多重耐药泵及其调控蛋白在鼠伤寒沙门氏菌对氟喹诺酮类耐药中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼠伤寒沙门氏菌是一类主要食源性病原菌,氟喹诺酮类是治疗该菌感染的首选药物。在该类药物选择压力下,细菌产生耐药。目前,喹诺酮耐药决定区靶位点突变和活性多重耐药泵是鼠伤寒沙门氏菌对氟喹诺酮类主要耐药机制。其中,喹诺酮耐药决定区GyrA内单个靶位点突变仅使细菌对氟喹诺酮类敏感性降低,而不导致其对该类药物耐药。然而,多数临床分离在GyrA内携带单个靶位点突变的鼠伤寒沙门氏菌却表现对氟喹诺酮类耐药,所以活性多重耐药泵在鼠伤寒沙门氏菌对氟喹诺酮类耐药过程中具有重要作用。
     鼠伤寒沙门氏菌细胞膜中AcrAB-TolC是最重要的一个多重耐药泵,它可阻止药物进入到细胞内,但该泵蛋白在细胞质间隙或细胞内膜外层俘获药物,同时在敏感菌中仅过表达该多重耐药泵也不导致细菌对喹诺酮类耐药,故其它家族多重耐药泵必然参与细菌耐药过程。在多重耐药泵表达过程中,多个调控蛋白可能参与其表达调节,然而哪个调控蛋白是外排氟喹诺酮类多重耐药泵主要调控蛋白?该蛋白对氟喹诺酮类耐药突变株产生具有何种影响?本实验用环丙沙星体外诱导敏感鼠伤寒沙门氏菌,获得系列多重耐药自发突变株,随后在所选自发突变株中确定外排氟喹诺酮类多重耐药泵及其主要调控蛋白,最后研究主要调控蛋白对敏感菌及其首次耐药突变株突变抑制浓度影响。该研究是鼠伤寒沙门氏菌对氟喹诺酮类多重耐药理论的一次有益补充,也将为临床多重耐药鼠伤寒沙门氏菌防治提供新的理论基础。
     鼠伤寒沙门氏菌CVCC541(ST)在含有不同浓度环丙沙星MH平板上逐步筛选,获得对环丙沙星敏感性降低并表现多重耐药的系列诱导菌。所选诱导菌经PCR扩增、测序,检测其喹诺酮耐药决定区(Quinolone Resistant Determine Regios, QRDRs)内靶位点突变。随后,通过检测多重耐药泵抑制剂(CCCP或PAβN)对部份诱导菌细胞内环丙沙星和诺氟沙星蓄积浓度变化,初步阐明所选诱导菌中外排氟喹诺酮类多重耐药泵。对所选诱导菌提取总RNA并反转录,以体外合成cDNA为模板,检测诱导菌细胞内外排氟喹诺酮类多重耐药泵相对表达水平。
     在ST中,按照PCR产物一步失活染色体基因方法,逐个失活多重耐药泵调控蛋白(RamA和MarA)。然后,利用噬菌体将失活基因逐个传导至诱导菌中,对调控蛋白失活后ST及其诱导菌检测不同药物敏感性。另外,在RamA失活菌中互补RamA,同时检测多重耐药泵表达水平。检测诱导菌中,活性多重耐药泵启动子区和主要调控蛋白(RamRA, MarRAB, SoxRS, AcrR)基因序列并对发生突变的调控蛋白在诱导菌中互补,阐明诱导菌中多重耐药泵主要调控蛋白表达的分子机制。
     检测ST和SR (STramA::aph)菌生长速度,体外筛选ST和SR环丙沙星首次耐药突变株,随后检测其喹诺酮耐药决定区内GyrA靶位点突变。在SR突变株SR4-3(Ser83→Phe)或SR1-9(Asp87→Tyr)中过表达RamA。测定ST、ST8-1(Ser83→Phe)、ST2-6(Asp87→Tyr)、SR、SR4-3、SR1-9及其RamA过表达菌对环丙沙星和恩诺沙星突变抑制浓度,同时检测各菌对环丙沙星突变抑制率。
     在环丙沙星选择压力下,获得7个对环丙沙星敏感性逐步降低的诱导菌(SI1-SI7)。其中,SI2(CIP:MIC0.1mg/l)在QRQRs区内没有任何靶位点突变,但表现对所测药物敏感性下降;SI6(CIP:MIC16mg/l)在GyrA中携带Ser83→Phe突变,但表现多重耐药,同时四环素、氯酶素和氟苯尼考MIC值与SI7相比没有继续上升。SI2和SI6中环丙沙星和诺氟沙星蓄积浓度均低于ST菌。当加入CCCP后,SI2中环丙沙星蓄积浓度增加但仍低于无抑制剂存在时ST菌药物蓄积浓度;当加入PApN后,环丙沙星在SI2中蓄积浓度显著上升与ST菌药物蓄积浓度相似;在SI6中,加入CCCP后,环丙沙星蓄积浓度与ST菌药物蓄积浓度相似;然而加入PAβN后,环丙沙星蓄积浓度低于ST菌。另外,SI2和SI6在耐药泵抑制剂存在下,诺氟沙星蓄积浓度变化与环丙沙星蓄积浓度变化趋势相似。Real time RT-PCR结果表明,SI6中仅检测到AcrAB和MdtK表达且其表达量相对ST分别增加30.1和8.15倍:另外,SI2中AcrAB和MdtK表达量相对ST增加6.08和3.87倍。
     当调控蛋白RamA在ST (CIP:MIC0.0125mg/1)中失活后,SR菌对所测药物敏感性相对ST没有显著改变。当RamA在SI2中失活后,SI2R对所测药物除萘啶酸外下降2-8倍,其中SI2R对环丙沙星、沙拉沙星、恩诺沙星和萘啶酸MIC值与SR菌所测值相同;当RamA在SR中过表达后,STRA对所测药物MIC值相对SR菌上升2-6倍,其中STRA对氧氟沙星和四环素MIC值与SI2菌所测值相同,对环丙沙星、诺氟沙星和恩诺沙星MIC值是S12菌所测值0.5倍。另外,STRA中AcrAB表达水平与SI6中相似,MdtK表达水平与SI2中相似。所以,RamA是SI2中主要调控蛋白,它通过激活MdtK和增加AcrAB表达水平,使细菌对多个药物敏感性下降。
     在SI6(CIP:MIC16mg/l)中,RamA失活后,SI6R(CIP:MIC2mg/l)对所测药物除萘啶酸外MIC值下降2-8倍,但SI6R仍对所测氟喹诺酮类耐药。当RamA在SI3R中过表达后,SI3RA对环丙沙星、诺氟沙星、四环素和氯霉素MIC值增加2-16倍;对氧氟沙星、沙拉沙星和氟苯尼考敏感性保持稳定;对恩诺沙星、萘啶酸和红霉素MIC值反而下降。尽管SI3RA和SI6R携带有相同GyrA靶位点突变,SI3RA对喹诺酮类MIC值均低于SI6R所测值。另外,SI6R对四环素MIC值与ST相同;SI3RA对氯霉素MIC值与SI6相同;AcrAB表达水平在STRA(?)SI6中相似。所以,RamA主要控制AcrAB表达水平,AcrAB和其它多重耐药泵协同作用导致SI6对氟喹诺酮类耐药。
     SI2和SI6仅在ramR序列中发现突变。当RamR在SI2中互补后,SI2RR对氟喹诺酮类MIC值下降2-4倍,但未回复到ST敏感水平。另外,当调控蛋白MarA在ST、SI2和SI6中失活后,细菌对所测药物敏感性均没有明显改变。
     在对数生长期,SR (STramA::aph)菌生长速度快于ST菌。在不同环丙沙星浓度选择下,RamA缺失降低携带GyrA(?)位点突变株筛选几率。RamA过表达导致SR首次耐突变株SR4-3和SR1-9对环丙沙星MPC值增加,对恩诺沙星MPC值下降。SR4-3和SR1-9对环丙沙星MPC值、突变选择框均低于分别携带相同靶点突变的ST首次耐突变株ST8-1和ST2-6。在相同浓度环丙沙星作用下,RamA过表达菌83RA和87RA拥有最大耐药突变率;SR4-3和SR1-9耐药突变率分别低与ST8-1和ST2-6。所以,RamA表达是细菌对环丙沙星产生耐药的一个主要原因,抑制RamA表达能够减少耐药菌出现。
     总之,本研究首次证实:(1)多重耐药泵MdtK参与了鼠伤寒沙门氏菌对环丙沙星耐药过程,它与AcrAB协同作用促进细菌多重耐药突变株产生。多重耐药泵调控蛋白RamA可激活mdtK表达,但不能导致其高水平表达。(2)在环丙沙星选择压力下,敏感鼠伤寒沙门氏菌中多重耐药泵主要调控蛋白RamA的抑制蛋白RamR,由于底物结合区氨基酸缺失导致其从ramA启动子区解离,进而启动ramA表达。(3)RamA是一个主要多重耐药泵调控蛋白,其表达促进了环丙沙星耐药突变株蓄积、增值,抑制RamA表达水平可减低环丙沙星耐药突变株出现。本研究以上发现丰富了鼠伤寒沙门氏菌的多重耐药理论,同时预示RamA可能成为鼠伤寒沙门氏菌多重耐药泵抑制剂研发的一个新靶标。
Salmonella enterica serovar Typhimurium is considered as the main food-borne pathogen. Fluoroquinolones are the main drugs for the treatment of salmonellosis. In the selection pressure of fluoroquinolones S. enterica serovar Typhimurium produce resistance to it. Today, target site mutation in quinolone resistant determining regions (QRDRs) and active multidrug resistant (MDR) efflux pump are main resistant mechanism of S. enterica serovar Typhimurium against fluoroquinolone. Among them, a single target site mutation in the QRDR of GyrA in a susceptible S. enterica serovar Typhimurium led to the strain exhibiting lower susceptibility to fluoroquinolones, wherease not resistance. However, a lot of clinical isolates harborig a target site mutation in the QRDR of GyrA produced resistance to fluoroquinolones. As a result, active MDR efflux pump plays a predominant role in the development of fluoroquinolone resistance of S. enterica serovar Typhimurium.
