磷脂在黄颡鱼仔稚鱼人工微粒饲料中应用及其作用机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷脂是一种生物活性物质,具有独特的理化性质和营养价值,其应用前景十分广阔。虽然已有研究报道磷脂在水产动物幼体饲料中具有潜在的重要作用,但目前关于水产动物幼体需要磷脂的原因缺乏了解。本论文通过系统研究在黄颡鱼仔稚鱼人工饲料中添加磷脂对其生长、发育、存活、耐受力、脂类代谢、抗氧化功能及肠道和肝脏组织学结构的影响,从宏观和微观初步探讨仔稚鱼对磷脂需求的机理,为磷脂在仔稚鱼人工饲料中的应用开发提供参考。
     1黄颡鱼早期发育阶段受精卯和鱼体脂类及脂肪酸组成变化
     目的:研究黄颡鱼受精卵孵化期间和仔鱼发育阶段磷脂、脂肪含量和脂肪酸的组成变化规律。方法:采用常规化学分析方法和气相色谱法对黄颡鱼从鱼卵受精开始至仔鱼孵化后未投饵的7d内的脂类含量和脂肪酸组成进行测定。结果:受精卵在整个孵化期间脂肪含量有下降趋势,而磷脂含量在受精16h后略有增加。受精卵中不饱和脂肪酸含量大于饱和脂肪酸含量。受精卵在整个孵化期间各种脂肪酸含量无明显变化。仔鱼孵化后,鱼体总脂肪和磷脂含量急剧下降,总脂含量从0日龄的4.57%降低到7日龄的0.75%,磷脂含量则从1.32%下降到0.14%。进一步分析发现,0~5日龄,鱼体总脂肪含量的下降幅度明显大于磷脂。仔鱼在饥饿期间鱼体脂肪酸组成发生明显变化,单不饱和脂肪酸含量下降最为明显,尤其是C18:1。仔鱼在饥饿期间,脂肪酸按n-9>n-6>n-3顺序被先后利用,黄颡鱼仔鱼发育阶段主要以单不饱和脂肪酸作为能量代谢基质,而C20:4n6(AA)和C22:6n3(DHA)优先于C20:5n3(EPA)被保存下来。结论:磷脂是黄颡鱼仔稚鱼阶段代谢的重要能源,是仔稚鱼正常生长和发育所必需的重要营养素,仔稚鱼对磷脂的需求量很大。
     2人工饲料中添加磷脂对黄颡鱼仔稚鱼生长、存活及耐受力的影响
     目的:研究人工微粒饲料中添加不同水平磷脂对黄颡鱼仔稚鱼生长、存活及耐受力的影响。方法:通过生长试验,选取同批孵化的黄颡鱼仔鱼,随机分成5组,每组4个重复,每个重复10000尾鱼,其中四组饲喂人工饲料,另外一组饲喂轮虫,作为对照组,进行饲养试验,试验期21d。试验人工饲料均含94%的同一种基础饲料和6%脂肪源,脂肪源由不同添加水平的大豆磷脂(0%、2%、4%、6%)和鱼油、豆油(2:1)(6%、4%、2%、0%)构成。试验结束后,测定各试验组仔稚鱼生长性能、存活率及耐受力。结果:日粮磷脂含量显著影响黄颡鱼仔稚鱼生长(p<0.05)。各组黄颡鱼的体重和全长随饲料中磷脂添加量的提高呈上升趋势,其中以添加6%磷脂的人工饲料组的仔稚鱼生长最佳,和轮虫组饲喂效果相当。14日龄和21日龄时,磷脂对黄颡鱼肥满度变化的影响均未达到显著水平(p>0.05)。在本试验条件下饲喂人工饲料的黄颡鱼存活率都比较高,达到90%以上,除PL0组外,各组差异不显著。未添加磷脂组黄颡鱼的存活率低于其它各组且随着饲料中磷脂水平的增加有提高的趋势。7~14日龄PL6组和轮虫对照组黄颡鱼仔稚鱼的日增重、体长相对增长率、体重相对增长率、特定生长率显著高于其它试验组(p<0.05),而PL0组最低(p<0.05)。14~21日龄各组日增重较7~14日龄高,仍以PL6组日增重最明显,而轮虫对照组此阶段日增重与7~14日龄期间相比却增长不多。14~21日龄阶段各组黄颡鱼体长相对增长率、体重相对增长率、特定生长率均比7~14日龄有所下降,尤其以轮虫对照组下降最为明显。但PL0组体重增长率和特定生长率却显著高于其它各组(p<0.05)。从整个试验期来看,黄颡鱼的日增重、体长相对增长率、体重相对增长率、特定生长率均随饲料中磷脂水平的上升而提高。黄颡鱼仔稚鱼体重与体长的回归方程符合鱼类生长的一般模式。各组黄颡鱼仔稚鱼体重与体长关系式指数b在2.62~2.77之间。黄颡鱼仔稚鱼饲料系数随磷脂添加水平的增加呈下降趋势。磷脂对提高黄颡鱼仔稚鱼耐受力的影响效果不是很明显。结论:磷脂能有效促进黄颡鱼仔稚鱼生长,提高饲料效率,增加存活率。
     3人工饲料中添加磷脂对黄颡鱼仔稚鱼鱼体脂类和脂肪酸组成的影响
     目的:研究饲料中不同脂肪源及磷脂添加水平对黄颡鱼脂质代谢特别是脂肪酸相对含量的影响,进一步探讨磷脂促生长作用机理。方法:试验设计与第2部分相同,饲养结束后,测定各试验组黄颡鱼鱼体脂类成分及脂肪酸组成。结果:各组饲料在稳定性试验前后其脂肪酸组成并无明显增减变化。磷脂对人工饲料在水中的脂肪酸稳定性无显著影响。随饲料中磷脂添加量上升和日龄增长,黄颡鱼鱼体总脂肪含量有升高的趋势。PL4、PL6组鱼体脂肪含量显著高于PL0、PL2组(p<0.05)。21日龄鱼体脂肪含量以PL6组最高,显著高于其它各组(p<0.05),其他两组间差异不显著(p>0.05)。饲料中添加不同水平的磷脂对14日龄黄颡鱼鱼体磷脂含量有影响,14日龄时,PL4、PL6与轮虫对照组间鱼体磷脂含量差异不显著(p>0.05),均显著高于PL0组(p<0.05)。21日龄各组间鱼体磷脂含量无显著性差异(p>0.05)。21日龄与14日龄相比,PL0组鱼体磷脂含量增加幅度显著高于其他组(p<0.05)。14日龄时,鱼体C18:2n6c、C18:3n6、C18:3n3、PUFA和n-6PUFA含量各组间有显著差异(p<0.05),且随磷脂添加水平增加而增加。PL6组EPA和DHA含量显著高于PL0组(p<0.05)。鱼体的C18:0、SFA含量随磷脂添加而显著降低。21日龄时,鱼体的C18:2n6c、PUFA和n-6PUFA含量在添加磷脂组仍是显著升高(p<0.05),与此相反,C16:0、SFA含量降低。不同日龄鱼体脂肪酸组成比较,C18:2n6c、C18:3n3、EPA、DHA、PUFA和n-3PUFA含量有随日龄增长而呈上升的趋势,而C16:0、C20:4n6和SFA含量呈进一步降低的趋势。轮虫对照组鱼体脂肪酸组成与人工饲料各组比较,其C16:0、C18:0、EPA和SFA含量较高,C18:2n6c、DHA和PUFA含量相对较低,与轮虫中相应脂肪酸的含量存在着较明显的平行变化趋势。结论:饲料中添加磷脂,能够促进黄颡鱼仔稚鱼体内脂类沉积,改善饲料中的EFA的有效吸收与利用。
     4人工饲料中添加磷脂对黄颡鱼仔稚鱼抗氧化能力及ATP酶活性的影响
     目的:研究饲料中添加磷脂对黄颡鱼仔稚鱼抗氧化损伤能力及某些重要代谢酶的影响,以进一步探讨磷脂对仔稚鱼生长影响的机制。方法:试验设计与第2部分相同,饲养结束后,测定各试验组黄颡鱼鱼体中抗氧化酶活性及ATP酶活性。结果:随着饲料中磷脂水平的提高,黄颡鱼鱼体中的MDA含量逐渐下降,SOD、CAT和GST活性相应得到提高,GSH-PX活性也是以磷脂组显著高于未添加磷脂组(p<0.05),其中磷脂添加水平为4%时GSH-PX活性达到峰值,当磷脂添加水平达到6%时,GSH-PX活性不再提高。21日龄各组黄颡鱼鱼体中的SOD、CAT、GST、GSH-PX活性比14日龄时有所上升,而MDA含量进一步下降。添加适量磷脂可显著提高黄颡鱼Na~+、K~+-ATPase和Ca~(2+)-ATPase活性。14日龄和21目龄时,添加磷脂组黄颡鱼Na~+K~+-ATPase和Ca~(2+)-ATPase活性均显著高于未添加磷脂PL0组(p<0.05),其中以PL4组ATPase活性最高,而PL0组ATPase活性最低。不同日龄黄颡鱼ATPase活性比较,21日龄人工饲料各组鱼Na~+K~+-ATPase和Ca~(2+)-ATPase活性比14日龄略有下降。结论:磷脂能够维持黄颡鱼仔稚鱼细胞膜的完整性,降低自由基对生物膜的过氧化损伤,提高机体抗氧化系统的活力和ATP酶活性。
     5饲料中不同磷脂添加水平对黄颡鱼仔稚鱼前肠和肝脏组织学的影响
     目的:研究在实际配方的人工微粒饲料中添加商品大豆磷脂对黄颡鱼仔稚鱼消化肠道肝脏器官发育及脂肪消化吸收的影响,进一步从组织学消化生理角度揭示磷脂对仔稚鱼促生长作用机理。方法:试验设计与第2部分相同,分别于14日龄和21日龄取样,制作组织切片,用病理成像系统和光学显微镜进行观察分析。结果:14同龄时PL0组黄颡鱼稚鱼前肠出现明显脂质沉积,细胞浆内有大量脂肪泡,肝脏固有结构不清,肝细胞索结构紊乱,肝窦消失,肝细胞肿胀,细胞浆呈空泡状。随着饲料中油脂添加量减少、磷脂添加量的增加,黄颡鱼稚鱼前肠粘膜上皮细胞中脂滴积聚现象逐渐减轻,杯状细胞数目增多,肝细胞空泡化程度降低。当饲料中添加6%磷脂时,黄颡鱼前肠上皮细胞和肝脏形态较正常,和轮虫组类似。21日龄黄颡鱼肠道和肝脏脂肪沉积程度较14日龄降低,肠粘膜上皮空泡化现象减少或消失,杯状细胞数目明显增多,肝脏脂肪沉积减少。结论:磷脂能减少黄颡鱼仔稚鱼前肠和肝脏脂肪积累,增强脂肪转运,促进仔稚鱼消化系统在发育过程中向成熟模式转化。随黄颡鱼仔稚鱼日龄增长,鱼体自身合成磷脂能力增强,磷脂作用随年龄增加而减弱,黄颡鱼对磷脂的需要量也随之降低。
Phospholipid(PL) is a bioactive compound,has a broad application prospect because of its unique physico-chemical property and nutritional value.Dietary PL supplementation has potential importance for the formulation of practical larval diets,but the origin of the requirement is still unclear.The study was conducted to investigate the effects of PL supplementation in formulated microdiets on growth,survival,stress resistance,lipid metabolism,antioxygen ability and foregut and liver histological changes of Pelteobagrus fulvidraco larvae.This investigation was aimed to reveal the mechanisms of the PL requirement from macroscopic and microcosmic aspects,which can provide information on the practical use of PL in larval microdiets.
     1 Changes in lipids and fatty acid composition during development in Pelteobagrus fulvidraco fertilized eggs and larvae
     Purpose:To establish the changes which during embryogenesis and early larval development,fertilized eggs and larvae of Pe#eobagrus fulvidraco were examined for lipids and fatty acid compositions.Method:The lipids content and fatty acid composition in the fertilized eggs and larvae which did not feed for 7 days after hatching were analyzed by means of common chemical assay and gas chromatography(GC).Result: The lipid content of fertilized eggs tended to increase during hatching period,while the PL content increased a little from 16h after fertilization.Fertilized eggs contained more polyunsaturated fatty acids(PUFA) and monounsaturated fatty acids(MUFA) than saturated fatty acids(SFA).There was no significant change in the proximate fatty acid composition of eggs during hatching.The lipid and PL content of larvae decreased sharply after hatching.Total lipid decreased from 4.57%on day 0 to 0.75%on day 7 and PL content decreased from 1.32%to 0.14%.A further analysis showed that the reduction in lipid content of larvae was significantly larger than in the PL content from day 0 to day 5.The fatty acid composition in starved larvae changed significantly as starvation progressed.In starved larvae the MUFA content decreased significantly and the greatest decrease occurred in the C18:1 content.In this regard the degree of decreases was,n-9>n- 6>n-3,suggesting that MUFA were a major energy source for starving Pelteobagrus fulvidraco larvae,DHA and AA were conserved in preference to EPA.Conclusion:PL is a necessary nutrient for normal growth and development of larvae which served as an important energy source for metabolism during larval period.The larval fish have a huge PL requirement.
