp. No insertions or deletions phenomenon were founded in this study. Under the model of K2P, the lowest interspecific distance (0.091) was between C. argus and C. maculata while the highest interspecific distance (0.219) was between C. argus and C. striata. A total of10haplotypes were obtained in16S gene in this study. The length sequence of haplotypes of C. argus, C. maculata, C. asiatica and C. striata is573bp,573bp,573bp and572bp. Under the model of K2P, the highest interspecific distance (0.077) was between C. argus and C. striata, between C. maculata and C. striata, while the lowest interspecific distance (0.021) was between C. argus and C. maculata. No overlap was found between intraspecific and interspecific distances, suggesting the existence of a distinct barcoding gap. The ML and NJ tree show all the snakehead haplotypes belong to one of the four Channa species. First, C. argus was clustered with C. maculata, then were clustered with other fish. It indicates that C. argus and C. maculata had the lowest genetic distance and the closest relationship.
     The length of the rDNA sequences of C. maculata and C. argus were927bp and902bp. The content of G+C (about72%) is higher than A+T. Distinct differences fragments were found between C. argus and C. maculata(particularly30bp more in ITS2of C. maculata). The interspecific K2P distances were higher than intraspecific distances. Phylogenetic analysis showed that C. argus and C. maculata (0.020) had the lowest genetic distance, while C. argus and C. asiatica (0.073) had the highest genetic distance.
     Minimal sequence differences and lowest distant were observed in C. argus and C. maculata. And these two fishes were latest differentiation from other snakehead fishes. These provides the molecular basis between C. argus and C. maculata.
     2. The complete mitochondrial genome of C. maculata, C. argus and hybrid
     snakehead fish [C. maculata ((?))XC. argus ((?))]
     The total length of the C. maculata mitochondrial DNA was16559bp, which was slightly longer than C. argus (16558bp) and hybrid snakehead fish (16558bp). The structural organization and location of different feature in the snakehead mt genomes conformed to the common vertebrate mt genome model and consisted of13protein-coding genes,2rRNAs,22tRNAs and1putative control region. There was no obviously favor base pair in third position of encoding amino acids. The CUC (193) codon was used most frequently in C. argus while the CUA (204) codon was used most frequently in C. maculata and hybrid snakehead fish. The amino acids Leu is the most frequently used encodon in C. argus (17.9%), C. maculata (17.5%) and hybrid snakehead fish (17.5%). COXl started with GTG while other PCGs genes used ATG as the initiation codon. The ATP6and ATP8shared10bp overlap, whereas ATP6-COX3and ND4L-ND4shared1and7bp overlap, respectively. TAG was the termination codon in C. argus while TAA was the termination codon in C. maculata and hybrid snakehead fish for ND5. Seven PCGs ended with TAA (ND1, ND2, COXl, ATP6, ATP8, COX3, and ND4L), one ended with TAG (ND6) and the rest had incomplete stop codon T (COX2, ND3, ND4and CYTB). This feature is common among vertebrate mitochondrial PCGs, of which incomplete stop codons are presumably completed as TAA via posttranscriptional polyadenylation.
     C. argus and C. maculata, as the representative of the suborder Channoidei, formed the most basal branch having a sister relationship with a monophyletic clade including the other suborders of Perciformes. These could provide some basic information for fish taxonomy.
     3. The SRAP analysis of C. maculata, C. argus and their hybrid [C. maculata ((?))×C. argus ((?))]
     The genetic structure of C. argus, C. maculata and their hybrid [C. maculata ((?))×C. argus ((?))], the heterosis of the hybrid F1, were analyzed by the SRAP technique with14primers.105loci were amplified in three population, and each combination of primers amplified bands ranging from5to10. Out of105loci,88loci occurred polymorphism band in three population, accouted for83.81%,48loci (45.71%) occurred polymorphism band in C. argus,27loci (25.71%) occurred polymorphism band in C.maculata,34loci (32.38%) occurred polymorphism band in hybrids. The H for C. argus, C. maculata and hybrids were0.1489,0.0964,0.1076, respectively. The results showed that the genetic distance of hybrids and male parent (0.2195) or female parent (0.4009) was closer than the genetic distance of male parent and female parent (0.6367), which indicated hybrids F1was the hybrid offspring produced by parents. It also indicated that the relative genetic distances were not equal (closer to male parent) between the hybrids and their parents.
     4. Transfer of genetic information from F1parents to F2generations
     Transfer of genetic information from F1parents to F2generations were analyzed by10SSR loci in3group (90individuals). The inheritance of7loci (WL-28; CHA13; CHA25; CHA31; CHA41; CarC7; CarD139) was shown to be in agreement with Mendel's law. However, nearly half F2offsprings had no genotypes by3loci (WL-8, CarD108and CarD121), which indicated one or several chromosomes do not exist in nearly half individuals. Combined with the number of F2offspring chromosomes44and45, indicating that there is one or several chromosomes can not pair during meiosis. During the first meiotic division, the one or several chromosomes may randomly into one cell. It then conducted the second meiotic division. In this study, the research enriched the contents of the theory of sexual reproduction of fish.
     5. Genetic diversity of five cultured C. argus population
     A total of160alleles were detected at the ten microsatellite loci. The average heterozygosity (HE) and observed heterozygosity (Ho) varied from0.65-0.91and0.67-0.85in five cultured populations, indicating high genetic diversity in these five populations. Among them, the highest genetic diversity was observed in YJ population. Some loci in YJ, YG, LQ population deviated from H-W. Population YJ deviated from mutation-drift equilibrium and may have experienced a recent bottleneck. It is necessary to increase effective population sizes in YJ population for better breeding. No differentiation and some gentic structure between XS population and YH population, which indicated the two population were the some population. There is moderate differentiation between LQ population and other poplation. The farest genetic distance was observed between LQ population and YH population, which could be served as a good breeding strategy.
引文
[1]楼允东.鱼类育种学[M].北京:中国农业出版社,2001:40-41.
    [2]Campton, D. E. Natural hybridization and introgression in fishes:methods of detection and genetic interpretations[M]. Seattle:University of Washington Press,1987:161-192.
    [3]Allendorf, F.W. and Waples, R.S. Conservation and genetics of salmonid fishes[M]. New York:Chapman and Hall,1996:238-280.
    [4]楼允东和李小勤.中国鱼类远缘杂交研究及其在水产养殖上的应用[J].中国水产科学,2006,13(1):151-158.
    [5]楼允东.我国鱼类近缘杂交研究及其在水产养殖上的应用[J].水产学报,2007,31(4):532-538.
    [6]沈俊宝和刘明华.蓝色鳞鲤品系的起源,筛选和培育[J].淡水渔业,2005,(4):3-6.