     In MDR S. enterica serovar Typhimurium AcrAB-TolC is an important MDR efflux pump which can prevent drugs from entering into cell. Likewise, it captures the substrates from the periplasm or the outer leaflet of the cytoplasmic membrane and the overexpression of single AcrAB in a susceptible S. enterica serovar Typhimurium lacking individual acrAB gene did not lead to the mutant exhibiting resistance to quinolones.This may indicate the contribution of some other efflux pumps in the fluoroquinolone resistance in S. enterica serovar Typhimurium. In the development of MDR S. enterica serovar Typhimurium some global regulators may participate in the regulation of the expression of MDR efflux pumps. However, no study clearly showed which regulator was the main protein controlling the expression of MDR efflux pumps extruding fluoroquinolones. Likewise, whether the main regulator played a role on the development of fluoroquinolone resistant mutants. In this experiment, spontaneous MDR mutants will be obtained from a susceptible S. enterica serovar Typhimurium in the selection pressure of ciprofloxacin. After that, active MDR efflux pumps extruding fluorowuinolones and its main regulator will be decided in the selcted spontaneous mutants. At last, the mutant prevention concentration (MPC) of parent strain and its first-step mutants agninat fluoroquinolone in the presence, absence and overexpression of the main regularor will be also tested. In this experiment some fresh knowledge will be provided in the field of MDR mechanism of S. enterica serovar Typhimurium. Likewise, some new theory basement will be drawn for preventing the development of clinical MDR isolates of S. enterica serovar Typhimurium.
     Spontaneous mutants were selected via several passages of S. enterica sreovar Typhimurium CVCC541susceptible strain (ST) on M-H agar with increasing concentrations of ciprofloxacin. The QRDRs of gyrA, gyrB, parC, and parE in the selected spontaneous mutants was amplified and sequenced. Accumulation of ciprofloxacin and enorofloxacin in the selected mutants in the presence and absence of efflux pump inhibitors (CCCP or PAβN) was measured with InfiniteTM200microplate readers by the modified fluorometric method. The expression level of MDR efflux pumps were determined by real time RT-PCR.
     The ramA or marA gene was inactivated by insertion of the kan gene in ST. After that, the deletions were transferred to the spontaneous mutants by P22HT105/int transductions. MICs of the strains with inactivated RamA or MarA to different drugs were tested. Likewise, the promoter regions of MDR efflux pumps (AcrAB and MdtK) and the sequences of the regulatory loci RamRA, MarRA, SoxRS and AcrR from ST and the selected spontaneous mutants were amplified and sequenced. At last, the RamA was overexpressed on a recombinant plasmid pGEXΦ (gst-ramA) in ST and a spontaneous mutant with inactivated RamA and the expression level of active efflux pumps were also tested.
     The growth speed of ST and SR (STramA::aph) were measured. The first-step mutants from ST and SR were selected on M-H agar containing different concentrations of of ciprofloxacin and then, tested their QRDR of gyrA. The RamA was overexpressed in the first-step mutants SR4-3(Ser83→Phe) and SRI-9(Asp87→Tyr) from SR. The MPCs of ciprofloxacin and enrofloxacin against ST, SR, their first-step mutants and the strains with the overproduction of RamA were tested. Likewise, the mutant frequencies of the strains to ciprofloxacin were also determined.
     Seven spontaneous mutants (SI1to SI7) were obtained which exhibited decreased susceptibility to multidrugs.The SI2(CIP:MIC0.1mg/1) strain without any target site mutation in its QRDRs exhibited dectreasd susceptibility to tetracycline, chloramphenicol, florfenicol as well as quinolones. The SI6(CIP:MIC16mg/1) strain harboring Ser83→Phe in the QRDR of GyrA exhibited high-level fluoroquinolones resistance and showed significantly increase in the MICs of chloramphenicol, florfenicol, tetracycline compared to that of SI2. The amounts of ciprofloxacin and enrofloxacin accumulated in SI2and SI6appeared to be lower than that in ST. After CCCP was added, the amounts of the drug accumulated in SI2slightly increased, whereas lower than that in ST. After the addition of PAβN, the accumulation of ciprofloxacin in SI2increased and was near to that in ST. The amount of ciprofloxacin accumulated in SI6in the presence of CCCP dramatically increased and was near to that in ST in the presence of CCCP. Nevertheless, the concentration of ciprofloxacin accumulated in SI6in the presence of PAPN was lower than that in ST in the presence of PAβN. On the other hand, the change trends of the concentrations of norfloxacin accumulated in SI2and SI6were similar to that of ciprofloxacin. The results of real-time RT-PCR showed that the expression level of acrA and mdtK in S12and S16increased6.08-,3.87-fold and30.1-,8.15-fold, respectively, compared to that in ST.