     2 Effect of phospholipid supplementation in formulated microdiets on growth,survival and stress resistance of Pelteobagrus fulvidraco larvae
     Purpose:The effect of supplementation of soybean PL to Pelteobagrus fulvidraco larvae diets on growth survival and stress resistance were investigated.Method:All Pelteobagrus fulvidraco larvae obtained following artificial fertilization were randomly divided into 5 groups with 4 replicates of 10000 larvae each.The larvae were fed from day 3 to 21 posthatch with four diets containing the same basal diet,coated with different lipid fractions(6%diet).The lipid fractions consisted of increasing levels of soybean PL (0,2,4 or 6%of diet) and decreasing levels of mixed oil(fish oil:soybean oil,2:1).A group of larvae was fed rotifers as a control.The growth performance,survival rate and stress resistance ability were determined after the experiment.Results:the PL content of microdiets significantly influenced the performance of larvae(p<0.05).The body weight and total length of larvae increased as a result of PL supplementation.Larvae fed diet supplemented with 6%PL exhibited the best growth performance and similar to those fed rotifers.The condition factor of larvae was not significantly affected by dietary PL level on day 14 and day 21(p>0.05).Survival was high and above 90%at the end of the feeding trial in all groups and did not differ significantly among the groups,except for group PL0.Survival of fish fed the diet with no supplementation of PL was lower than the other groups and tended to increase with increasing dietary PL levels.Larvae fed PL6 diet and rotifers had significantly higher average daily gain(ADG),length gain rate(LGR), weight gain rate(WGR) and specific growth rate(SGR) than those fed the other diets (p<0.05) and larvae fed PL0 diet was the lowest(p<0.05) during days 0-7.The ADG of larvae in each group during days 14-21 was higher than that during 0-7days.The larvae in group PL6 still had the highest ADG,while the ADG of larvae fed rotifers increased little during days 14-21.The LGR,WGR and SGR of larvae in each group were lower during days 14-21 than those during days 7-14 and those of the larvae in control group fed rotifers decreased significantly.The WGR and SGR of larvae in group PL0 were significantly higher than those in the other groups(p<0.05).During the whole test period, the ADG,LGR,WGR and SGR of larvae all increased with increasing dietary PL levels. The length-weight relation of Pelteobagrus fulvidraco larvae was consistent with the general growth model of fish.The index b of length-weight relation equation varied from 2.62 to 2.77.The feed coefficient(FC) of larvae tended to decreased with the increasing dietary PL levels.The stress resistance ability of larvae appears to be less affected by the dietary PL supply.Conclusion:PL had a growth-promoting effect on Pelteobagrus fulvidraco larvae,improved feed efficiency and enhanced survive rate.
     3 Effect of phospholipid supplementation in formulated microdiets on lipids and fatty acid composition of Pelteobagrus fulvidraco larvae
     Purpose:This study was undertaken to assess the effect of different lipid sources and dietary PL supplementation on lipid metabolism especially fatty acid composition of Pelteobagrus fulvidraco larvae and further investigated the mechanism of the growth-promoting effect of PL.Method:According to the design of part 2 above,the lipids content and fatty acid compositions in whole body of larval fish in each treatment were analyzed after feeding.Results:Dietary fatty acid loss or gain did not change significantly after the stability test.The fatty acid compositions of microdiets leached into the water during the stability test was not affected by dietary PL supplementation.The total lipid content of larvae tended to increased as a result of PL supplementation and the fish aged.The total lipid contents of group PL4 and PL6 were significantly higher than that of group PL0 and PL2(p<0.05) and group PL6 was highest on day 21,though the difference was not significant from the other groups(p>0.05).The PL content of larvae was affected by dietary PL on day 14.The difference of PL content among group PL4, PL6 and control group fed rotifers was not significant(p>0.05) and significantly higher than that in group PL0(p<0.05).The PL content of larvae did not differ significantly among the groups on day 21(p>0.05).Compared with day 14,the increase of PL content in group PL0 was significantly higher than that in the other groups on day 21(p<0.05). On day 14,the contents of C18:2n6c,C18:3n6,C18:3n3,PUFA and n-6PUFA showed significant difference(p<0.05) and increased with increasing the dietary PL levels.The contents of DHA and EPA in group PL6 were significantly higher than those in group PL0 (p<0.05).The contents of C18:0 and SFA decreased significantly as a result of PL supplementation.On day 21,C18:2n6c,PUFA and n-6PUFA contents of larvae fed the diets with supplementation PL were increased significantly,while the 16:0 and SFA contents decreased.Comparison of fatty compositions of larvae at different ages of each group,the contents of C18:2n6c,C18:3n3,EPA,DHA,PUFA and n-3PUFA increased, while C 16:0,C20:4n6 and SFA decreased as the fish aged.The contents of C 16:0,C 18:0, EPA and SFA in control group fed rotifers were higher than those in groups fed microdiets,and C18:2n6c,DHA and PUFA were lower.The fatty acid compositions of larvae fed rotifers were characterized by the specific fatty acids related to the rotifer. Conclusion:The supplementation of PL to the diet could increased lipid retention in larval fish and enhanced the absorption and utilization of dietary EFA.