    [7]刘筠,陈淑群,王义铣,等.荷包红鲤♂×湘江野鲤♀杂交一代的研究及其在生产上的应用[J].湖南师范大学自然科学学报,1979,(1):1-14.
    [8]孙小异.建鲤—我国养殖鱼类杂交选育的第一个品种[J].科学养鱼,1988,(4):16-17.
    [9]李思发和韩风进.尼罗罗非鱼吉富品系养殖推广中试研究[J].水产科技情报,1997,24(6):257-262.
    [10]李思发和韩风进.尼罗罗非鱼选育三代效果评价[J].上海水产大学学报,2001,10(4):289-292.
    [11]杨怀宇和李思发.三角鲂与团头鲂正反杂交F1的遗传性状[J].上海水产大学学报,2002,11(4):305-309.
    [12]万松良,黄二春,齐彩霞,等.莫尼杂种全雄鱼与尼罗罗非鱼生产性能的比较试验[J].淡水渔业,2005,(2):15-16.
    [13]王楚松,夏德全,胡玫,等.奥尼鱼(S. nilotica(?)×S. aurea(?))杂种优势 利用的研究[J].淡水渔业,1989,(6):14-15.
    [14]马进和钨国民.斑点胡子鲶和革胡子鲶杂交子一代的染色体组型[J].淡水渔业,1996,26(6):17-18.
    [15]叶星和谢刚.广东鲂(♀)×团头鲂(♂)杂交子一代及其双亲染色体组型的分析[J].大连水产学院学报,2002,17(2):102-107.
    [16]王波,楼宝,毛国民,等.褐牙鲆♀×大西洋牙鲆♂杂交育种研究[J].渔业现代化,2007,34(5):29-33.
    [17]王卫民和严安生.黄颡鱼♀与瓦氏黄颡鱼♂的杂交研究[J].淡水渔业,2002,32(3):3-5.
    [18]林元烧和崔雪森.黑鲷与灰鳍鲷杂交育种[J].海洋渔业,2001,23(2):69-70.
    [19]张建森,马仲波,王楚松.元江鲤♀与柏氏鲤♂杂交一代(柏元鲤)的研究和利用[J].淡水渔业,2005,2:14-18.
    [20]王晓清,王志勇,谢中国,等.大黄鱼(♀)与鮸(♂)杂交的遗传分析[J].水产学报,2008,32(1):51-57.
    [21]金燮理.青鱼和草鱼杂交种的早期发育[J].湖南水产科技,1981,(1):55..
    [22]昝瑞光和宋峥.鲤,鲫,鲢,鳙染色体组型的分析比较[J].遗传学报,1980,7(1):72-77.
    [23]简林江,杨育凯,刘贤德,等.大黄鱼(早)与(鮸)状黄姑鱼(♂)杂交及其子代的遗传分析[J].水产学报,2013,37(6):51-57.
    [24]徐革锋,尹家胜,刘洋,等.哲罗鲑与细鳞鲑属间远缘杂交的初步研究[J].中国水产科学,2009,16(6):959-966.
    [25]区又君,李加儿,周宏团.鲷科鱼类属间远缘杂交的发育和生长[J].中国水产科学,2000,7(2):110-112.
    [26]吴维新,曾国清,李传武,等.鲤鲫杂交子代败育的细胞遗传学研究[J].中国水产科学,1999,6(3):94-95.
    [27]曹伏君.鲫(♀)鲤(♂)杂交F1代精巢细胞学研究[J].湛江海洋大学学报,1999,19(1):4-9.
    [28]林义浩.长春鳊,团头鲂及其杂种染色体组型的比较[J].动物学研究,1984,5(3):65-66.
    [29]郭诗照,王荣泉,傅建军,等.草鱼,鳙及其杂交鱼的形态差异分析[J].江苏农业科学,2011,39(5):320-322.
    [30]任维美.草鱼♀×鳙鱼♂杂交草鱼[J].水产科技情报,2005,(1):27-27.
    [31]尤维忠.武昌鱼与草鱼远缘,杂交技术要点[J].科学养鱼,1986,3:21-21.
    [32]陈淑群.青鱼(♀)和三角鲂(♂)不同亚科之间的杂交研究1、青鱼(♀)、三角鲂(♂)及其子一代的比较细胞遗传学研究[J].湖南师范大学自然科学学报,1984,4:71-80.
    [33]刘思阳.草鱼卵子和三角鲂精子杂交的受精细胞学研究[J].水产学报,1987,11(3):225-232.
    [34]王浩和刘荣臻.鲢鱼(♀)和鲤鱼(♂)杂交的研究[J].南京大学学报:自然科学版,1986,22(1):87-94.
    [35]桂建芳,梁绍昌,朱蓝菲,等.鱼类远缘杂交正反交杂种胚胎发育差异的细胞遗传学分析[J].动物学研究,1993,14(2):171-177.
    [36]金万昆,朱振秀,王春英,等.散鳞镜鲤(♀)与团头鲂(♂)亚种间杂交获高成活率杂交后代[J].中国水产科学,2003,10(2):159-159.
    [37]朱蓝菲和桂建芳.鲢的远缘杂交子代和人工三倍体的同工酶表达[J].水生生物学报,1993,17(4):293-297.
    [38]杨弘,夏德全,刘蕾,等.奥利亚罗非鱼(♀),鳜(♂)及其子代间遗传关系的研究[J].水产学报,2004,28(5):594-598.
    [39]Chevassus, B. Hybridization in fish[J]. Aquaculture,1983,33(1):245-262.
    [40]殷源洪,韩苟,韩如斋.鳊鲂人工杂交的初步研究[J].遗传学通讯,1974,(3):36-38.
    [41]刘思阳和李素文.三倍体草鲂杂种及其双亲的红细胞(核)大小和DNA含量[J].遗传学报,1987,14(2):142-148.
    [42]曹运长和刘筠.鲫鲤杂种一代(F1)自交二代(F2)的受精细胞学研究[J]. 生命科学研究,2000,4(3):255-259.
    [43]王祖熊,张锦霞,黄文郁,等.鲮鱼遗传改良的研究I.杂交育种和遗传性状分析[J].水生生物学报,1984,8(5):195-205.
    [44]湖北省黄冈地区水产技术推广站.散鳞镜鲤与兴国红鲤杂种一代生产效果的初步观察[J].水生生物学集刊,1976,6(1):105-107.
    [45]湖北省水生生物研究所鱼类遗传育种研究室育种组鲤鱼研究小组.散鳞镜鲤与兴国红鲤、龙州镜鲤的杂种优势以及鳞被、体色的遗传[J].水生生物学集刊,1975,5(4):439-448.
    [46]冯晓宇.杂交鳢“杭鳢1号”[J].杭州农业与科技,2010,(2):47-48.
    [47]王宇希,冯晓宇,潘彬斌,等杂交鳢杭鳢1号和乌鳢池塘养殖水质对比分析[J].现代农业科技,2011,(1),327-328.