     When RamA was inactivated in ST, the susceptibility of SR (STramA::aph) to the tested drugs did not dramatically change. However, when RamA was inactivated in SI2, MICs of SI2R (SI2ramA::aph) to the tested drugs except for nalidixic acid decreased2-to8-fold. The MICs of SI2R to ciprofloxacin, sarafloxacin, enrofloxacin and nalidixic acid were the same as that of SR. On the other hand, when RamA was overexpressed in SR, MICs of STRA to the drugs tested increased2-to6-fold compared to that of SR. The MICs of STRA to ofloxacin and tetracycline were the same as that of SI2. The MICs of STRA to nalidixic acid was higher than that of SI2. The MICs of STRA to the remaining antimicrobial agents did not significantly change except that the MICs of STRA to ciprofloxacin, norfloxacin and enrofloxacin exhibited2-fold decrease compared to that of SI2. Likewise, the expression level of acrA in STRA was similar to that in SI6and MdtK expression in STRA was similar to SI2. Based on the abovel-mentioned results, it was obvious that RamA was the main factor that controled the susceptibility of SI2to ciprofloxacin by activating MdtK as well as increasing the expression level of acrAB.
     When RamA was inactivated in SI6, MICs of SI6R (SI6ramA::aph) to the tested drugs except for nalidixic acid exhibited2-to8-fold decrease compared to that of SI6. The MICs of SI6R to ciprofloxacin decreased8-fold (CIP:SI6,16mg/L; SI6R,2mg/L), which indicated that RamA played a predominant role in the ciprofloxacin resistance of SI6. However, the SI6R strain still exhibited resistance to the tested fluoroquinolones. When RamA was overexpressed in SI3R (SI3ramA::aph), the MICs of SI3RA to ciprofloxacin, norfloxacin, tetracycline and chloramphenicol increased2-to16-fold compared to that of SI3R. The susceptibility of SI3RA to ofloxacin, sarafloxacin, and florfenicol was similar to that of SI3R. Unexpectedly, the susceptibility of SI3RA to enrofloxacin, nalidixic acid and erythromycin all exhibited reduced MICs compared to that of SI3R. To be noticed, the MICs of SI3RA to ciprofloxacin was lower than that of SI6R. The above-mentioned results demonstrated that some other efflux pumps not regulated by RamA contributed in the ciprofloxacin resistance of SI6. Likewise, the MICs of SI6R to tetracycline, a good substrate of AcrAB-TolC, reverted to that of ST. The MICs of SI3RA to chloramphenicol, another good substrate of AcrAB-TolC, was the same as that of SI6. The expression level of acrAB in SI6was the same as that in STRA with the overproduction of RamA. Therefore, RamA was responsible for increasing the expression level of acrAB in SI6. The cooperation of AcrAB-TolC and the other efflux pumps contributed in ciprofloxacin resistance.
     Only the changes in RamR were found in SI2and SI6. When RamR was complemented in SI2, MICs of SI2RR to fluoroquinolones decreased2-to4-fold compared to that of SI2. However, the susceptibility of SI1RR did not revert to that of ST. Likewise, when MarA, another regulator of MDR efflux pumps was inactivated in ST, SI2and SI6, the susceptibility of the mutants to the tested drugs did not dramatically change.
     During the logarithmic phase growth the growth speed of SR (STramA::aph) was higher than that of ST. The deficiency of RamA diminished the appearance of the first-step mutants harboring a target site mutation in the QRDR of GyrA. The overproduction of RamA in the SR4-3(ramA::aph+Ser83→Phe in GyrA) or SRI-9(ramA::aph+Asp87→Tyr in GyrA) increased the MPC to ciprofloxacin, whereas decreased the MPC to enrofloxacin. However, the MPC and mutant selection window (MSW) of ciprofloxacin against the SR4-3and SR1-9strains from SR were all lower than that of the mutant harboring the same target site mutation (ST8-1or ST2-6) from ST. Under the selection pressure of the same concentration of ciprofloxacin, the mutant frequencies of the STRA,83RA, and87RA strains with the overproduction of RamA all significantly augmented compared to that of the SR, SR4-3and SRI-9strains, respectively. While the mutant frequencies of the SR, SR4-3and SRI-9strains were slightly lower than that of the ST, ST8-1and ST2-6strains, respectively. As a result, the overexpression of RamA promoted the development of fluoroquinolones-resistant S. enterica serovars Typhimurium. The inhibition of RamA could decrease the appearance of the fluoroquinolones-resistant mutants.
     In conclusion, the fellowing results were first proven in this experiment. At first, MDR efflux pump MdtK participated in the development of ciprofloxacin resistance of S. enterica serovars Typhimurium and the co-operation of it and AcrAB promoted the development of ciprofloxacin resistant mutants. The main regulator RamA could activate the expression of MdtK, whereas not lead to its overexpression. In the secand, RamR, a local repressor of RamA, removed from the promoter region of ramA due to the aminao acid deletion in the binding-substrate region in the selection pressure of ciprofloxacin, which led to the expression of RamA. At last, RamA was a mian regulator of MDR efflux pumps in S. enterica serovars Typhimurium. The expression of RamA promoted the development of ciprofloxacin resistant mutants and the inhibition of RamA could decrease the appearance of its. These new discoveries enriched the contents of MDR mechanism of S. enterica serovars Typhimurium. In addition, RamA may be a new target in the research and development of MDR efflux pump inhibitors.