     4 Effect of phospholipid supplementation in formulated mierodiets on antioxygen ability and ATPase activity of Pelteobagrus fulvidraco larvae
     Purpose:This study was undertaken to assess the effect of dietary PL supplementation on antioxygen ability and ATPase activity of Pelteobagrus fulvidraco larvae and further investigated the mechanism of the growth-promoting effect of PL. Method:According to the design of part 2 above,antioxygen ability and ATPase activity of larval fish in each treatment were analyzed after feeding.Results:The content of MDA in larvae decreased and SOD,CAT and GST activities increased with increasing the dietary PL levels.The GSH-PX activity of larvae fed the diets with supplementation PL were higher than the PL0 group(p<0.05).The GSH-PX activity was the highest in the group fed 4%PL and did not improved by the addition of 6%PL.The SOD,CAT,GST and GSH-PX activities of larvae increased while the content of MDA decreased on day 21 compared with day 14.The addition of PL improved Na~+,K~+-ATPase and Ca~(2+)-ATPase activities of larvae.The Na~+,K~+-ATPase and Ca~(2+)-ATPase activities of larvae fed the diets with supplementation PL were significantly higher than the PL0 group fed the diet with no supplementation PL on day 14 and day 21(p<0.05).The ATPase activity of group PL4 was the highest and group PL0 was the lowest.Comparison of ATPase activities of larvae at different ages of each group,The Na~+,K~+-ATPase and Ca~(2+)-ATPase activities of larvae fed microdiets decreased a little on day 21 compared with day 14.Conclusion:PL could maintain cellular membrane integrity,induce the oxidative damage to biomembrane by free radicle and improve antioxygen ability and ATPase activity of larval fish.
     5 Effect of phospholipid supplementation in formulated microdiets on foregut and liver histological changes of Pelteobagrus fulvidraco larvae
     Purpose:This study was undertaken to determine the effect of commercial PL supplementation in formulated microdiets on foregut and liver histological changes of Pelteobagrus fulvidraco larvae,which can further investigated the mechanism of the growth-promoting effect of PL with the study of histology and digestive physicalogy. Method:According to the design of part 2 above,Larvae were sampled from each group on days 14 and 21 for make tissue sections.The tissue sections were observed and analyzed by histological image system and light microscopy.Results:On day 14,larvae fed PL0 diet showed steatosis in the intestinal mucosa with a high incidence of lipid vacuoles and the hepatic tissue was in disorder with blurred hepatic trabecula,swollen hepatocytes contained numerous lipid cacuoles.The degree of lipid accumulation decreased and the number of goblet cells increased in the enterocytes of the anterior intestine with decreasing dietary oil supplementation level and with increasing PL supplementation.The enterocytes and hepatic tissue of larvae fed PL6 diet showed normal morphology,which similar to those fed rotifers.The degree of lipid accumulation in the anterior intestine and in the liver on day 21 was lower than that on day 14.The number of vacuoles in the anterior intestine decreased while goblet cells appeared more numerous.A considerable reduction of the vacuolization was also observed in the liver of fish fed the different experimental diets.Conclusion:The addition of PL to the diet caused a reduction in the degree of lipid accumulation,enhancing lipid transport and promoting the maturation of the digestive organs of larvae.As the fish aged,the ability of PL synthesis was enhanced and the effect of PL decreased,thus the PL requirement of fish decreased with age or development stage.
引文
1.边文冀,陈校辉.黄颡鱼规模养殖关键技术.南京:江苏科学技术出版社,2002,35-39
    2.蔡完其,李思发.释(日本水产学会编).稚鱼的摄饵和发育.上海:上海科学技术出版社,1979
    3.曹俊明,林鼎,劳彩玲,薛华,潘庆,田丽霞.饲料中添加大豆磷脂对草鱼肝胰脏脂质脂肪酸组成的影响.水产学报,1997,21(1):32-38
    4.常青,陈四清,张秀梅,梁萌青,刘龙常.半滑舌鳎消化系统器官发生的组织学.水产 学报,2005,29(4):447-450
    5.陈葵.甜味剂溶液及其酸碱性对黄颡鱼的引诱作用.西南农业大学学报,2002,24(1):57-60
    6.陈慕雁,张秀梅.大菱鲆仔稚幼鱼消化系统发育的组织学研究.水生生物学报,2006,30(2):236-240
    7.陈琴.黄颡鱼的生物学特性及养殖技术.江西水产科技,2001,(1):8-14
    8.陈舒泛,任亚兰,华元渝.暗纹东方鲀仔鱼期消化系统的组织学研究.水利渔业,2004,24(6):11-13
    9.陈细香,金灿彪,徐吉山,王德寿.大鳍鳠消化系统胚后发育的组织学研究.西南师范大学学报(自然科学版),2002,27(2):239-243
    10.陈彦,王重刚,陈品健.卵磷脂对花尾胡椒鲷幼鱼Ca~(2+)-ATP酶和Na~+,K~+-ATP酶活性的影响.海洋科学,2002,26(8):54-57
    11.成永旭,严生良,王武,等.饲料中磷脂和多不饱和脂肪酸对中华绒螯蟹大眼幼体育成仔蟹的成活率和生长的影响.水产学报,1998,22(1):9-15
    12.褚新洛,郑葆珊,戴定远等.中国动物志.硬骨鱼纲.鲇形目.科学出版社,1999,35-152
    13.杜金瑞.梁子湖黄颡鱼的繁殖和食性研究.动物学杂志,1963,12(2):74-77
    14.方允中,李文杰.自由基与酶.北京:科学出版社,1989,30-32
    15.方允中.自由基生命科学进展.北京:原子能出版社,1993,46-51
    16.郭霭光.基础生物化学 北京:高等教育出版社,2001,232-237
    17.韩庆,罗玉双,夏维福,王文彬.不同饲料蛋白源对黄颡鱼生长的影响.上海水产大学学报,2002a,11(3):259-263
    18.韩庆,夏维福,罗玉双,湛甜.不同能量水平对黄颡鱼生长的影响.内陆水产,2002b,27(9):36-37
    19.韩庆,夏维福,罗玉双,王文彬,刘良国,李文健.不同营养水平对黄颡鱼春片鱼种生长的影响.饲料工业,2002c,23(7):43-44
    20.韩庆,夏维福,罗玉双,王文彬.酶制剂对黄颡鱼生长性能的影响.水产学杂志,2002d,15(1):84-87
    21.何利君,莫绍橘,施新建,邹亮.黄颡鱼摄饵促进物质的研究.西南农业大学学报(自然 科学版),2005,27(3):416-419
    22.黄 峰,严安生,张桂蓉,邹桂伟,周 健,彭科来.大口鲇仔鱼消化道的组织学观察.华中农业大学学报,2000,19(1):59-63
    23.黄周英,陈彦,谢仰杰,王重刚.饲料卵磷脂对花尾胡椒鲷幼鱼生长的影响.泉州师范学院学报(自然科学),2005,23(4):89-93
    24.李静,刘班,刘成玉.红细胞膜脂质过氧化损伤及其作用机制.青岛大学医学院学报,2006,42(1):90-92
    25.梁峙,李勇.对大豆磷脂的开发应用探讨.江西食品工业,2002,(1):14-18
    26.刘存歧,王伟伟,张亚娟.水生生物超氧化物歧化酶的酶学研究进展.水产科学,2005,24(11):49-52
    27.刘景祯,刘丙阳,徐世谦,邱春刚,骆小年,刘义新.黄颡鱼仔鱼摄食习性研究.水利渔业,2000,20(1):20-21
    28.刘庆国.黄颡鱼池塘养殖技术浅析.科学养鱼,2002,(12):34-35
    29.楼允东.郑德崇.组织胚胎学.上海:上海水产学院出版社,1996,95-111
    30.罗劲松,黄颡鱼苗种培育阶段的鱼病防治.四川农业科技,2003,(2):30-30
    31.马爱军,马英杰,姚善诚.黑鲷消化系统的胚后发育研究.海洋与湖沼,2003,31(3):281-287
    32.邱春刚,张国强.汤河水库黄颡鱼的生物学及其资源利用.水产科学,2000,19(2):28-30
    33.邵邻相,何新霞,胡燕月,朱伟明,章红春.复合磷脂和大豆磷脂对大鼠血脂和心肌丙二醛及脉搏波的影响.中国药学杂志,1996,31(12):721-723
    34.邵邻相.大豆磷脂对小鼠学习记忆及脑内SOD和脂褐素含量的影响.浙江师范大学学报(自然科学版),2003,26(3):275-288
    35.沈庭栋.黄颡鱼池塘主养技术.农业新技术,2003,1:20-21
    36.汪长华,晏年春,张道明,万绍华,余万桂.大豆磷脂对受损家兔心肌细胞膜的影响.湖北省卫生职工医学院学报,1997,1:1-3
    37.王爱英.黄颡鱼适宜蛋白能量水平的研究.[硕士学位论文].武汉:华中农业大学图书馆,2006
    38.王春芳.黄颡鱼消化道的发育及其选食性研究.[硕士学位论文].武汉:华中农业大学图书馆,2001
    39.王令玲,仇潜如,邹世平,刘寒文,吴福煌.黄颡鱼生物学特性及其繁殖和饲养.淡水渔业,1989,(6):23-24
    40.王卫民,严安生,查金苗,张志国,吴建军,柏世军.黄颡鱼两种人工繁殖方法的比较研究.淡水渔业,2002,32(2):7-8
    41.温小波,刘瑛琪.黄颡鱼1冬龄鱼种的生长研究.水利渔业,2003,(2):18-19
    42.吴金英,林浩然.斜带石斑鱼消化系统胚后发育的组织学研究.水产学报,2003,27(1): 7-10
    43.吴萍,崇加荣.黄颡鱼养殖中常见疾病及防治.水利渔业,2003,23(2):65-66
    44.吴时敏.功能性油脂.北京:中国轻工业出版社,2001
    45.肖秀兰,魏宏民等.鄱阳湖水系黄颡鱼若干生物学特性的研究.江西农业学报,2002,14(4):18-22
    46.徐丽珊,楼芬苹,樊晓丽.大豆磷脂对小鼠学习记忆和抗氧化功能的影响.营养学报,2000,22(3):287-288
    47.许云贺,田河,李海峰,李永生.大豆磷脂对肉仔鸡脂肪沉积的影响.中国饲料,2004,14(21):17-18,21
    48.叶元土,林仕梅,罗莉,马建立,李恒.黄颡鱼消化能力与营养价值的研究.大连水产学院学报,1997,6(2):23-30
    49.衣艳君.卵磷脂对大鼠过氧化损伤的保护作用.聊城师院学报(自然科学版).2001,14(1):73-74
    50.余连渭.黄颡鱼幼鱼蛋白质和能量需要的研究.[硕士学位论文].武汉:华中农业大学图书馆,2003