    [48]刘筠,刘少军,孙远东,等.多倍体鲫鲤[J].中国农业科技导报,2003,5(6):3-6.
    [49]Pruginin, Y. The culture of carp and Tilapia hybrids in Uganda[J]. FAO Fish Report,1968,44(4):223-229.
    [50]谢中国.大黄鱼(♀)与觥鱼(♂)杂交及其子代的遗传分析[硕士学位论文],长沙:湖南农业大学,2006,19-45.
    [51]Vos, P., Hogers, R., Bleeker, M., et al. AFLP:a new technique for DNA fingerprinting[J]. Nucleic acids research,1995,23(21):4407-4414.
    [52]颜金鹏,刘少军,刘筠.异源四倍体鲫鲤雌核发育后代及其亲本RAPD分析[J].水生生物学报,2008,31(6):905-908.
    [53]陈友明,陈校辉,潘莹,等.江黄颡(♀)和乌苏里拟鲿(♂)及其杂交子代遗传变异的RAPD分析[J].上海海洋大学学报,2010,19(1):12-18.
    [54]夏德全和曹萤.罗非鱼杂交F1代与亲本的遗传关系及其杂种优势的利用[J].中国水产科学,1999,6(4):29-32.
    [55]顾志敏,贾永义,叶金云,等.翘嘴红鲌(♀)×团头鲂(♂)杂种F1的形态特征及遗传分析[J].水产学报,2008,32(4):533-544.
    [56]王金龙,刘臻,李传武,等.芙蓉鲫(芙蓉鲤♀×红鲫♂)及其原始亲本间的遗传关系[J].大连水产学院学报,2010,25(3):197-202.
    [57]王冬武.芙蓉鲫(芙蓉鲤♀×红鲫♂)及其原始亲本遗传变异的比较分析[硕士学位论文],长沙:湖南农业大学,2006:27-43.
    [58]王朝明.大口鲇,鲇及其杂种F1种质遗传标记研究[硕士学位论文],武汉:华中农业大学,2005,11-45.
    [59]林红.远缘杂交法结合RAPD技术对鲢、团头鲂遗传图谱的构建[博士学位论文],南京:南京农业大学,2000,31-57.
    [60]俞寅寅.真鲷(♀)与黑鲷(♂)杂交子代遗传物质构成的分析[硕士学位论文],宁波:宁波大学,2012,37-42.
    [61]杜佳莹,丁少雄,王军,等.两种石斑鱼及其杂种子代的分子鉴定[J].海洋学报,2007,28(6):94-99.
    [62]徐冬冬,2009.褐牙鲆和夏牙鲆杂交的遗传学研究[博士学位论文],青岛:中国科学院研究生院(海洋研究所),2009,33-95.
    [63]王军,王成辉,刘豪,等.鲤正,反交Ez群体的AELP遗传图谱构建及其QTL定位[J].中国农业科技导报,2010,1(1):92-99.
    [64]林能锋,苏永全,丁少雄,等.大黄鱼微卫星标记引物在石首鱼科几个近缘种中的通用性研究[J].中国水产科学,2008,15(2):237-243.
    [65]耿波,孙效文,梁利群,等.利用17个微卫星标记分析鳙鱼的遗传多样性[J].遗传,2006,28(6):683-688.
    [66]鲁双庆,刘臻,刘红玉,等.鲫鱼4群体基因组DNA遗传多样性及亲缘关系的微卫星分析[J].中国水产科学,2005,12(4):371-376.
    [67]邵昭君,赵娜,朱滨,等.铲鲟微卫星引物对中华鲟的适用性研究[J].水生生物学报,2002,26(6):577-584.
    [68]张义凤,张研,鲁翠云,等.鲤鱼微卫星标记与体重,体长和体高性状的相关分析[J].遗传,2008,30(5):613-619.
    [69]Hauser, L., Adcock, G.J., Smith, P.J., et al. Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus)[J]. Proceedings of the National Academy of Sciences,2002,99(18):11742-11747.
    [70]Hutchinson, W.F., Carvalho, G.R. and Rogers, S.I. Marked genetic structuring in localised spawning populations of cod (Gadus morhua) within the North Sea and adjoining waters as revealed by microsatellites[J], Marine Ecology Progress Series,2001,223:251-260.
    [71]David, L., Rajasekaran, P., Fang, J., et al. Polymorphism in ornamental and common carp strains (Cyprinus carpio L.) as revealed by AFLP analysis and a new set of microsatellite markers[J]. Molecular genetics and genomics,2001, 266(3):353-362.
    [72]An, H.S., Lee, J.W., Park, J.Y., et al. Genetic structure of the Korean black scraper Thamnaconus modestus inferred from microsatellite marker analysis [J]. Molecular Biology Reports,2013,40(5):3445-3456.
    [73]Mokhtar, M.A.A., Baharum, S.N., Noor, N.M., et al. Isolation and identification of microsatellite repeat motifs from the Epinephelus fuscoguttatus genome[J]. African Journal of Biotechnology,2013,10(43):8553-8557.
    [74]O'Bryhim, J., Somers, C., Lance, S.L., et al. Development and characterization of twenty-two novel microsatellite markers for the mountain whitefish, Prosopium williamsoni and cross-amplification in the round whitefish, P. cylindraceum, using paired-end Illumina shotgun sequencing[J]. Conservation Genetics Resources,2013,5(1):89-91.
    [75]Huang, W., Liang, X., Qu, C., et al. Development and characterization of novel polymorphic microsatellite loci in Siniperca scherzeri Steindachner and Siniperca chuatsi (Basilewsky)[J]. Molecular Biology Reports,2013,40(2): 751-756.
    [76]Dawson, D.A., Ball, A.D., Spurgin, L.G., et al. High-utility conserved avian microsatellite markers enable parentage and population studies across a wide range of species[J]. BMC genomics,2013,14(1):176.
    [77]Luo, W., Deng, W., Yi, S., et al. Characterization of 20 polymorphic microsatellites for blunt snout bream(Megalobrama amblycephala) from EST sequences[J]. Conservation Genetics Resources,2013,5(2):499-501.
    [78]Waldbieser, G. and Bosworth, B. A standardized microsatellite marker panel for parentage and kinship analyses in channel catfish, Ictalurus punctatus[J]. Animal Genetics,2013,44(4):476-479.
    [79]Thaulow, J., Borgstrom, R. and Heun, M. Brown trout population structure highly affected by multiple stocking and river diversion in a high mountain national park[J]. Conservation Genetics,2013,14(1):145-158.
    [80]Rossetto, M. Sourcing of SSR markers from related plant species[J]. Plant genotyping:the DNA fingerprinting of plants,2001,1:211-224.