引文
白燕,杨雄健,尉向海,王化珍,李勇.一起严重沙门氏菌食物中毒的调查报告.开封医专学报,2000,19(1):73
    梁玉裕,陈兴乐,陈杰,黄林,郭倩.一起鼠伤寒沙门氏菌食物中毒的调查报告.中国卫生监督杂志,2002,6:342-344
    李成忠,王红宁,黄勇,马孟根,吴琦,羊云飞,谢涛,柳萍.多重耐药鸡致病性沙门氏菌I类整合子的检测研究.中国畜牧兽医,2007,34:119-123
    李萍.鼠伤寒沙门氏菌药敏试验及噬菌体分型结果.河南预防医学杂志,2000,11(4):246
    李郁,焦新安,魏建忠,王伟,王强,李春芬,王桂军.屠宰生猪沙门氏菌分离株的血清型和药物感受性分析.中国人兽共患病学报,2008,24:67-70
    潘志明,焦新安,刘文博,高崧,倪振亚,张扬,刘学贤,张如宽,刘秀梵.鸡白痢沙门氏菌耐药性的监测研究.畜牧兽医学报,2002,33:377-383
    任智慧,温真.一起由鼠伤寒沙门氏菌引起的食物中毒调查.地方病通报,2007,22(3): 51
    徐志伟,陈益平,卢朝升,汪洪姣.鼠伤寒沙门氏菌肠炎24例分析.浙江临床医学,2003,5(11):827
    曾晓芳.畜产品中沙门氏菌污染的检测与控制.四川畜牧兽医,2003,30(148):28-29
    赵志晶,刘秀梅.中国带壳鸡蛋中沙门氏菌定量危险性评估的初步研究.中国食品卫生杂志,2004,16:201-206
    郑维.汉英医学分子生物学实验方法(Experimental Protocols for Medical Molecular Biology in Chinese and English).中国协和医科大学出版社,2005
    Aarestrup F M, Wiuff C, M(?)lbak K, Threlfall E J. Is It Time To Change Fluoroquinolone Breakpoints for Salmonella spp.? Antimicrob Agents Chemother,2003,47:827-829
    Abouzeed Y M, Baucheron S, Cloeckaert A. ramR Mutations Involved in Efflux-Mediated Multidrug Resistance in Salmonella enterica Serovar Typhimurium. Antimicrob Agents Chemother,2008,52:2428-2434
    Ahmed M, Lyass L, Markham P N, Taylor S S, VaZquez-Laslop N, Neyfakh A A. Two Highly Similar Multidrug Transporters of Bacillus subtil is Whose Expression Is Differentially Regulated. J Bacteriol,1995,177:3904-3910
    Akiba M, NakaokaY, Kida M, Ishioka Y, Sameshima T, Yoshii N, Nakazawa M, Uchida I, Terakado N. Changes in antimicrobial susceptibility in a population of Salmonella enterica serovar Dublin isolated from cattle in Japan from1976 to 2005. J Antimicrob Chemother,2007,66:1235-1242
    Alekshun M N, Levy S B. Regulation of Chromosomally Mediated Multiple Antibiotic Resistance:the mar Regulon. Antimicrob Agents Chemother,1997,41: 2067-2075
    Alekshun M N, Levy S B. Characterization of MarR Superrepressor Mutants. J Bacteriol, 1999a,181:3303-3306
    Alekshun M N, Levy S B. Alteration of the Repressor Activity of Mar R, the Negative Regulator of the Escherichia coli mar RAB Locus, by Multiple Chemicals In Vitro. J Bacteriol,1999b,181:4669-4672
    Alekshun M N, Levy S B. The mar regulon:multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol,1999 c,7:410-413
    Almeida D, Nuermberger E, Tyagi S, Bishai W R, Grosset J. In Vivo Validation of the Mutant Selection Window Hypothesis with Moxifloxacin in a Murine Model of Tuberculosis. Antimicrob Agents Chemother,2007,51:4261-4266
    Andersson M I, MacGowan A P. Development of the quinolones. J Antimicrob Chemother,2003,51:Suppl. S1,1-11
    Aono R, Tsukagoshi N, Yamamoto M. Involvement of Outer Membrane Protein TolC, a Possible Member of the mar-sox Regulon, in Maintenance and Improvement of Organic Solvent Tolerance of Escherichia coli K-12. J Bacteriol,1998,180: 938-944
    Ariza R R, Li Z Y, Ringstad N, Dempl B. Activation of Multiple Antibiotic Resistance and Binding of Stress-Inducible Promoters by Escherichia coli Rob Protein. J Bacteriol,1995,177:1655-1661
    Bryan L E, Bedard J. Impermeability to Quinolones in Gram-Positive and Gram-Negative Bacteria. Eur J Clin Microbiol Infect Dis,1991,10:232-239
    Bailey A M, Paulsen I T, Piddock L J V. RamA Confers Multidrug Resistance in Salmonella enterica via Increased Expression of acrB, Which Is Inhabited by Chlorpromazine. Antimicrob Agents Chemother,2008,52:3604-3611
    Bailey A M, Ivens A, Kingsley R, Cottell J L, Wain J, Piddock L J V. RamA, a Member of the AraC/XylS Family, Influences Both Virulence and Efflux in Salmonella enterica Serovar Typhimurium. J Bacteriol,2010,192:1607-1616
    Baranova N N, Danchin A, Neyfakh A A. Mta, a global Mer R-type regulator of the Bacillus subtilis multidrug-effux transporters. Mol Microbiol,1999,31:1549-1559
    Baucheron S, Chaslus-Dancla E, Cloeckaert A. Role of TolC and parC mutation in high-level fluoroquinolone resistance in Salmonella enterica serotype Typhimurium DT204. J Antimicrob Chemother,2004a,53:657-659
    Baucheron S, Tyler S, Boyd D, Mulvey M R, Chaslus-Dancla E, Cloeckaert A. AcrAB-TolC Directs Efflux-Mediated Multidrug Resistance in Salmonella enterica SerovarTyphimurium DT104. Antimicrob Agents Chemother,2004b,48:3729-3735
    Baucheron S, Mouline C, Praud K, Chaslus-Dancla E, Cloeckaert A. TolC but not AcrB is essential for multidrug-resistant Salmonella enterica serotype Typhimurium colonization of chicks. J Antimicrob Chemother,2005,55:707-712
    Bechhofer D H, Stasinopoulos S J. tetA(L) Mutants of a Tetracycline-Sensitive Strain of Bacillus subtilis with the Polynucleotide Phosphorylase Gene Deleted. J Bacteriol, 1998,180:3470-3473
    Begum A, Mushfequr Raham M, Ogawa W, Mizushina T, Kuroda T, Tsuchiya T. Gene Cloning and Characterization of Four MATE Family Multidrug Efflux Pumps from Vibro cholerae Non-01. Microbiol Immunol,2005,49:949-957
    Blair JMA, Ragione RML, Woodward MJ, Piddock LJV. Periplasmic adaptor protein AcrA has a distinct role in the antibiotic resistance and virulence of Salmonella enterica serovar Typhimurium. J Antimicrob Chemother,2009,64:965-972
    Blondeau J M, Zhao X L, Hansen G, Drlica K. Mutant Prevention Concentrations of Fluoroquinolones for Clinical Isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother,2001,45:433-438
    Borges-Walmsley M I, Walmsley A R. The structure and function of drug pumps. Trends Microbiol,2001,9:71-79
    Boyd D A, Peters G A, Ng L K, Mulvey M R. Partial characterization of a genomic island associated with the multidrug resistance region of Salmonella enterica Typhymurium DT104. FEMS Microbiol Lett,2000,189:285-291
    Brown M H, Paulsen I T, Skurray R A. The multidrug efflux protein NorM is a prototype of a new family of transporters. Mole Microbiol,1999,31:393-395
    Cebrian L, Rodriguez J C, Escribano I, Royo S G. Evaluation of several fluoroquinolones and beta-lactams in terms of their capability to restrict the selection of fluoroquinolone-resistant Salmonella:in vitro models. APMIS,2007,115:1376-1382
    Chang G, Roth C B. Structure of Msb A from E. coli:A Homolog of the Multidrug Resistance ATP Binding Cassette (ABC) Transporters. Science,2001,293: 1793-1800