    51.余宁,陆全平,周刚.黄颡鱼生长特征与食性的研究.水产养殖,1996,(3):19-20
    52.喻子牛,孔晓瑜,孙世春.真鲷消化道的组织学和形态学研究.水产学报,1997,21(2):113-119
    53.袁建琴,冯炜权.磷脂对运动小鼠某些生化指标的改善作用.中国运动医学杂志,2001,20(1):19-23
    54.章晓炜,汪雯翰,郑聪.黄颡鱼仔鱼食性及生长的研究.水产科学,2002,21(3):13-15
    55.赵春蓉,周小秋.磷脂与水生动物生物膜的关系.饲料研究,2005,10:15-18
    56.赵继民,周日东,张凤翔.黄颡鱼苗种繁育技术.中国水产,2002,(11):48-49
    57.周秋白,吴华东,吴凤翔,李升生,熊玲玲,张燕萍,杨发群.黄颡鱼蛋白需求量的研究.江西农业大学学报,2003,(10):763-765
    58.朱邦科,曹文宣.鲢早期发育阶段鱼体脂肪酸组成变化.水生生物学报,2002,26(2):130-135
    59.邹祺.黄颡鱼不同生长阶段适宜营养水平的研究.[硕士学位论文].武汉:华中农业大学图书馆,2005
    60.邹社校.洪湖黄颡鱼的生长,食性与渔业地位.湖北农学院学报,1999a,19(3):240-242
    61.邹社校.黄颡鱼幼鱼蛋白质需求量的研究.湖北农学院学报,1999b,19(2):143-145
    62.Abi-ayad S M E A,Kestemont P,Mélard C.Dynamics of total lipids and fatty acids during embryogenesis and larval development of Eurasian perch(Perca fluviatilis).Fish Physiology and Biochemistry,2000,23:233-243
    63.Alami-Durante H.Growth of organs and tissues in carp(Cyprinus carpio L.) larvae Growth, Development and Aging, 1990,(54): 109-116
    64. AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists, Arlington, VA, USA. 1990
    65. Balon E K. Terminology of intervals in fish development. J Fish Res Board Can, 1975, 32: 1663 -1670.
    66. Bartlett G R. Phosphorus assay in column chromatography. J. Biol. Chem. 1959, 234: 466-468
    67. Bauermeister A E M, Pirie B J S, Sargent J R. An electron microscopic study of lipid absorption in the pyloric caeca of rainbow trout (Salmo gairdneri) fed wax ester-rich zooplankton. Cell Tiss. Res, 1979, 200: 475-486
    68. Bergot P, Flechon J E. Forme et voie d'absorption intestinale des acides gras chez la truitte arc-en-ciel (Salmo gairdneri Rich.). I. Lipides en particules. Ann. Biol. Anim.Biochim. Biophys, 1970a, 10:459-472
    69. Bergot P, Flechon J E. Forme et voie d'absorption intestinale des acides gras a chaine longue chez la truite arc-en-ciel (Salmo gairdneri Rich.). II. Lipides 'etales'. Ann. Biol. Anim. Biochim. Biophys, 1970b, 10:473-480
    70. Bergot, F. Fat absorption. In: Fontaine, M.(Ed.), Nutrition des Poissons. Actes du Colloque, CNERNA,Paris, 1981, 123-129
    71. Bowen R A, Clandinin M T. Dietary low linolenic acid compared with docosahexaenoic acid alter synaptic plasma membrane phospholipid fatty acid composition and sodium-potassium ATPase kinetics in developing rats. Journal of Neurochemistry. 2002, 4: 764-774
    72. Briggs M R P, Jauncey K, Brown J H. The cholesterol and lecithin requirements of juvenile prawn (Macrobrachium rosenbergii) fed semipurified diets. Aquaculture, 1988, 70: 121-129
    73. Brinkmeyer R L. Holt G J. Response of red drum larvae to graded levels of menhaden oil in semipurified microparticulate diets. Prog. Fish-Cult, 1995, 57: 30-36
    74. Brockerhoff H, Hoyle R J, Ronald K. Retention of the fatty acid distribution pattern of a dietary triglyceride in animals. J. Biol. Chem, 1964, 239: 735-739
    75. Cahu C L, Zambonino Infante J I. Is the digestive capacity of marine fish larvae sufficient for compound diet feeding? Aquacult. Int. 1997, 5: 151-160
    76. Cahu C L, Zambonino Infante J L, Barbosa V. Effect of dietary phospholipid level and phospholipid: neutral lipid value on the development of sea bass (Dicentrarchus labrax) larvae fed a compound diet. Br. J. Nutr, 2003, 90:21-28
    77. Cahu C L, Zambonino Infante J L, Escaffre A M, Bergot P, Kaushik, S. Preliminary results on seabass Dicentrarchus labrax larvae rearing with compound diet from first feeding. Comparison with carp (Cyprinus carpio) larvae. Aquaculture, 1998, 169:1-7
    78. Cahu, Zambonino Infante J L. Is the digestive capacity of marine fish larvae sufficient for compound diet feeding? Aquacult. Int, 1997, 5: 151-160
    79. Camara M R. Dietary phosphatidylcholine requirements of Penaeus japonicus Bate and Penaeus vannamei Boone (Crustacea, Decapoda, Penaeidae). In: PhD Thesis, Univ of Ghent, Belgium 1994: 173
    80. Castell J D. Effects of purified diets containing different combinations of arachidonic and docosahexaenoic acid on survial. Growth and fatty acid composition of juvenile turbot(Scophthalmus maximus). Aquaculture, 1994, 155: 149-164
    81. Castell J, Boston L D, Conklin D E, Baum N A. Nutritionally induced molt death syndrome in aquatic crustaceans: II. The effect of B vitamin and manganese deficiencies in lobster (Homarus americanus). Crustacean Nutrition Newsletter, 1991, 7: 108-114
    82. Chapells S, Zwingel stein G. Phospholipids composition and metabolism of crustacean gills as related to changes in environmental salinities: relationship between Na~+, K~(+2)ATPase actitivity and phospholipids. Comp Biochem Physiol, 1984, (78B): 363-372
    83. Chen H Y, Jenn J S. Combined effects of dietary phosphatidylcholine and cholesterol on the growth, survival and body lipid composition of marine shrimp, Penaeus penicillatus. Aquaculture, 1991,96: 167-178
    84. Chen H Y, Tsai, R H. The dietary effectiveness of Artemia nauplii and microencapsulated food for postlarval Penaeus monodon. In: Chuang, J L, Shiau, S Y (Eds.), Research and Development of Aquatic Animal Feed in Taiwan, Vol. I. F.S.T. Monograph series No. 5, Fisheries Society of Taiwan, Taipei, 1986, 73-79
    85. Chen H Y. Requirements of marine shrimp, Penaeus monodon, juveniles for phosphatidylcholine and cholesterol. Aquaculture, 1993, 109: 165-176
    86. Conklin D E, Baum N A, Castell J D, Boston L D, Hafang L. Nutritionally induced molt death syndrome in aquatic crustaceans: I. Introduction to the problem. Crustacean Nutrition Newsletter, 1991,7: 102-107
    87. Conklin D E, D'Abramo L R, Bordner C E, Baum N A. A successful purified diet for the culture of juvenile lobsters: the effect of lecithin. Aquaculture, 1980, 21: 243-249
    88. Coutteau P, Camara M R, Sorgeloos P. The effect of different levels and sources of dietary phosphatidylcholine on the growth, survival, stress resistance, and fatty acid composition of postlarval Penaeus vannamei. Aquaculture, 1996, 147: 261-273
    89. Coutteau P, Geurden I, Camara M R, Bergot P, Sorgeloos, P. Review on the dietary effects of phospholipids in fish and crustacean larviculture. Aquaculture, 1997, 155 :149-164
    90. D'Abramo L R, Baum N A, Bordner C E, Conklin D E, Chang E S. Diet-dependent cholesterol transport in the American lobster. J. Exp. Mar. Biol. Ecol, 1985, 87: 83-96
    91. D'Abramo L R, Bordner C E, Conklin D E, Baum N A. Essentiality of dietary phosphatidylcholine for the survival of juvenile lobsters. J. Nutr, 1981,111: 425-431
    92. D'Abramo L R, Bordner C E, Conklin D E. Relationship between dietary phosphatidylcholine and serum cholesterol in the lobster Homarus sp. Mar. Biol, 1982, 67: 231-235