    [81]海萨,李家乐,刘峰,等.伊犁鲈微卫星位点的筛选及近缘物种通用性[J].动物学杂志,2009,44(1):17-23.
    [82]彭涛,王念民,佟广香,等.湖鲟微卫星引物在三种鲟鱼及杂交子代的通用性研究[J].水产学杂志,2009,22(2):12-16.
    [83]宓国强,赵金良,贾永义,等.鳜(♀)×斑鳜(♂)杂种F1的形态特征与微卫星分析[J].上海海洋大学学报,2010,19(2):145-150.
    [84]李建林,唐永凯,李红霞,等.尼罗罗非鱼、奥利亚罗非鱼及其杂度分析[J].上海海洋大学学报,2011,20(1):27-33.
    [85]张玉勇,白庆利,贾智英,等.虹鳟、山女鳟及其杂交子代(虹鳟早×山女鳟♂)的微卫星分析[J].水产学报,2009,33(2):188-195.
    [86]简林江,杨育凯,刘贤德,等.大黄鱼(♀)与娩状黄姑鱼(♂)杂交及其子代的遗传分析[J].水产学报,2013,37(6):801-808.
    [87]王炳谦,谷伟,高会江,等.利用配合力和微卫星标记预测虹鳟品系间的杂交优势[J].中国水产科学,2009,16(2):206-213.
    [88]尹绍武,廖经球,陈国华,等.红鳍笛鲷(♀)×千年笛鲷(♂)子一代杂种优势的微卫星标记分析[J].水产科学,2008,27(6):271-275.
    [89]李倩,练青平,胡廷尖,等.花(鱼骨)与唇(鱼骨)及其正反杂交子代的微卫星标记分析[J].大连海洋大学学报,2013,28(3):241-246.
    [90]周翰林,张勇,齐鑫,等.两种杂交石斑鱼子一代杂种优势的微卫星标记分析[J].水产学报,2012,36(2):161-169.
    [91]Gyllensten, U., Leary, R.F., Allendorf, F.W., et al. Introgression between two cutthroat trout subspecies with substantial karyotypic, nuclear and mitochondrial genomic divergence[J]. Genetics,1985,111(4):905-915.
    [92]Wilson, C.C. and Bernatchez, L. The ghost of hybrids past:fixation of arctic charr (Salvelinus alpinus) mitochondrial DNA in an introgressed population of lake trout (S. namaycush)[J]. Molecular Ecology,1998,7(1):127-132.
    [93]Rutkayova, J., Biskup, R., Harant, R., et al. Ameiurus melas (black bullhead): morphological characteristics of new introduced species and its comparison with Ameiurus nebulosus (brown bullhead)[J]. Reviews in Fish Biology and Fisheries,2013,23(1):51-68.
    [94]Hunnicutt, D.W., Cingolani, J. and Voss, M.A. Use of mtDNA to identify genetic introgression among related species of catfish[J]. Journal of Great Lakes Research,2005,31.(4):482-491.
    [95]Li, G. and Quiros, C.F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica[J]. Theoretical and Applied Genetics, 2001,103(2-3):455-461.
    [96]Ferriol, M., Pico, B. and Nuez, F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers [J]. Theoretical and Applied Genetics,2003,107(2):271-282.
    [97]Budak, H., Shearman, R., Parmaksiz, I., et al. Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers[J]. Theoretical and Applied Genetics,2004,108(2):328-334.
    [98]Budak, H., Shearman, R., Parmaksiz, I., et al. Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs[J]. Theoretical and Applied Genetics, 2004,109(2):280-288.
    [99]Riaz, A., Li, G., Quresh, Z., et al. Genetic diversity of oilseed Brassica napus inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance[J]. Plant breeding,2001,120(5):411-415.
    [100]张慧.大麻哈鱼SRAP体系建立及其遗传多样性研究[硕士学位论文],哈尔滨:东北林业大学,2011,13-39.
    [101]辛文婷,孙中武,尹洪滨,等.黄颡鱼雌雄差异的SRAP标记[J].东北林业大学学报,2009,37(5):112-113.
    [102]辛文婷,2009.黄颡鱼(Pelteobagrus fulvidraco) SRAP遗传图谱的构建[硕士学位论文],哈尔滨:东北林业大学,2009,8-27.
    [103]丁炜东,曹丽萍,曹哲明.草鱼种质退化相关SRAP分子标记的筛选[J].广东海洋大学学报,2008,27(6):13-17.
    [104]贾永义,顾志敏,叶金云,等.翘嘴红鲌(♀)×团头鲂(♂)杂种F1的SRAP标记分析[J].上海海洋大学学报,2011,20(2):198-203.
    [105]曲疆奇,毕滢佳,董在杰,等.应用SRAP标记分析福瑞鲤及其原始亲本的遗传结构[J].动物学杂志,2011,46(5):120-125.
    [106]许凌雪,匡友谊,佟广香,等.哲罗鲑,细鳞鲑及杂交种(哲罗鲑♀×细鳞鲑♂)遗传结构的SRAP分析[J].江西农业大学学报,2011,33(6):1187-1194.
    [107]曹和清和徐金辉.池塘单养乌鳢高产技术[J].淡水渔业,1998,28(6):31-32.
    [108]湛海虎.池塘单养乌鳢高产技术[J].农村新技术,2001,(8):28-29.
    [109]于世涛和马宝祥.池塘网箱养殖乌鳢试验[J].科学养鱼,1997,(10):31-31.
    [110]曹和清和李艳兰.池塘套养乌鳢高产技术研究[J].内陆水产,1997,22(8):6-7.
    [111]张庆杰,王庆海,鲁乃大.池塘主养乌鳢试验[J].水产科学,2005,24(7):37-38.
    [112]王兰明,王玉新,董文,等.乌鳢亲鱼培育技术要点[J].内陆水产,2007,31(12):23-23.
    [113]陈家友和陈漪.斑鳢人工繁殖的初步研究[J].集美大学学报(自然科学版),2001,6(3):204-209.
    [114]陈奋燊.斑鳢人工繁殖及育苗技术研究[J].福建水产,2004,(3):68-69.
    [115]李成勇和王永和.乌鳢人工繁殖及流水培育夏花试验[J].水产科学,1999,18(3):42-43.
    [116]周洁和谢从新.乌鳢仔鱼摄食节律和日摄食率的初步研究[J].华中农业大学学报,1996,15(1):64-67.
    [117]谢从新和熊传喜.不同光照强度下乌鳢幼鱼的摄食强度及动力学[J].水生生物学报,1997,21(3):213-218.
    [118]胡文革和刘新成.乌鳢鱼苗集群行为的观察及生态适应分析[J].石河子大学学报(自然科学版),2001,5(1):46-47.
    [119]岳丙宜和宋学君.不同水质盐度对乌鳢{Ophiocephalus argus Cantor)胚胎发育及仔鱼生长的影[J].河北渔业,1998,(1):6-8.