    Charvalos E, Tselentis Y, Hamzehpour M M, Kohler T, Pechere J C. Evidence for an Efflux Pump in Multidrug-Resistant Campylobacter jejuni. Antimicrob Agents Chemother,1995,39:2019-2022
    Chen F J, Lo H J. Molocular mechanism of fluoroquinolone resistance. J Microbiol Immunol Infect,2003,36:1-9
    Chen J, Morita Y J, Nazmul Huda M, Kuroda T, Mizushima T, Tsuchiya T. VmrA, a Member of a Novel Class of Na+-Coupled Multidrug Efflux Pumps from Vibrio parahaemolyticus. J Bacteriol,2002,184:572-576
    Chen S, Cui S H, McDermott P F, Zhao S H, White D G, Paulsen I, Meng J H. Contribution of Target Gene Mutations and Efflux to Decreased Susceptibility of Salmonella enterica Serovar Typhimurium to Fluoroquinolones and Other Antimicrobials. Antimicrob Agents Chemother,2007,51:535-542
    Chinni S V, Raabe C A, Zakaria R, Randau G, Hoe C H, Zemann A, Brosius J, Tang T H, Rozhdestvensky T S. Experimental identification and characterization of 97 novel npcRNA candidates in Salmonella enterica serovar Typhi. Nucleic Acids Res,2010, 38:5893-5908
    Chuanchuen R, Narasaki C T, Schweizer H P. The MexJK Efflux Pump of Pseudomonas aeruginosa Requires OprM for Antibiotic Efflux but Not for Efflux of Triclosan. J Bacteriol,2002,184:5036-5044
    Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing,18th informational supplement M100-S182008; CLSI, Wayne, PA
    Coldham N G, Webber M, Woodward M J, Piddock L J V. A96-well plate fluorescence assay for assessment of cellular permeability and active efflux in Salmonella enterica serovar Typhimurium and Escherichia coli. J Antimicrob Chemother,2010,65: 1655-1663
    Cosgrove S E. The Relationship between Antimicrobial Resistance and Patient Outcomes: Mortality, Length of Hospital Stay, and Health Care Costs. Clin Infect Dis,2006,42: S82-89
    Cristobal R C, Vincent P A, Salomon R A. Multidrug resistance pump AcrAB-TolC is required for high-level,Tet(A)-mediated tetracycline resistance in Escherichia coli. J Antimicrob Chemother,2006,58:31-36
    Daly M M, Dokto S, Flamm R, Shortridge D. Characterization and Prevalence of MefA, MefE, and the Associated msr(D) Gene in Streptococcus pneumoniae Clinical Isolates.J Clin Microbiol,2004,42:3570-3574
    Dawson R J P, Locher K P. Structure of a bacterial multidrug ABC transporter. Nature, 2006,443:180-185
    DeMarco C E, Cushing L A, Frempong-Manso E, Seo S M, Jaravaza T A A, Kaatz G W. Efflux-Related Resistance to Norfloxacin, Dyes, and Biocidesin Blood stream Isolates of Staphylococcus aureus. Antimicrob Agents Chemother,2007,51: 3235-3239
    Dong Y Z, Zhao X L, Domagala J, Drlica K. Effect of Fluoroquinolone Concentration on Selection of Resistant Mutants of Mycobacterium bovis BCG and Staphylococcus aureus. Antimicrob Agents Chemother,1999,43:1756-1758
    Doublet B, Boyd D, Mulvey M R, Cloeckaert A. The Salmonella genomic island 1 is an integrative mobilizable element. Mol Microbiol,2005,55:1911-1924
    Dridi L, Tankovic J, Petit J C. CdeA of Clostridium difficile, a New Multidrug Efflux Transporter of the MATE Family. Microb Drug Resist,2004,10:191-196
    Drlica K. The mutant selection window and antimicrobial resistance. J Antimicrob Chemother,2003,52:11-17
    Dyllick-Brenzinger M, Liu M F, Winstone T L, Taylor D E, Turner R J. The Role of Cysteine Residues in Tellurite Resistance Mediated by the TehAB Determinant. Biochem Biophys Res Commun,2000,277:394-400
    Eaves D J, Ricci V, Piddock L J V. Expression of acrB, acrF, acrD, mar A, and soxS in Salmonella enterica Serovar Typhimurium:Role in Multiple Antibiotic Resistance. Antimicrob Agents Chemother,2004,48:1145-1150
    Elkins C A, Nikaido H. Substrate Specificity of the RND-Type Multidrug Efflux Pumps Acr B and Acr D of Escherichia coli Is Determined Predominately by Two Large Periplasmic Loops. J Bacteriol 2002,184:6490-6498
    Ernst RK, Guina T, Miller SI. Salmonella typhimurium outer membrane remodeling:role in resistance to host innate immunity. Microbes Infect,2001,3:1327-1334
    Escribano I, Rodr'iguez J C, Cebrian L, Royo G. The importance of active efflux systems in the quinolone resistance of clinical isolates of Salmonella spp. J Antimicrob Chemother,2004,24:428-432
    Faccone D, Andres P, Galas M, Tokumoto M, Rosato A, Corso A. Emergence of a Streptococcus pneumoniae Clinical Isolate Highly Resistant to Telithromycin and Fluoroquinolones. J Clin Microhiol,2005,43:5800-5803
    Fang F C, Vazquez-Torres A, Xu Y S. The Transcriptional Regulator SoxS Is Required for Resistance of Salmonella typhimurium to Paraquat but Not for Virulence in Mice. Infect Immun,1997,65:5371-5375
    Ferech M, Coenen S, Malhotra-Kumar S, Dvorakova K, Hendrickx K, Suetens C. Goossens H, on behalf of the ESAC Project Group. European Surveillance of Antimicrobial Consumption (ESAC):outpatient quinolone use in Europe. J Antimicrob Chemother,2006,58:423-427
    Ferrari R, Magnani M, Souza R B, Tognim M C B, Oliveira T C R M. Mutant Prevention Concentration (MPC) of Ciprofloxacin Against Salmonella enter ica of Epidemic and Poultry Origin. Curr Microbiol,2011,62:628-632
    Fournier B, Aras R, Hooper D C. Expression of the Multidrug Resistance Transporter Nor A from Staphylococcus aureus Is Modified by a Two-Component Regulatory System. J Bacteriol,2000,182:664-671
    Fralick J A. Evidence that TolC Is Required for Functioning of the Mar/AcrAB Efflux Pump of Escherichia coli. J Bacteriol,1996,178:5803-5805
    Gay K, Robicsek A, Strahilevitz J, Park C H, Jacoby G, Barrett T J, Medalla F, Chiller T M, Hooper D C. Plasmid-Mediated Quinolone Resistance in Non-Typhi Serotypes of Salmonella enterica. Clin Infect Dis 2006,43:297-304
    Ganas P, Mihasan M, Igloi G L, Brandsch R. A two-component small multidrug resistance pump functions as a metabolic valve during nicotine catabolism by Arthrobacter nicotinovorans. Microbiology,2007,153:1546-1555
    Ge B, McDermott P F, White D G, Meng J H. Role of Efflux Pumps and Topoisomerase Mutations in Fluoroquinolone Resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother,2005,49:3347-3354