    93. Dabrowski K. Ontogenetical aspects of nutritional requirements in fish. Comp. Biochem. Physiol, 1986, 85:639-655
    94. Deplano M, Connes R, Diaz J P, Paris J. Intestinal steatosis in the farm reared sea bass Dicentrarchus labrax. Dis. Aquat. Org, 1989, 6: 121-130
    95. Deplano M, Diaz J P, Connes R, Kentouri-Divanach M, Cavalier F. Appearance of lipid-absorption capacities in larvae of the sea bass, Dicentrarchus labrax during transition to the exotrophic phase. Mar. Biol, 1991, 108: 361-371
    96. Deplano M, Diaz J P, Connes R, Kentouri-Divanach M, Cavalier F. Appearance of lipid-absorption capacities in larvae of the sea bass, Dicentrarchus labrax during transition to the exotrophic phase. Mar. Biol 1991, 108: 361-371
    97. Desvilettes C, Bourdier G, Breton J C. Changes in lipid class and fatty acid composition during development in pike (Esox lucius L.) eggs and larvae. Fish Physiol.Biochem, 1997, 16(13): 381-393
    98. Eldridge M B, Joseph J D, Taberski K M. Lipid and fatty acid composition of the endogenous energy sources of striped bass (Morone saxatilis) eggs. Lipids, 1983, 18: 510-513
    99. Fernandez-Diaz C, Yufera M. Detecting growth in gilthead seabream Sparus aurata L. larvae fed microcapsules. Aquaculture, 1997, 153:93-102
    100. Folch J, Lees M, Sloane G H. A simple method for isolation and purification of total lipid from animal tissues. J. Biol. Chem, 1957,226: 497-509
    101. Fontagne S, Geurden I, Escaffre A M, Bergot P. Histological changes induced by dietary phospholipids in intestine and liver of common carp (Cyprinus carpio L.) larvae. Aquaculture , 1998, 161:213-223
    102. Fraser A J, Gamble J C, Sargent J R. Changes in lipid content, lipid class composition of developing eggs of cod (Gadus morhua). Mar. Biol, 1988, 99: 307-313
    103. Fraser A J, Sargent J R, Gamble J C, McLachlan P. Lipid classes and fatty acid composition as indicators of the nutritional condition of larval Atlantic herring. Am. Fish. Soc. Symp, 1987, 2: 129-143
    104. Chu F L E, Ozkizilcik S. Lipid and Fatty acid composition of striped bass (Morone saxatilis) larvae during development. Comp. Biochem. Physicol, 1995. 111(4): 665-674
    105. Fyhn H J. First feeding of marine fish larvae: are free amino acids the source of energy. Aquaculture, 1989, 80: 111-120
    106. Geurden I, Charlon N, Marion D, Bergot P. Dietary phospholipids and body deformities in carp Cyprinus carpio larvae L. In: Lavens P, Jaspers E and Roelants I, Editors, Larvi '95 — Fish and Shellfish SymposiumGent, Belgium, Europ. Aquacult. Soc., Spec. Pub, 1995a, 24: 162-165
    107. Geurden I, Radunz-Neto J, Bergot P. Essentiality of dietary phospholipids for carp (Cyprinus carpio L.) larvae. Aquaculture, 1995b, 131: 303-314
    108. Geurden I, Coutteau P, Sorgeloos P. Effect of dietary phospholipid supplementation on growth and fatty acid composition of European seabass (Dicentrarchus labrax L.) and turbot (Scophthalmus maximus) juveniles from weaning onwards. Fish Physiol. Biochem, 1997, 16: 259-272
    109. Geurden I, Didier M, Charlon N, Coutteau P, Bergot P. Comparison of different soybean phospholipids fractions as dietary supplements for common carp (Cyprinus carpio) larvae. Aquaculture, 1998, 161: 225-235
    110. Gobley M. Recherches chimiques sur le jaune d'oeu, J. Pharm. Chim, 1846, 9:1,81, 161
    111. Gobley M. Examen comparatif du jaune d'oeufe et de la matiere cerebrale, Ibid, 1847, 11:409
    112. Gobley M. Recherches chimiques sur le jaune d'oeuf, 2. memoire, Ibid, 1847, 12:1
    113. Gobley M. Recherches chimiques sur les oeufs de carpe, Ibid, 1850, 17:401-430
    114. Gong H, Lawrence A L, Jiang D H, Gatlin III D M. Lipid Nutrition of Juvenile Litopenaeus vannamei I. Dietary Cholesterol and Phospholipid Requirements and Their Interaction. Aquaculture, 2000, 190: 305-324
    115. Gonzalez-Felix M L, Lawrence A L, Gatlin III D M, Perez-Velazquez M. Growth, survival and fatty acid composition of juvenile Litopenaeus vannamei fed different oils in the presence and absence of phospholipids. Aquaculture, 2002, 205: 325-343
    116. H Y Chen, Jenn J S. Combined effects of dietary phosphatidylcholine and cholesterol on the growth, survival, and body lipid composition of marine shrimp, Penaeus penicillatus. Aquaculture, 1991,(96): 167-178
    117. Hadas E, Koven W, Sklan D, Tandler A. The effect of dietary phosphatidylcholine on the assimilation and distribution of ingested free oleic acid (18:1n-9) in gilthead seabream (Sparus aurata) larvae. Aquaculture, 2003, 217: 577-588
    118. Harada K. Relationships between structure and feeding attraction activity of certain -amino acids and lecithin in aquatic animals. Nippon Suisan Gakkaishi, 1987, 53: 2243-2247
    119. Heinz J M H, Martin G. Are membrane lipids involved in osmoregulation? Studies in vivo on the. European eel, Anguilla anguilla, after reduced ambient salinity. Environmental Biology of Fishes.2004, 70(1): 57-65
    120. Henderson R J, Sargent J R. Fatty acid metabolism in fish. Nutrition and Feeding in Fish, 1985: 349-364
    121. Henning S J, Rubin D C , Shulman R J. Ontogeny of the intestinal mucosa. In : Johnson , L R Ed , Physiology of the Gastrointestinal Tract, 3rd edition Raven Press , New York, 1994, 571-610
    122. Hertrampf J W. Feeding aquatic animals with phospholipids: II. Fishes. In: Lucas Meyer Publication No. 11, Lucas Meyer, Hamburg, 1992: 70
    123. Hilton J W, Harrison K E, Slinger S J. A semi-purified test diet for Macrobrachium rosenbergii and the lack of need for supplemental lecithin. Aquaculture, 1984, 37: 209-215
    124. Iijima N, Aida S, Mankura M, Kayama M. Intestinal absorption and plasma transport of dietary triglyceride and phosphatidylcholine in the carp (Cyprinus carpio). Comp. Biochem. Physiol, 1990,96:45-55
    125. Izquierdo M S, Socorro J, Arantzamendi L, Hernandez-Cruz C M. Recent advances in lipid nutrition in fish larvae. Fish Physiology and Biochemistry, 2000, 22: 97-107
    126. John S, Iesley M, Alicia E. Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture, 1999, 179: 217-229
    127. Kanazawa A. Protein requirements of penaeid shrimp. Advances in tropical aquaculture workshop. Tahiti, French Polynesia. Actes Colloq. IFRAMER, 1990, 9: 261-271
    128. Kanazawa A. Essential phospholipids of fish and crustaceans. In: Kaushik S J and Luquet P, Editors, Fish Nutrition in Practice (June 24-27 Edn. ed.), Les Colloques nr. 61, INRA, Paris , 1993:519-530
    129. Kanazawa A, Teshima S, Sakamoto M. Effects of dietary lipids, fatty acids, and phospholipids on growth and survival of prawn (Penaeus japonicus) larvae. Aquaculture, 1985a, 50: 39-49