    [120]刘家寿和崔奕波.鳜和乌鳢最适温度的研究[J].水生生物学报,2002,26(5):433-437.
    [121]聂国兴,傅艳茹,张浩,等.乌鳢肌肉营养成分分析[J].淡水渔业,2002,32(2):46-47.
    [122]杨四秀和蒋艾青.斑鳢含肉率及肌肉营养成分的测定[J].水产科学,2009,27(12):662-664.
    [123]秦伟,倪建国,张学斌,等.乌鳢及鳢科鱼类染色体组型的比较研究[J].水利渔业,2004,24(5):14-16.
    [124]李康,李渝成,周暾.乌鳢、月鳢和斑鳢的染色体组型和C-带带型的研究[J].遗传学报,1985,12(6):470-477.
    [125]庄吉珊和刘凌云.乌鳢的染色体组型分析[J].北京师范大学学报(自然科学版),1982,(3):81-83.
    [126]刘苏,朱新平,陈昆慈,等.杂交鳢(斑鳢♀×乌鳢♂)及其自交后代细胞核型初步分析[J].动物学杂志,2011,46(1):100-105.
    [127]王金星和周才武.我国五种鳢科鱼类的染色体组型研究[J].海洋湖沼通报,1986,(1):47-52.
    [128]殷文莉和戴建华.乌鳢不同组织的同工酶研究[J].湖北师范学院学报(自然科学版),2000,20(3):17-24.
    [129]郝泗城和彭永康.乌鳢组织内三种同工酶的研究[J].动物学杂志,1995,30(5):3-5.
    [130]马建波,陈振龙,卓孝磊,等.杂交鳢的池塘高效养殖技术[J].河北渔业,2010,9:7-9.
    [131]张诚,刘年锋,杨小强,等.闽香鳢(斑鳢♀×乌鳢♂)及其亲本染色体组型的比较[J].上海水产大学学报,2005,14(2):103-107.
    [132]杨小强.闽香鳢遗传生物学研究I,子代和亲本形态比较[J].福建水产,2004,10(2):41-44.
    [133]林启存,陈武,周立伟,等.6种常见药物对杂交鳢的急性毒性试验[J].安徽农业科学,2010,38(9):4639-4641,4656.
    [134]杨凯,樊启学,刘文奎,等.规格差异和饵料密度对杂交鳢(Channa maculata (?)×C.argus(?))仔稚鱼残食的影响[J].华中农业大学学报,2008,27(2):279-283.
    [135]刘苏,朱新平,陈昆慈,等.斑鳢,乌鳢及其杂交种遗传差异的AFLP分析[J].基因组学与应用生物学,2010,29(4):673-678.
    [136]刘改艳.乌鳢、斑鳢性别差异SSR标记的初步筛选及其遗传多样性分析[硕士学位论文],上海:上海海洋大学,201 1:9-32.
    [137]江小斌.斑鳢Channa. maculata ((?))和乌鳢C. argus ((?))杂交子代及其亲本的遗传关系分析与鉴定[J].福建水产,2013,35(2):93-99.
    [138]朱树人,李忠全,冯晓宇,等.乌鳢和斑鳢微卫星制备及其对自交与杂交F1代的初步鉴定[J].动物学杂志,2011,46(4):1-7.
    [139]赵凯.鱼类线粒体DNA (mtDNA)及其在分子系统学中的应用[J].青海大学学报(自然科学版),2006,24(2):49-53.
    [140]郭新红,刘少军,刘巧,等.鱼类线粒体DNA研究新进展[J].遗传学报,2004,31(9):983-1000.
    [141]Ivanova, N.V., Zemlak, T.S., Hanner, R.H., et al. Universal primer cocktails for fish DNA barcoding[J]. Molecular Ecology Notes,2007,7(4):544-548.
    [142]Ward, R.D., Zemlak, T.S., Innes, B.H., et al. DNA barcoding Australia's fish species[J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2005,360(1462):1847-1857.
    [143]Aquilino, S.V., Tango, J.M., Fontanilla, I.K., et al. DNA barcoding of the ichthyofauna of Taal Lake, Philippines[J]. Molecular Ecology Resources, 2011,11(4):612-9.
    [144]Collins, R.A., Armstrong, K.F., Meier, R., et al. Barcoding and border biosecurity:identifying cyprinid fishes in the aquarium trade[J]. PLoS One, 2012,7(1):e28381.
    [145]Costa, F.O., Landi, M., Martins, R., et al. A Ranking System for Reference Libraries of DNA Barcodes:Application to Marine Fish Species from Portugal[J]. PLoS ONE,2012,7(4):e35858.
    [146]Kim, D.-W., Yoo, W.G., Park, H.C., et al. DNA Barcoding of Fish, Insects, and Shellfish in Korea[J]. Genomics Inform,2012,10(3):206-211.
    [147]Rock, J., Costa, F.O., Walker, D.I., et al. DNA barcodes offish of the Scotia Sea, Antarctica indicate priority groups for taxonomic and systematics focus[J]. Antarctic Science,2008,20:253-262.
    [148]Smith, P.J., Steinke, D., Dettai, A., et al. DNA barcodes and species identifications in Ross Sea and Southern Ocean fishes[J]. Polar Biology,2012, 35(9):1297-1310.
    [149]Steinke, D., Zemlak, T.S., Boutillier, J.A., et al. DNA barcoding of Pacific Canada's fishes[J]. Marine Biology,2009,156(12):2641-2647.
    [150]Ward, R.D., Costa, F.O., Holmes, B.H., et al. DNA barcoding of shared fish species from the North Atlantic and Australasia:minimal divergence for most taxa, but Zeus faber and Lepidopus caudatus each probably constitute two species[J]. Aquatic Biology,2008,3:71-78.
    [151]Weigt, L.A., Baldwin, C.C., Driskell, A., et al. Using DNA Barcoding to Assess Caribbean Reef Fish Biodiversity:Expanding Taxonomic and Geographic Coverage[J]. PLoS One,2012,7(7):e41059.
    [152]Schindel, D. and Miller, S.E. DNA barcoding a useful tool for taxonomists[J]. Nature.2005,435:17-117.
    [153]Weigt, L.A., Baldwin, C.C., Driskell, A., et al. Using DNA Barcoding to Assess Caribbean Reef Fish Biodiversity:Expanding Taxonomic and Geographic Coverage[J], PLoS ONE,2012,7(7):e41059.
    [154]Ward, R.D., Hanner, R. and Hebert, P.D. The campaign to DNA barcode all fishes, FISH-BOL[J]. Journal of Fish Biology,2009,74(2):329-356.
    [155]Vences, M., Thomas, M., Van der Meijden, A., et al. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians[J]. Frontiers in Zoology,2005,2(1):5.