    Gebreyes W A, Thakur S, Davies P R, Funk J A, Altier C. Trends in antimicrobial resistance, phage types and integrons among Salmonella serotypes from pigs, 1997-2000. J Antimicrob Chemother,2004,53:997-1003
    Giraud E, Brisabois A, Martel J L, Chaslus-Dancla E. Comparative Studies of Mutations in Animal Isolates and Experimental In Vitro-and In Vivo-Selected Mutants of Salmonella spp. Suggest a Counter selection of Highly Fluoroquinolone-Resistant Strains in the Field. Antimicrob Agents Chemother,1999,43:2131-2137
    Giraud E, Cloeckaert A, Kerboeuf D, Chaslus-Dancla E. Evidence for Active Efflux as the Primary Mechanism of Resistance to Ciprofloxacin in Salmonella enterica Serovar Typhimurium. Antimicrob Agents Chemother,2000,44:1223-1228
    Giraud E, Cloeckaert A, Baucheron S, Mouline C, Chaslus-Dancla E. Fitness cost of fluoroquinolone resistance in Salmonella enterica serovarTyphimurium. J Med Microbiol,2003,52:697-703
    Giraud E, Baucheron S, Cloeckaert A. Resistancetofluoroquinolonesin Salmonella: emerging mechanisms and resistance prevention strategies. Microbes Infect,2006,8: 1937-1944
    Grinius L, Dreguniene G, Goldberg E B, Liao C H, Projan S J A. Staphylococcal multidrug resistance gene product is a member of a new protein family. Plasmid 1992,27:119-129
    Grkovic S, Brown M H, Roberts N J, Paulsen I T, Skurray R A. QacR Is a Repressor Protein That Regulates Expression of the Staphylococcus aureus Multidrug Efflux Pump QacA. J Biol Chem,1998,273:18665-18673
    Guerra B, Malorny B, Schroeter A, Helmuth R. Multiple Resistance Mechanisms in Fluoroquinolone-Resistant Salmonella Isolates from Germany. Antimicrob Agents Chemother,2003,47:2059
    Gunell M, Webber M, Kotilainen P, Lilly A J, Caddick J M, Jalava J, Huovinen P, Siitonen A, Hakanen A J, Piddock L J V. Mechanisms of Resistance in Nontyphoidal Salmonella enterica Strains Exhibiting a Nonclassical Quinolone Resistance Phenotype. Antimicrob Agents Chemother,2009,53:3832-3836
    Hakanen A J, Lindgren M, Huovinen P, Jalava J, Siitonen A, Kotilainen P. New Quinolone Resistance Phenomenon in Salmonella enterica:Nalidixic Acid-Susceptible Isolates with Reduced Fluoroquinolone Susceptibility. J Clin Microb, 43:5775-5778
    Hansen G T, Drlica K, Blondeau J M. Mutant Prevention Concentration of Gemifloxacin for Clinical Isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother, 2003,47:440-441
    Hansen G T, Zhao X L, Drlica K, Blondeau J M. Mutant prevention concentration for ciprofloxacin and levofloxacin with Pseudomonas aeruginosa. Int J Antimicrob Agents,2006,27:120-124
    Hansen H, Heisig P. Topoisomerase IV Mutations in Quinolone-Resistant Salmonellae Selected In Vitro. Microb Drug Resist,2003,9:25-32
    He G X, Kuroda T, Mima T, Morita Y J, Mizushima T, Tsuchiya T. An H+-Coupled Multidrug Efflux Pump, PmpM, a Member of the MATE Family of Transporters, from Pseudomonas aeruginosa. J Bacteriol,2004,186:262-265
    Hermsen E D, Hovde L B, Konstantinides G N, Rotschafer J C. Mutant Prevention Concentrations of ABT-492, Levofloxacin Moxifloxacin, and Gatifloxacin against Three Common Respiratory Pathogens. Antimicrob Agents Chemother,2005,49: 1633-1635
    Higgins C F. Multiple molecular mechanisms for multidrug resistance transporters. Nature,2007,446:749-757
    Hirai K, Aoyama H, Irikura T, Iyobe S, Mitsuhashi S. Differences in Susceptibility to Quinolones of Outer Membrane Mutants of Salmonella typhimurium and Escherichia coli. Antimicrob Agents Chemother,1986,29:535-538
    Homma T, Hori T, Sugimori G, YamanoY. Pharmacodynamic Assessment Based on Mutant Prevention Concentrations of Fluoroquinolones to Prevent the Emergence of Resistant Mutants of Streptococcus pneumoniae. Antimicrob Agents Chemother, 2007,51:3810-3815
    Hopkins K L, Davies R H, JohnThrelfall E. Mechanisms of quinolone resistance in Escherichia coli and Salmonella:Recent developments. Int J Antimicrob Agents, 2005,25:358-373
    Horiyama T, Yamaguchi A, Nishino K. TolC dependency of multidrug efflux systems in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother,2010,7: 1372-1376
    Huang J Z, O'Toole P W, Shen W, Amrine-Madsen H, Jiang X H, Lobo N, Palmer L M, Voelker L R, Fan F, Gwynn M N, McDevitt D. Novel Chromosomally Encoded Multidrug Efflux Transporter MdeA in Staphylococcus aureus. Antimicrob Agents Chemother,2004,48:909-917
    Huda M N, Morita Y J, Kuroda T, Mizushima T, Tsuchiya T. Na+-driven multidrug efflux pump VcmA from Vibrio cholerae non-O1, a non-halophilic bacterium. FEMS Microb Lett,2001,203:235-239
    Huda M N, Chen J, Morita Y, Kuroda T, Mizushina T, Tsuchiya T. Gene Cloning and Characterization of the VcrM, a Na+-Coupled Multidrug Efflux Pump from Vibro Chlerae Non-O1. Microbiol Immun,2003,47:419-427
    Jack D L, Storms M L, Tchieu J H, Paulsen I T, Saier M H. A Broad-Specificity Multidrug Efflux Pump Requiring a Pair of Homologous SMR-Type Proteins. J Bacteriol,2000,182:2311-2313
    Jacoby G A. Mechanisms of Resistance to Quinolones. Clin Infect Dis,2005,41: S120-S126
    Kaatz G W, Swo S M., Foster T J. Introduction of a nor A Promoter Region Mutation into the Chromosome of a Fluoroquinolone-Susceptible Strain of Staphylococcus aureus Using Plasmid Integration. Antimicrob Agents Chemother,1999,43:2222-2224
    Kaatz G W, Moudgal V V, Seo S M, Kristiansen J E. Phenothiazines and Thioxanthenes Inhibit Multidrug Efflux Pump Activity in Staphylococcus aureus. Antimicrob Agents Chemother,2003,47:719-726
    Kaatz G W, McAleese F, Seo S M. Multidrug Resistance in Staphylococcus aureus Due to Overexpression of a Novel Multidrug and Toxin Extrusion (MATE) Transport Protein. Antimicrob Agents Chemother,2005,49:1857-1864
    Kaatz G W, DeMarco C E, Seo S M. MepR, a Repressor of the Staphylococcus aureus MATE Family Multi drug Efflux Pump MepA, Is a Substrate-Responsive Regulatory Protein. Antimicrob Agents Chemother,2006,50:1276-1281