    130. Kanazawa A, Teshima S, Sakamoto M. Effects of dietary bonito-egg phospholipids and some phospholipids on growth and survival of the larval ayu, Plecoglossus altivelis. Z. Angew. Ichthyol, 1985b, 4:165-170
    131. Kanazawa A, Teshima S I, Inamor S, Iwashita T, Nagao A. Effects of phospholipids on growth, survival rate and incidence of malformation in the larval ayu. Mem Fac Fish, 1981, (30): 301-309
    132. Kanazawa A, Teshima S, Sakamoto S. Requirements of essential fatty acids for the larval ayu. Bull. Jpn. Soc. Sci. Fish, 1982, 48: 587-590
    133. Kanazawa A, Teshima S, Tokiwa S, Ceccaldi H J. Effects of dietary linoleic and linolenic acids on growth of prawn. Oceanological Acta, 1979a, 2: 41-47
    134. Kanazawa A, Teshima S, Tokiwa S, Endo M, Abdel Razek FA. Effects of short-necked clam phospholipids on the growth of prawn. Bull. Jpn. Soc. Sci. Fish, 1979b, 45: 961-965
    135. Kanazawa A, Teshima S. Microparticulated diets for fish larvae. In: Sparks A K, Editor, New and innovative Advances in Biology/Engineering with Potential Use in Aquaculture NOAA Tech. Rep., NMFS Circ, 1988, 70: 57-62
    136. Kean J C, Castell J D, Boghen A G, D'Abramo L R, Conklin D E. A reevaluation of the lecithin and cholesterol requirements of juvenile lobster (Homarus americanus) using crab protein-based diets. Aquaculture, 1985,47: 143-149
    137. Kennedy E P. Biosynthesis of complex lipids. Fed Proc Fed Am Soc Exp Biol. 1961, 20: 934-940
    138. King M F, Boyd L C, Sheldon B W. Effects of phospholipids on lipid oxidation of a salmon oil model system. J. Am. Oil Chem. Soc, 1992, 69: 237-242
    139. Kjorsvik E, van der Meeren T, Kryvi H, Arnfinnson J, Kvenseth P G. Early development of the digestive tract of cod larvae, Gadus morhua L., during start-feeding and starvation. J. Fish Biol. 1991,38: 1-15
    140. Kolkovski S, Koven W, Tandler A. The mode of action of Anemia in enhancing utilization of microdiet by gilthead seabream Sparus aurata larvae. Aquaculture, 1997, 155: 193-205
    141. Kolkovski S, Tandler A, Kissil W, Gertler A. The effect of dietary exogenous enzymes on ingestion, assimilation, growth and survival of gilthead sea bream (Sparus aurata) larvae. Fish Physiol. Biochem, 1993, 12: 203-209
    142. Kolkovski S. Digestive enzymes in fish larvae and juveniles-implication and application to formulated diets. Aquacult ure, 2001, 200: 181-201
    143. Kontara E K M, Coutteau P, Sorgeloos P. Effect of dietary phohospholipid on requirements for and incorporation of n-3 highly unsaturated fatty acids in postlarval Penaeus japonicus Bate. Aquaculture, 1997, (158): 305-320
    144. Kontara E K M, Djunaidah I S, Coutteau P, Sorgeloos P. Comparison of native, lyso and hydrogenated phosphatidylcholine as souce for phospholipids in the diet of postlarval Penaeus japonicus. Arch. Anim. Nutr, 1998, (51): 1-19
    145. Koven W M, Kissil G W, Tandler A. Lipid and n-3 requirement of Sparus aurata larvae during starvation and feeding. Aquaculture, 1989, 79: 185-191
    146. Koven W M, Kolkovski S, Tandler A, Kissil G W, Sklan D. The effect of dietary lecithin and lipase, as a function of age. On n-9 fatty acid incorporation in the tissue lipids of Sparus aurata larvae. Fish Physiol. Biochem, 1993, 10: 357-364
    147. Koven W M, Tandler A, Kissil W, Sklan D. The importance of n-3 highly unsaturated fatty acids for growth in larval Sparus aurata and their effect on survival, lipid composition and size distribution. Aquaculture, 1992, 104:91-104
    148. Koven W, Parra G, Kolkovski S, Tandler A. The effect of dietary phosphatidylcholine and itsconstituent fatty acids on microdiet ingestion and fatty acid absorption rate in gilthead seabream, Sparus aurata, larvae. Aquacult. Nutr, 1998, 4: 39-45
    149. Kurokawa T, Shiraishi M, Suzuki T. Quantification of exogenous protease derived from zooplankton in the intestine of Japanese sardine (Sardinops melanoticus) larvae. Aquaculture, 1998, 161:491-499
    150. Lechowski R, Bielecki R, Sawosz, E, Krawjec M, Kluinski W. The effect of lecithin supplementation on the biochemical profile and morphological changes in the liver of rats fed different animal fats. Vet. Res. Commun, 1999, 23: 1-14
    151. Lee A G. How lipid interact wit h an int rinsic membrane protein: t he case of t he calcium pump. Biochimica et Biophyska Acta, 1998, 137: 381-390
    152. Leger C. Digestion, absorption and transport of lipids. In: Cowey C B, Mackie A M, Bell G J. (Eds.) Nutrition and Feeding in Fish. Academic Press, London, 1985, 299-331
    153. Levay L, Kamarudin M S. Influence of live and artificial diets on tissue composition and trypsin activity in Penaeus japonicus larvae. Aquaculture, 1993, 118: 287-297
    154. Liu J, Caballero M J, Izquierdo M, Sayed Ali T E, Hernaedez-Cruz C M, Valencia A, Fernandez-Palacios H. Necessity of dietary lecithin and eicosapentaenoic acid for growth, survival, stress resistance and lipoprotein formation in gilthead sea bream Sparus aurata. Fisheries Sci, 2002, 68: 1165-1172
    155. Loewe H, Eckmann R. The ontogeny of the alimentary tract of coreogonid larvae: normal development. J. Fish Biol, 1988, 33: 841-850
    156. Lund E K, Ladha S, Ladha S. Effects of dietary fish oil supplementation on the phospholipid composition and fluidity of cell membranes from human volunteers. Annals of Nutrition and Metabolism, 1999, 5: 290-300
    157. Martinez I, Moyano F J, Fernandez-Diaz C, Yufera M. Digestive enzyme activity during larval development of the Senegal sole Solea senegalensis. Fish Physiol. Biochem, 1999, 21: 317-323
    158. McCond PL, Fridorich. The role of oxygen free radicals in biological process. Biol chem, 1969, 244: 6049-6055
    159. McEvoy L S, Navarro J C, Amat F, Sargent J R. Optimisation of a phospholipid-enhanced enrichment emulsion for Artemia. In: P Lavens, E Jaspers and I Roelants, Editors, Larvi '95 — Fish and Shellfish SymposiumGent, Belgium, Europ. Aquacult. Soc, Spec. Publ, 1995, 24: 141-144
    160. Meyers S P. Importance of lipid, lecithin in aquatic diets examined. Feedstuffs, 1985, 23: 20-21
    161. Mourente G, Rodriguez A, Tocher D R, Sargent J R. Effects of dietary docosahexaenoic acid (DHA; 22: 6n23) on lipid and fatty acid compositions and growth in gilthead seabream (Sparus aurata L) larvae during first feeding. Aquaculture, 1993, 112: 79-98
    162. Mourente G, Tocher D R, Diaz-Salvago E, Grau A, Pastor E. Study of the n-3 highly unsaturated fatty acids requirement and antioxidant status of Dentex dentex larvae at the Artemia feeding stage. Aquaculture, 1999, 179:291-307
    163. Moyano F J, Diaz M, Alarcon F J, Sarasquete M C. Characterization of digestive enzyme activity during larval development of gilthead seabream Sparus aurata. Fish Physiol. Biochem, 1996,15:121-130