    [156]Pleyte, K.A., Duncan, S.D. and Phillips, R.B. Evolutionary relationships of the salmonid fish genus Salvelinus inferred from DNA sequences of the first internal transcribed spacer (ITS1) of ribosomal DNA[J]. Molecular Phylogenetics and Evolution,1992,1(3):223-230.
    [157]Matejusova, I., Gelnar, M., McBeath, A.J., et al. Molecular markers for gyrodactylids (Gyrodactylidae:Monogenea) from five fish families (Teleostei)[J]. International Journal for Parasitology,2001,31(7):738-745.
    [158]Chow, S., Nakagawa, T., Suzuki, N., et al. Phylogenetic relationships among Thunnus species inferred from rDNA ITS1 sequence[J]. Journal of Fish Biology,2006,68(A):24-35.
    [159]Sajdak, S.L. and Phillips, R.B. Phylogenetic relationships among Coregonus species inferred from the DNA sequence of the first internal transcribed spacer (ITS1) of ribosomal DNA[J]. Canadian Journal of Fisheries and Aquatic Sciences,1997,54(7):1494-1503.
    [160]SIMONS, C., Frati, F., Beckenbach, A., et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers [J]. Annals of the entomological Society of America,1994,87(6):651-701.
    [161]Kambhampati, S. and Smith, P. PCR primers for the amplification of four insect mitochondrial gene fragments[J]. Insect Molecular Biology,1995,4(4): 233-236.
    [162]吕国庆和李思发.鱼类线粒体DNA多态研究和应用进展[J].中国水产科学,1998,5(3):94-103.
    [163]肖武汉和张亚平.鱼类线粒体DNA的遗传与进化[J].水生生物学报,2000,24(4):384-391.
    [164]张燕,张鹗,何舜平.中国鲿科鱼类线粒体DNA控制区结构及其系统发育分析[J].水生生物学报,2004,27(5):463-467.
    [165]陈四海,区又君,李加儿.鱼类线粒体DNA及其研究进展[J].生物技术通报,2011,(3):13-20.
    [166]Martinez-Navarro, E.M., Galian, J. and Serrano, J. Phylogeny and molecular evolution of the tribe Harpalini (Coleoptera, Carabidae) inferred from mitochondrial cytochrome-oxidase I[J]. Molecular phylogenetics and Evolution,2005,35(1):127-146.
    [167]毕潇潇,高天翔,肖永双,等.4种鳕鱼线粒体16S rRNA,COI和Cyt b基因片段序列的比较研究[J].南方水产科学,2009,5(3):46-52.
    [168]张凤英,马凌波,施兆鸿,等.两种鲷属鱼类线粒体COI基因片段序列的比较[J].上海水产大学学报,2006,15(4):403-408.
    [169]陈姝君,赫崇波,木云雷,等.硬骨鱼类线粒体基因系统发育信息效率分析[J].中国水产科学,2008,15(1):12-21.
    [170]刘楚吾,徐田军,刘丽,等.笛鲷属(Lutjanus)鱼类线粒体16S rRNA[J].海洋与湖沼,2009,40(5):563-571.
    [171]郭立,李隽,王忠锁,等.基于四个线粒体基因片段的银鱼科鱼类系统发育[J].水生生物学报,2011,35(3):449-459.
    [172]王中铎,郭昱嵩,陈荣玲,等.南海常见硬骨鱼类COI条码序列[J].海洋与湖沼,2009,40(5):608-614.
    [173]Hebert, P.D., Ratnasingham, S. and deWaard, J.R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species [J]. Proceedings of Biological Sciences,2003,270:Suppl 1 S96-99.
    [174]Moritz, C. and Cicero, C. DNA barcoding:promise and pitfalls[J]. PLoS Biology,2004,2(10):e354.
    [175]李涛,赖旭龙,钟扬.利用DNA序列构建系统树的方法[J].遗传,2004,26(2):205-210.
    [176]Rodriguez-Trelles, F., Tarrio, R. and Ayala, F.J. Evidence for a high ancestral GC content in Drosophila[J]. Molecular Biology and Evolution,2000,17(11): 1710-1717.
    [177]Booton, G.C., Kaufman, L., Chandler, M., et al. Evolution of the ribosomal RNA internal transcribed spacer one (ITS-1) in cichlid fishes of the Lake Victoria region[J], Molecular phylogenetics and evolution,1999,11(2): 273-282.
    [178]Brand, M.D. Regulation analysis of energy metabolism[J]. Journal of Experimental Biology,1997,200(2):193-202.
    [179]Graeber, M.B. and Muller, U. Recent developments in the molecular genetics of mitochondrial disorders[J]. Journal of the neurological sciences,1998,153(2): 251-263.
    [180]Kroemer, G., Dallaporta, B. and Resche-Rigon, M. The mitochondrial death/life regulator in apoptosis and necrosis[J]. Annual review of physiology,1998, 60(1):619-642.
    [181]Wei, Y.-H. Oxidative stress and mitochondrial DNA mutations in human aging[J]. Experimental Biology and Medicine,1998,217(1):53-63.
    [182]Broughton, R.E., Milam, J.E. and Roe, B.A. The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA[J]. Genome research,2001,11(11):1958-1967.
    [183]Chang, Y.-s., Huang, F.-1. and Lo, T.-b. The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial genome [J]. Journal of Molecular Evolution,1994,38(2):138-155.
    [184]Curole, J.P. and Kocher, T.D. Mitogenomics:digging deeper with complete mitochondrial genomes[J]. Trends in Ecology and Evolution,1999,14(10): 394-398.
    [185]Li, X., Musikasinthorn, P. and Kumazawa, Y. Molecular phylogenetic analyses of snakeheads (Perciformes:Channidae) using mitochondrial DNA sequences[J]. Ichthyological Research,2006,53(2):148-159.
    [186]Benziger, A., Philip, S., Raghavan, R., et al. Unraveling a 146 years old taxonomic puzzle:validation of Malabar snakehead, species-status and its relevance for channid systematics and evolution[J]. PLoS One,2011,6(6): e21272.
    [187]Wang, J. and Yang, G. The complete mitogenome of the snakehead Channa argus (Perciformes:Channoidei):Genome characterization and phylogenetic implications[J]. Mitochondrial DNA,2011,22(4):120-129.
    [188]李伟文,陆松敏,刘建仓,et al.线粒体DNA提取方法的比较[J].国外医学:分子生物学分册,2003,25(3):191-193.
    [189]Xia, J., Xia, K., Gong, J., et al. Complete mitochondrial DNA sequence, gene organization and genetic variation of control regions in Parargyrops edita[J]. Fisheries Science,2007,73(5):1042-1049.
    [190]Tamura, K. and Aotsuka, T. Rapid isolation method of animal mitochondrial DNA by the alkaline lysis procedure[J]. Biochemical Genetics,1988,26(11): 815-819.