    Kehrenberg C, Jong A, Friederichs S, Cloeckaert A, Schwarz S. Molecular mechanisms of decreased susceptibility to fluoroquinolones in avian Salmonella serovars and their mutants selected during the determination of mutant prevention concentrations. J Antimicrob Chemother,2007,59:886-892
    Kehrenberg C, Cloeckaert A, Klein G, Schwarz S. Decreased fluoroquinolone susceptibility in mutants of Salmonella serovars other than Typhimurium:detection of novel mutations involved in modulated expression of ramA and soxS. J Antimicrob Chemother,2009,64:1175-1180
    Khan A A, Cheng C M, Van K T, West C S, Nawaz M S, Khan S A. Characterization of class 1 integron resistance gene cassettes in Salmonella enterica serovars Oslo and Bareily from imported seafood. J Antimicrob Chemother,2006, Correspondence, 1308-1310
    Kobayashi K, Tsukagoshi N, Aono R. Suppression of Hypersensitivity of Escherichia coli acrB Mutant to Organic Solvents by Integrational Activation of the acrEF Operon with the IS1 or IS2 Element. J Bacteriol,2001,183:2646-2653
    Kohler T, Michea-Hamzehpour M, Plesiat P, Kahr A L, Pechere J C. Differential Selection of Multidrug Efflux Systems by Quinolones in Pseudomonas aeruginosa. Antimicrob Agents Chemother,1997,41:2540-2543
    Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export.2000, Nature, 405:914-919
    Koutsolioutsou A, Martins E A, White D G, Levy S B, Demple B. A soxRS-Constitutive Mutation Contributing to Antibiotic Resistance in a Clinical Isolate of Salmonella enterica (Serovar Typhimurium). Antimicrob Agents Chemother,2001,45:38-43
    Kriengkauykiat J, Porter E, Lomovskaya O, Wong-Beringer A. Use of an Efflux Pump Inhibitor to Determine the Prevalence of Efflux Pump-Mediated Fluoroquinolone Resistance and Multidrug Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother,2005,49:565-570
    Lacroix F J, Cloeckaert A, Grepinet O, Pinault C, Popoff M Y, Waxin H, Pardon P. Salmonella typhimurium acrB-like gene:identification and role in resistance to biliary salts and detergents and in murine infection. FEMS Microbiol Lett,1996,135: 161-167
    Lee A, Mao W, Warren M S, Mistry A, Hoshino K, Okumura R, Ishida H, Lomovskaya O. Interplay between Efflux Pumps May Provide Either Additive or Multiplicative Effects on Drug Resistance. J Bacteriol,2000,182:3142-3150
    Levings R S, Lightfoot D, Partridge S R, Hall R M, Djordjevic S P. The Genomic Island SGI1, Containing the Multiple Antibiotic Resistance Region of Salmonell aenterica Serovar Typhimurium DT104 or Variants of It, Is Widely Distributed in Other S.enterica Serovars. J Bacteriol,2005,187:4401-4409
    Levy S B, Marshall B. Antibacterial resistance worldwide:causes, challenges and responses. Nat Med Supp,2004,10:S122-S129
    Linde H J, Lehn N. Mutant prevention concentration of nalidixic acid, ciprofloxacin, clinafloxacin, levofloxacin, norfloxacin, ofloxacin, sparfloxacin or trovafloxacin for Escherichia coli under different growth conditions. J Antimicrob Chemother,2004, 53:252-257
    Lindgren M M, Kotilainen P, Huovinen P, Hurme S, Lukinmaa S, Webber M A, Piddock L J V, Siitonen A, Hakanen A J. Reduced Fluoroquinolone Susceptibility in Salmonella enterica Isolates from Travelers, Finland. Emerg Infect Dis,2009,15: 809-812
    Lin J, Overbye Michel L, Zhang Q J. CmeABC Functions as a Multidrug Efflux System in Campylobacter jejuni. Antimicrob Agents Chemother,2002,46:2124-2131
    Lin J, Sahin O, Overbye Michel L, Zhang Q J. Critical Role of Multidrug Efflux Pump CmeABC in Bile Resistance and In Vivo Colonization of Campylobacter jejuni. Infect Immun,2003,71:4250-4259
    Lin J, Akiba M, Sahin O, Zhang Q J. CmeR Functions as a Transcriptional Repressor for the Multidrug Efflux Pump CmeABC in Campylobacter jejuni. Antimicrob Agents Chemother,2005,49:1067-1075
    Li X Z, Nikaido H, Poole K. Role of MexA-MexB-OprM in Antibiotic Efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother,1995,39:1948-1953
    Li X Z, Poole K, Nikaido H. Contributions of MexAB-OprM and an EmrE Homolog to Intrinsic Resistance of Pseudomonas aeruginosa to Aminoglycosides and Dyes. Antimicrob Agents Chemother,2003,47:27-33
    Li X Z, Zhang L, Nikaido H. Efflux Pump-Mediated Intrinsic Drug Resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother,2004,48:2415-2423
    Li Y, Mima T, Komori Y, Morita Y, Kuroda T, Mizushima T, Tsuchiya T. A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. J Antimicrob Chemother,2003,52:572-575
    Locher K P, Lee A T, Rees D C. The E. coli BtuCD Structure:A Framework for ABC Transporter Architecture and Mechanism. Science,2002,296:1091-1098
    Lomovskaya O, Warren M S, Lee A, Galazzo J, Fronko R, Lee M, Blais J, Cho D, Chamberland S, Renau T, Leger R, Hecker S, Watkins W, Hoshino K, Ishida H, Lee V J. Identification and Characterization of Inhibitors of Multidrug Resistance Efflux Pumps in Pseudomonas aeruginosa:Novel Agents for Combination Therapy. Antimicrob Agents Chemother,2001,45:105-116
    Mahamoud A, Chevalier J, Alibert-Franco S, Kern W V, Pages J M. Antibiotic efflux pumps in Gram-negative bacteria:the inhibitor response strategy. J Antimicrob Chemother,2007,59:1223-1229
    Martin R G, Rosner J L. Fis, an Accessorial Factor for Transcriptional Activation of the mar (Multiple Antibiotic Resistance) Promoter of Escherichia coli in the Presence of the Activator MarA, SoxS, or Rob. J Bacteriol,1997,179:7410-7419
    Martin R G, Gillette W K, Rosner J L. Promoter discrimination by the related transcriptional activators MarA and SoxS:differential regulation by differential binding. Mole Microbiol,2000,35:623-634
    Martinez-Martinez L, Pascual A, Jacoby G A. Quinolone resistance from a transferable plasmid. The lancet,1998,351:797-799
    Masaoka Y, Ueno Y, Morita Y J, Kuroda T, Mizushima T, Tsuchiya T. A Two-Component Multidrug Efflux Pump, EbrAB, in Bacillus subtilis. J Bacteriol, 2000,182:2307-2310
    Mazel D. Integrons:agents of bacterial evolution. Nat Rev Microbiol,2006,4:608-620
    Mazzariol A, Tokue Y, Kanegawa T M, Cornaglia G, Nikado H. High-Level Fluoroquinolone-Resistant Clinical Isolates of Escherichia coli Overproduce Multidrug Efflux Protein AcrA. Antimicrob Agents Chemother,2000,44:3441-3443