    164. Murata H, Higashi T. Selective utilization of fatty acids as energy source in carp. Bull. Jap. Soc. Scient. Fish, 1980, 46: 1333-1338
    165. Noaillac-Depeyre J, Gas N. Fat absorption by the enterocytes of the carp (Cyprinus carpio L.). Cell Tiss. Res, 1974, 155: 353-365
    166. Noaillac-Depeyre J, Gas N. Structure and function of the intestinal epithelial cells in the perch (Perca fluviatilis L.). Anat. Rec, 1979, 195: 621-640
    167. Noaillac-Depeyre J, Gas, N. Electron microscopic study on gut epithelium of the tench (Tinca tinca L.) with respect to its absorptive functions. Tiss. Cell, 1976, 8: 511-530
    168. Olsen R E, Dragnes B T, Myklebust R, Ringo E. Effect of soybean oil and soybean lecithin on intestinal lipid composition and lipid droplet accumulation of rainbow trout, Oncorhynchus mykiss Walbaum. Fish Physiology and Biochemistry, 2003, 29: 181-192
    169. Olsen R E, Henderson R J, Pedersen T. The influence of dietary lipid classes on the fatty acid composition of small cod Gadus morhua L. juveniles reared in an enclosure in northern Norway. J. Exp. Mar. Biol. Ecol, 1991, 148: 59-76
    170. Olsen R E, Myklebust R, Kaino T, Ringo E. Lipid digestibility and ultrastructural changes in the enterocytes of Arctic char (Salvelinus alpinus L.) fed linseed oil and soybean lecithin. Fish Physiol. Biochem, 1999, 21: 35-44
    171.Oozeki Y, Bailey K M. Ontogenetic development of digestive enzyme activities in larval walleye pollock Theragra chalcogramma. Mar. Biol, 1995, 122: 177-186
    172. Ostos Garrido M V, Nunez Torres M V, Abaurrea Equisoain M A. Lipid absorption by enterocytes of the rainbow trout, Oncorhynchus mykiss: diet-induced changes in the endomembranous system. Aquaculture, 1993, 110: 161-171
    173. Pearce J. Some differences between avian and mammalian biochemistry. Int J Bioch, 1977, (8): 269-279
    174. Peres A, Cahu C, Zambonino Infante J L, Le Gall M M, Quazuguel P. Amylase and trypsin response to intake of dietary carbohydrate and protein depend on the development stage in sea bass (Dicentrarchus labrax) larvae. Fish Physiol. Biochem, 1996, 15: 237-242
    175. Poston H A. Performance of rainbow trout fed supplemental soybean lecithin and choline. Prog. Fish Cult, 1990a, 52: 218-225
    176. Poston H A. Effect of body size on growth, survival, and chemical composition of Atlantic salmon fed soy lecithin and choline. Prog. Fish Cult, 1990b, 52: 226-230
    177. Poston H A. Response of Atlantic salmon fry to feed-grade lecithin and choline. Prog. Fish Cult, 1991,53:224-228
    178. Rainuzzo J R, Reitan K I, Jorgensen L. Comparative study on the fatty acids and lipid composition of four marine fish larvae. Comp. Biochem. Physiol, 1992, 103B: 21-26
    179. Rasanthi M, Gunasekera, Sena S, De Silva, Brett A, Ingram. Chemical changes in fed and starved larval trout cod, Maccullochella macquarensis during early development. Fish Physiology and Biochemistry, 2001, 25: 255-268
    180. Ribeiro L, Zambonino Infante J L, Cahu C, Dinis M T. Development of digestive enzymes in larvae of Solea senegalensis (Kaup 1858). Aquaculture, 1999, 179: 465-473
    181. Robin J H, Peron A. Onsumption vs. deposition of essential fatty acids in gilthead sea bream (Sparus aurata) larvae fed semi-purified diets. Aquaculture, 2004, 8: 283-294
    182. Robin J H, Vincent B. Microparticulate diets as first food for gilthead sea bream larva (Sparus aurata): study of fatty acid incorporation. Aquaculture, 2003, 225: 463-474
    183. Rojas E, Tobias, J M. Membrane model: Association of inorganic cations with phospholipid monolayers. Biochim. Biophys. Acta, 1965, 94, 394-404.
    184. Ronnestad I, Fyhn H J. Metabolic aspects of free amino acids in developing marine fish eggs and larvae. Rev.Fish.Sci, 1993, 1: 239-259
    185. Ronnestad I, Robertson R R, Fyhn H J. Free amino acids and protein content in pelagic and demersal eggs of tropical marine fishes. In: MacKinlay D D. Eldridge, M (Eds.), The Fish Egg. American Fisheries Society. Physiology Section. Bethesda. 1996, 81-84
    186. Roy R, Fodor E, Kitajka K, Farkas T. Fatty acid composition of the ingested food only slightly affects physicochemical properties of liver total phospholipods and plasma membrans in cold-adapted freshwater fish. Fish Physiol Biochem, 1999, 20(1): 1-11
    187. Rust M B, Hardy R W, Stickney R R. A new method for force-feeding larval fish. Aquaculture, 1993,116:341-352
    188. Rust M. Quantitative aspects of nutrient assimil~ion in six species of fish larvae. Dr. Thesis. University of Washington. School of Fisheries, 1995
    189. Salhi M , Izquierdo M S, Hernandez-Cruz C M, Gonzalez M, Fernandez-Palacios H. Effect of lipid and n-3 HUFA levels in microdiets on growth, survival and fatty acid composition of larval gilthead seabream (Sparus aurata). Aquaculture, 1994, 124: 275-282
    190. Salhi M, Hernandez-Cruz C M, Bessonart M, Izquierdo M S, Fernandez-Palacios H. Effect of different dietary polar lipid level and different n-3 HUFA content in polar lipids on gut and liver histological structure of gilthead seabream (Sparus aurata) larvae. Aquaculture. 1999, 124: 275-282
    191. Salhi M, Hernandez-Cruz C M, Bessonart M, Izquierdo M S, Fernandez-Palacios H. Effect of different dietary polar lipid levels and different n-3 HUFA content in polar lipids on gut and liver histological structure of gilthead seabream (Sparus aurata) larvae. Aquaculture, 1999, 179: 253-263
    192. Salhi M, Izquierdo M S, Hernandez-Cruz C M, Gonzalez M, Fernandez-Palacios H. Effect of lipid and n-3 HUFA levels in microdiets on growth, survival and fatty acid composition of larval gilthead seabream (Sparus aurata). Aquaculture, 1994, 124: 75-282
    193. Salhi M, Kolkovski S, Izquierdo M S, Tandler A. Inclusion of lecithin and polar or neutral lipids high in n-3 HUFA in microdiets for gilthead seabream (Sparus aurata) larvae. In: Lavens P, Jaspers E, Roelants I eds. Larvi '95-Fish and Shellfish Larviculture Symp Eur Aquac Soc, Spec Publ, 1995,(24): 184-187
    194. Santulli A, Modica A, Cutatolo A, D'Amelio V. Lipid and apoprotein composition of lipoprotein of sea bass (Dicentrarchus labrax L.). Proceedings of World Aquaculture'93, from Discovery to Commer-cialization. Torremolinos, Spain. Eur. Aquacult. Soc.(Spec. Publ.), 1993, 19,461
    195. Sargent J R, Henderson R J, Lipids. In: Corner E D S, O'Hara S C M (Eds.). The Biological Chemistry and Marine Copepods. Clarendon Press, Oxford, 1986, 59-108
    196. Sargent J R, Henderson R J, Tocher D R. Lipids: In: Fish Nutrition. Second ed. (Halver J E, ed.), Academic Press, San Diego, USA, 1989, 153-218.