    [191]Manchado, M., Catanese, G. and Infante, C. Complete mitochondrial DNA sequence of the Atlantic bluefin tuna Thunnus thynnus[J]. Fisheries Science, 2004,70(1):68-73.
    [192]Lowe, T.M. and Eddy, S.R. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic Acids Research,1997, 25(5):955-964.
    [193]Miya, M. and Nishida, M. Use of mitogenomic information in teleostean molecular phylogenetics:a tree-based exploration under the maximum-parsimony optimality criterion[J]. Molecular Phylogenetics and Evolution,2000,17(3):437-455.
    [194]Thompson, J.D., Gibson, T.J., Plewniak, F., et al. The CLUSTAL-X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research,1997,25(24):4876-4882.
    [195]Saitou, N. and Nei, M. The neighbor-joining method:a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution,1987, 4(4):406-425.
    [196]Jones, D.T., Taylor, W.R. and Thornton, J.M. The rapid generation of mutation data matrices from protein sequences[J]. Computer Applications in the Biosciences:CABIOS,1992,8(3):275-282.
    [197]Jondeung, A., Sangthong, P. and Zardoya, R. The complete mitochondrial DNA sequence of the Mekong giant catfish (Pangasianodon gigas), and the phylogenetic relationships among Siluriformes[J]. Gene,2007,387(1):49-57.
    [198]Liu, Y. and Cui, Z. The complete mitochondrial genome sequence of the cutlassfish Trichiurus japonicus (Perciformes:Trichiuridae):Genome characterization and phylogenetic considerations [J]. Marine Genomics,2009, 2(2):133-142.
    [199]Miya, M., Takeshima, H., Endo, H., et al. Major patterns of higher teleostean phylogenies:a new perspective based on 100 complete mitochondrial DNA sequences[J]. Molecular Phylogenetics and Evolution,2003,26(1):121-138.
    [200]Cui, Z., Liu, Y., Li, C.P., et al. The complete mitochondrial genome of the large yellow croaker, Larimichthys crocea (Perciformes, Sciaenidae):Unusual features of its control region and the phylogenetic position of the Sciaenidae[J]. Gene,2009,432(1):33-43.
    [201]Peng, Z., Wang, J. and He, S. The complete mitochondrial genome of the helmet catfish Cranoglanis bouderius (Siluriformes:Cranoglanididae) and the phylogeny of otophysan fishes[J]. Gene,2006,376(2):290-297.
    [202]Miya, M. and Nishida, M. Organization of the mitochondrial genome of a deep-sea fish, Gonostoma gracile (Teleostei:Stomiiformes):first example of transfer RNA gene rearrangements in bony fishes[J]. Marine Biotechnology, 1999,1(5):416-426.
    [203]Oh, D.-J., Kim, J.-Y., Lee, J.-A., et al. Complete mitochondrial genome of the rabbitfish Siganus fuscescens (Perciformes, Siganidae) Full Length Research Paper[J]. Mitochondrial DNA,2007,18(4):295-301.
    [204]Ostellari, L., Bargelloni, L., Penzo, E., et al. Optimization of single-strand conformation polymorphism and sequence analysis of the mitochondrial control region in Pagellus bogaraveo (Sparidae, Teleostei):rationalized tools in fish population biology[J]. Animal Genetics,1996,27(6):423-427.
    [205]Lee, W.-J., Conroy, J., Howell, W.H., et al. Structure and evolution of teleost mitochondrial control regions[J]. Journal of Molecular Evolution,1995,41(1): 54-66.
    [206]Sun, P., Yin, F., Gao, Q., et al. Genetic diversity and population structure of silver pomfret (Pampus argenteus) in the Indo-West Pacific revealed by mitochondrial control region sequences [J]. Biochemical Systematics and Ecology,2013,51:28-36.
    [207]Zhang, Y., Zhang, H., Gao, T., et al. Structure of mitochondrial DNA control region and molecular phylogenetic relationship among three flounders of genus Pleuronectes [J]. Biochemical Systematics and Ecology,2011,39(4): 627-634.
    [208]Kartavtsev, Y.P., Jung, S.-O., Lee, Y.-M., et al. Complete mitochondrial genome of the bullhead torrent catfish, Liobagrus obesus (Siluriformes, Amblycipididae):Genome description and phylogenetic considerations inferred from the CytB and 16S rRNA genes[J]. Gene,2007,396(1):13-27.
    [209]Dettai, A. and Lecointre, G. Further support for the clades obtained by multiple molecular phylogenies in the acanthomorph bush[J]. Comptes Rendus Biologies,2005,328(7):674-689.
    [210]杨小强.闽香鳢[乌鳢(♂)×斑鳢(♀)]遗传生物学研究I.子代和亲本形态比较[J].福建水产,2004,(3):41-44.
    [211]冯晓宇,王宇希,李行先,等.池塘养殖杂交鳢高效试验[J].科学养鱼,2008,(3):31-32.
    [212]王国泽,左福元,曾兵.SRAP分子标记的研究进展及在植物上的应用[J].畜牧与兽医,2013,45(9):92-95.
    [213]杨迎花,李先信,曾柏全,等.新型分子标记SRAP的原理及其研究进展[J].湖南农业科学,2009,(5),15-17,20.
    [214]乔慧,吴滟,傅洪拓,等.应用SSR和SRAP标记构建青虾遗传连锁图谱[J].中国水产科学,2012,19(2):202-210.
    [215]周劲松,曹哲明,杨国梁,等.罗氏沼虾缅甸引进种和浙江本地种及其杂交种的生长性能与SRAP分析[J].中国水产科学,2006,13(4):667-673.
    [216]丁炜东,曹丽萍,曹哲明.草鱼种质相关SRAP及SCAR的分子标记[J].动物学报,2008,54(3):475-481.
    [217]胡则辉,徐君卓,王跃斌,等.三疣梭子蟹雌雄个体遗传差异的SRAP分析[J].上海海洋大学学报,2010,19(6):734-738.
    [218]King, T. and Johnson, R. Novel tetra-nucleotide microsatellite DNA markers for assessing the evolutionary genetics and demographics of Northern Snakehead (Channa argus) invading North America[J]. Conservation Genetics Resources, 2011,3(1):1-4.
    [219]温晓曦和孙效文.乌鳢微卫星DNA分子标记的分离及筛选[J].大连水产学院学报,2010,25(3):260-264.
    [220]张博和宋文平.微卫星多重PCR在水生动物亲权分析中的研究进展[J].海洋渔业,2012,34(3):350-356.
    [221]吴继法和吴登俊.微卫星DNA在家畜亲子鉴定中的应用及研究进展[J].国外畜牧科技,2001,28(5):28-32.
    [222]张涛,路宏朝,李新生.微卫星进化属性及其功能的研究进展[J].中国农学通报,2010,26(01):44-47.
    [223]李美琼,高浦新,朱友林,等.微卫星(SSR)分子标记应用于濒危植物保护的研究进展[J].江西林业科技,2011,(2):24-28.
    [224]张云武和张亚平.微卫星及其应用[J].动物学研究,2001,22(4):315-320.
    [225]周莉和刘静霞.应用微卫星标记对雌核发育银鲫的遗传多样性初探[J].动物学研究,2001,22(4):257-264.
    [226]易少奎,高泽霞,罗伟,等.团头鲂EST-SSR在厚颌鲂中的跨种扩增及杂交F1的鉴定[J].水产学报,2013,37(7):970-977.
    [227]秦艳杰,刘晓,张海滨,等.海湾扇贝杂交后代的微卫星鉴定[J].中国水产科学,2007,14(4):672-677.
    [228]宋红梅,白俊杰,全迎春,等.三种罗非鱼的微卫星分子鉴定和遗传结构分析[J].农业生物技术学报,2009,16(6):952-958.
    [229]Jackson, T.R., Ferguson, M.M., Danzmann, R.G., et al. Identification of two QTL influencing upper temperature tolerance in three rainbow trout (Oncorhynchus mykiss) half-sib families[J]. Heredity,1998,80(2):143-151.
    [230]Liu, Z. and Dunham, R. Genetic linkage and QTL mapping of ictalurid catfish[J]. Sta Cir Bulletin,1997,321:1-19.
    [231]Coimbra, M.R., Kobayashi, K., Koretsugu, S., et al. A genetic linkage map of the Japanese flounder, Paralichthys olivaceus [J]. Aquaculture,2003,220(1): 203-218.
    [232]Chistiakov, D.A., Hellemans, B. and Volckaert, F.A. Microsatellites and their genomic distribution, evolution, function and applications:a review with special reference to fish genetics[J]. Aquaculture,2006,255(1):1-29.
    [233]郑荷子,易提林,梁旭方,等.翘嘴鳜连续4代选育群体遗传多样性及遗传结构分析[J].淡水渔业,2013,43(6):8-12.
    [234]王学颖,高远镇,杜晓东,等.马氏珠母贝金黄壳色系F3和基础群体遗传结构比较[J].海洋通报,2012,31(3):324-328.
    [235]姜虎成,冯建彬,丁怀宇,等.淮河安徽段日本沼虾野生群体遗传结构的微卫星分析[J].上海海洋大学学报,2012,21(2):167-175.
    [236]Albertson, R.C., Streelman, J.T., Kocher, T.D., et al. Integration and evolution of the cichlid mandible:the molecular basis of alternate feeding strategies[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(45):16287-16292.
    [237]Streelman, J., Webb, J., Albertson, R., et al. The cusp of evolution and development:a model of cichlid tooth shape diversity [J]. Evolution and Development,2003,5(6):600-608.
    [238]朱树人.乌鳢和斑鳢微卫星开发及在F1代鉴定与群体遗传学分析中的应用[硕士毕业论文],上海:上海海洋大学,2011,22-23.
    [239]Weber, J.L. Informativeness of human (dC-dA) n (dG-dT)n polymorphisms[J]. Genomics,1990,7(4):524-530.
    [240]Liu, Z. and Cordes, J. DNA marker technologies and their applications in aquaculture genetics[J]. Aquaculture,2004,238(1):1-37.
    [241]Aguilar, A. and Garza, J.C. A comparison of variability and population structure for major histocompatibility complex and microsatellite loci in California coastal steelhead (Oncorhynchus mykiss Walbaum)[J]. Molecular Ecology, 2006,15(4):923-937.
    [242]Narum, S.R., Powell, M.S., Evenson, R., et al. Microsatellites reveal population substructure of Klickitat River native steelhead and genetic divergence from an introduced stock[J]. North American Journal of Fisheries Management, 2006,26(1):147-155.
    [243]Sekino, M. and Hara, M. Linkage maps for the Pacific abalone (genus Haliotis) based on microsatellite DNA markers[J]. Genetics,2007,175(2):945-58.
    [244]Shimoda, N., Knapik, E.W., Ziniti, J., et al. Zebrafish genetic map with 2000 microsatellite markers[J]. Genomics,1999,58(3):219-32.
    [245]Botstein, D., White, R.L., Skolnick, M., et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American journal of human genetics,1980,32(3):314.
    [246]全迎春,孙效文,梁利群.应用微卫星多态分析四个鲤鱼群体的遗传多样性[J].动物学研究,2005,26(6):595-602.
    [247]王长忠,梁宏伟,邹桂伟,等.长江中上游两个鲢群体遗传变异的微卫星 分析[J].遗传,2008,30(10):1341-1348.
    [248]Liu, F., Xia, J.-H., Bai, Z.-Y., et al. High genetic diversity and substantial population differentiation in grass carp (Ctenopharyngodon idella) revealed by microsatellite analysis[J]. Aquaculture,2009,297(1):51-56.
    [249]鲁翠云,孙效文,梁利群.鳙鱼微卫星分子标记的筛选[J].中国水产科学,2005,12(2):192-196.
    [250]杨弘,李大宇,曹祥,等.微卫星标记分析罗非鱼群体的遗传潜力[J].遗传,2011,33(7):768-775.
    [251]杨凯,高银爱,丹成,等.翘嘴鳜养殖与野生群体及其家系的遗传多样性分析[J].淡水渔业,2013,43(3):3-8.
    [252]Frankel, O.H. and Soule, M.E. Conservation and evolution[M]. Cambridge: Cambridge University Press,1981,10-95.
    [253]Hedrick, P.W. and Miller, P.S. Conservation genetics:techniques and fundamentals[J]. Ecological Applications,1992,2:30-46.
    [254]Jimenez, J.A., Hughes, K.A., Alaks, G., et al. An experimental study of inbreeding depression in a natural habitat[J]. Science,1994,266(5183): 271-273.
    [255]Lande, R. Genetics and demography in biological conservation[J]. Science, 1988,241(4872):1455-1460.
    [256]Mills, S.L. and Smouse, P.E. Demographic consequences of inbreeding in remnant populations[J]. American Naturalist,1994,144:412-431.
    [257]Ralls, K., Ballou, J.D. and Templeton, A. Estimates of Lethal Equivalents and the Cost of Inbreeding in Mammals[J]. Conservation. Biology,1988,2(2): 185-193.
    [258]Nei, M.N., Maruyama, T. and Chakraborty, R. The bottleneck effect and genetic variability in populations[J]. Evolution,1975,29:1-10.
    [259]Hartl, D.L. and Clark, A.G. Principles of population genetics[M]. Sunderland, Massachusetts:Sinauer Associates,Inc. Publishers,1997,257-307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700