    197. Sargent J R. Origins and functions of egg lipids: nutritional implications. Broodstock Management and Egg and Larval Quality, 1995: 353-372
    198. Sargent J, Mc Evoy L, Estevez A, Bell G, Bell M, Henderson J, Tocher D. Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture, 1999, 179:217-229
    199. Segner H, Rosch R, Schmidt H, Von Poeppinghausen K J. Digestive enzymes in larval Coregonus lavaretus L. J. Fish Biol. 35: 249-263
    200. Sheridan M A. Lipid dynamics in fish: aspects on absorption, transportation, deposition and mobilization. Comp. Biochem. Physiol, 1988, 90B: 679-690
    201. Shieh H S. The biosynthesis of phospholipids in the lobster Homarus americanus. Comp. Biochem. Physiol, 1969, 30: 679-684
    202. Shield R J, Bell J, Luizi F S, Gara B, Bromage N, Sargent J R. Natural copepods are superior to enriched Artemia nauplii as feed for halibut larvae (Hippoglossus hippoglossus) in terms of survival, pigmentation and retinal morphology: relation to dietary essential fatty acids. J. Nutr, 1999,129: 1186-1194
    203. Sire M F, Lutton C, Vernier J M. New views on intestinal absorption of lipids in teleostean fishes: an ultrastructural and biochemical study in the rainbow trout. Journal of Lipid Research, 1981,22:81-94
    204. Sire M F, Vernier J M. Etude ultrastructural de la synthese de chylomicrons au cours de l'absorption intestinale des lipides chez la truite. Influence de la nature des acides gras ingeres. Biol.Cell, 1981,40:47-62
    205. Stroband H W J, Dabrowski K R. Morphological and physiological aspects of the digestive system and feeding in fresh-water fish larvae. In: Nutrition des Poissons. 1979, 335-374.
    206. Stroband H W J, Debets F M H. The ultrastructure and renewal of the intestinal epithelium of the juvenile grasscarp, Ctenopharyngodon idella (Val.). Cell Tiss. Res, 1978, 187: 181-200
    207. Takeuchi T, Arakawa T, Satoh S, Watanabe T. Supplemental effect of phospholipids and requirement of eicosapentaenoic acid and docosahexaenoic acid of juvenile striped jack. Nippon Suisan Gakkaishi, 1992, 58: 707-713
    208. Takeuchi T, Ohkuma N, Ishida S, Ishizuka W, Tomita M, Hayasawa H, Miyakawa H. Development of micro-particle diet for marine fish larvae. 8th International Symposium on Nutrition and Feeding of Fish, 1-4 June 1998, Las Palmas de Gran Canaria, Canary Islands, Spain, 1998, 193
    209. Takeuchi T, Tovota M, Satoh S, Watanabe, T. Requirement of juvenile red sea bream Pagrus major for eicosapentaenoic and decosahexaenoic acids. Nippon Suisan Gakkaishi, 1990, 56: 1263-1269
    210. Takeushi T, Watanabe T. Effects of starvation and environmental temperature on proximate and fatty acid compositions of carp and rainbow trout. Bull. Jap. Soc. Scient. Fish, 1982, 48: 1307-1316
    211. Tandler A, Watanabe T, Satoh S, Fukusho K. The effect of food deprivation on the fatty acid and lipid profile of red seabream (Pagrus major) larvae. Brit. J. Nutr, 1989, 62: 349-361
    212. Teshima S, Kanazawa A, Horinouchi K, Yamasaki S, Hirata H. Phospholipids of the rotifers, prawn and larval fish. Nippon Suisan Gakkaishi, 1987, 53: 609-615
    213. Teshima S, Kanazawa A, Kakuta Y. Effects of dietary phospholipids on growth and body composition of the juvenile prawn. Bull. Jpn. Soc. Sci. Fish, 1986a, 52: 155-158
    214. Teshima S, Kanazawa A, Kakuta Y. Effects of dietary phospholipids on lipid transport in the juvenile prawn. Bull. Jpn. Soc. Sci. Fish, 1986b, 52: 159-163
    215. Teshima S, Kanazawa A, Kakuta Y. Role of dietary phospholipids in the transport of ~(14)C tripalmitin in the prawn. Bull. Jpn. Soc. Sci. Fish, 1986c, 52: 519-524
    216. Teshima S, Kanazawa A, Kakuta Y. Role of dietary phospholipids in the transport of ~(14)C cholesterol in the prawn. Bull. Jpn. Soc. Sci. Fish, 1986d, 52: 719-723
    217. Teshima S, Kanazawa A, Kakuta Y. Growth, survival and body lipid composition of the prawn larvae receiving several dietary phospholipids. Mem. Fac. Fish., Kagoshima Univ. 1986e, 35: 17-27
    218. Teshima S, Kanazawa A, Koshio S. Recent developments in nutrition and microparticulate diets of larval prawns. Israeli J. Aquacult, 1993, 45: 175-184
    219. Teshima S, Kanazawa A, Sasada H, Kawasaki M. Requirements of larval prawn, Penaeus japonicus, for cholesterol and soybean phospholipids. Mem. Fac. Fish., Kagoshima Univ, 1982, 31:193-199
    220. Tidwell J H, Webster C D, Clark J A. Effects of feeding, starvation, and refeeding on the fatty acid composition of channel catfish (Ictalurus punctatus) tissues. Comp. Biochem. Physiol, 1992, 103: 365-368
    221. Tocher D R, Fraser A J, Sargent J R, Gamble J C. Lipid class composition during embryonic and early larval development in Atlantic herring (Clupea harengus). Lipids, 1985, 20: 84-89
    222. Ushio H, Ohshima T, Koizumi C. Effects of dietary fatty acids on Ca~(2+)-ATPase activity of the sarcoplasmic reticulum of Rainbom t rout skeletal muscle. Comp Biochem Physio, 1997, 118B: 681-691
    223. Vauquelin L N, De la matiere cerebrale de l'homme et de quelques animaux, Ann. Chim , 1812, 81:37
    224. Walford J, Lam T J. Development of digestive tract and proteolytic enzyme activity in seabags (Lates calcarifer). Aquaculture, 1993, 109: 187-205
    225. Wang, Xie S, Zheng K, Zhu X, Lei W, Yang Y, Liu J. Effects of live food and formulated diets on survival, growth and protein content of first-feeding larvae of Plelteobagrus fulvidraco. J. Appl. Ichthyol, 2005, 21: 210-214
    226. Watanabe T, Izquierdo M S, Takeuchi T, Satoh S. Comparison beween eicosapentaenoic and docosahexaenoic acidsin terms of essential fatty acid efficacy in larval red sea bream. Nippon Suisan Gakkaishi, 1989, 55: 1635-1640
    227. Watanabe T. Importance of docosahexaenoic acid in marine larval fish. World Aqua Soc, 1993, 24: 152-161
    228. Watanabe Y, Sawada N. Larval development of digestive organs and intestinal absorptive functions in the freshwater goby Chaenogobi us annularis. Bull. Tohoku Reg. Fish. Res. Lab, 1985,47: 1-10
    229. Whitney J O. The effects of external salinity upon lipid synthesis in the blue crab Callinectes sapidus Rathbun and in the spider crab Libinia emarginata Leech. Comp. Biochem. Physiol, 1974, 49, 433-440.
    230. Xu X, Wenjuan J, Castell J D, O' Dor R. Essential fatty acid requirement of the Chinese prawn, Penaeus chinensis. Aquaculture, 1994, 127:29-40
    231. Yasunaga Y. The development of the digestive gland of the plaice larva Paralichtys olivaceus. Bull. Tokai Reg. Fish. Res. Lab, 1972, 69: 75-89
    232. Yufera M, Pascual E, Fernandez-Diaz C. A highly efficient microencapsulated food for rearing early larvae of marine fish. Aquaculture, 1999, 177: 249-256
    233. Zambonino Infante J L, Cahu C L. Development and response to a diet change of some digestive enzymes in sea bass Dicent rarchus labrax larvae. Fish Physiol. Biochem, 1994, 12: 399-408
    234. Zambonino Infante L, Cahu C L. High dietary lipid levels enhance digestive tract maturation and improve Dicentrarchus labrax larval development. J. Nutr, 1999, 129: 1195-1200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700