    Mcmurry L, Petrucci R E, Levy S B. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci U S A,1980,77:3974-3977
    Meka V G, Gold H S. Antimicrobial resistance to linezolid. Clin Infect Dis,2004,39, 1010-1015
    Miller P F, Gambino L F, Sulavik M C, Grachck S J. Genetic Relationship between soxRS and mar Loci in Promoting Multiple Antibiotic Resistance in Escherichia coli. Antimicrob Agents Chemother,1994,38:1773-1779
    Mitchell B A, Brown M H, Skurray R A. QacA Multidrug Efflux Pump from Staphylococcus aureus:Comparative Analysis of Resistance to Diamidines, Biguanidines, and Guanylhydrazones. Antimicrob Agents Chemother,1998,42: 475-477
    Mitsuyama J I, Itoh Y, Takahata M, Okamoto S, Yasuda T. In Vitro Antibacterial Activities of Tosufloxacin against and Uptake of Tosufloxacin by Outer Membrane Mutants of Escherichia coli, Proteus mirabilis, and Salmonella typhimunum. Antimicrob Agents Chemother,1992,36:2030-2036
    Miyamae S, Ueda O, Yoshimura F, Hwang J, TanakaA Y, Nikaido H. A MATE Family Multidrug Efflux Transporter Pumps out Fluoroquinolones in Bacteroides thetaiotaomicron. Antimicrob Agents Chemother,2001,45:3341-3346
    Moniot-Ville N, Guibert J, Moreau N, Acar J F, Collatz E, Gutmann L. Mechanisms of Quinolone Resistance in a Clinical Isolate of Escherichia coli Highly Resistant to Fluoroquinolones but Susceptible to Nalidixic Acid. Antimicrob Agents Chemother, 1991,35:519-523
    Morita Y J, Kodama K, Shiota S, Mine T, Kataoka A, Mizushima T, Tsuchiya T. NorM, a Putative Multidrug Efflux Protein, of Vibrio parahaemolyticus and Its Homolog in Escherichia coli. Antimicrob Agents Chemother,1998,42:1778-1782
    Muller-Serieys C, Andrews J, Vacheron F, Cantalloube C. Tissue kinetics of telithromycin, the first ketolide antibacterial. J Antimicrob Chemother,2004,53: 149-157
    Murata T, Tseng W, Guina T, Miller S I, Nikaido H. PhoPQ-Mediated Regulation Produces a More Robust Permeability Barrier in the Outer Membrane of Salmonella enterica Serovar Typhimurium. J Bacteriol,2007,189:7213-7222
    Neyfak A A, Bidnenko V E, Chen L B. Efflux-mediated multidrug resistance in Bacillus subtilis:Similarities and dissimilarities with the mammalian system. Proc Natl Acad Sci U S A,1991,88:481-485
    Neyfak A A. The Multidrug Efflux Transporter of Bacillus subtilis is a Structural and Functional Homolog of the Staphylococcus NorA Protein. Antimicrob Agents Chemother,1992,36:484-485
    Neyfakh A A, Borsch C M, Kaatz G W. Fluoroquinolone Resistance Protein NorA of Staphylococcus aureus is a Multidrug Efflux Transporter. Antimicrob Agents Chemother,1993,37:128-129
    Nikaido E, Yamaguchi A, Nishino K. AcrAB Multidrug Efflux Pump Regulation in Salmonella enterica serovar Typhimurium by RamA in Response to Environmental Signals. J Biol Chem,2008,283:24245-24253
    Nikaido H, Basina M, Nguyen V, Rosenberg E Y. Multidrug Efflux Pump AcrAB of Salmonella typhimurium Excretes Only Those (3-Lactam Antibiotics Containing Lipophilic Side Chains. J Bacteriol,1998,180:4686-4692
    Ninio S, Rotem D, Schuldiner S. Functional Analysis of Novel Multidrug Transporters from Human Pathogens. J Biol Chem,2001,276:48250-48256
    Nishino K, Yamaguchi A. Analysis of a Complete Library of Putative Drug Transporter Genes in Escherichia coli. J Bacteriol,2001,183:5803-5812
    Nishino K, Latifi T, Groisman E A. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mole Microbiol,2006, 59:126-141
    Nordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect,2002,8:321-331
    Norrby S R. Integrons:Adding Another Threat to the Use of Antibiotic Therapy. Clin Infect Dis,2005,41:10-11
    Ohki R, Murata M. bmr3, a Third Multidrug Transporter Gene of Bacillus subtilis. J Bacteriol,1997,179:1423-1427
    Okusu H, Ma D, Nikaido H. AcrAB Efflux Pump Plays a Major Role in the Antibiotic Resistance Phenotype of Escherichia coli Multiple-Antibiotic-Resistance (Mar) Mutants. J Bacteriol,1996,178:306-308
    Olliver A, Valle M, Chaslus-Dancla E, Cloeckaert A. Role of an acrR mutation in multidrug resistance of in vitro-selected fluoroquinolone-resistant mutants of Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett,2004,238: 267-272
    Olliver A, Valle'M, Chaslus-Dancla E, Cloeckaert A. Overexpression of the Multidrug Efflux Operon acrEF by Insertional Activation with IS1 or IS10 Elements in Salmonella enterica Serovar Typhimurium DT204 acrB Mutants Selected with Fluoroquinolones. Antimicrob Agents Chemother,2005,49:289-301
    Oliphant C M, Green G M. Quinolones:A Comprehensive Review. Clin Pharmacol, 2002,65:455-464
    O'Regan E, Quinn T, Pages J M, McCusker M, Piddock L, Fanning S. Multiple Regulatory Pathways Associated with High-Level Ciprofloxacin and Multidrug Resistance in Salmonella enterica Serovar Enteritidis:Involvement of ramA and Other Global Regulators. Antimicrob Agents Chemother,2009,53:1080-1087
    Paulsen I T, Brown M H, Dunstan S J, Skurray R A. Molecular Characterization of the Staphylococcal Multidrug Resistance Export Protein QacC. J Bacteriol,1995,177: 2827-2833
    Paulsen I T, Brown M H, Littleohn T G, Mitchell B A, Skurray R A. Multidrug resistance proteins QacA and QacB from Staphylococcus aureus:Membrane topology and identification of residues involved in substrate specificity. Proc Natl Acad Sci U S A,1996,93:3630-3635
    Piddock L J V. Mechanism of quinolone uptake into bacterial cells. J Antimicrob Chemother,1991,27:399-403
    Piddock L J V, White D G, Gensberg K, Pumbwe L, Griggs D J. Evidence for an Efflux Pump Mediating Multiple Antibiotic Resistance in Salmonella enterica Serovar Typhimurium. Antimicrob Agents Chemother,2000,44:3118-3121
    Piddock L J V, Johnson M M, Simjee S, Pumbwe L. Expression of Efflux Pump Gene pmrA in Fluoroquinolone-Resistant and -Susceptible Clinical Isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother,2002,46:808-812
    Piddock L J V. Clinically Relevant Chromosomally Encoded Multidrug Resistance Efflux Pumps in Bacteria. Clin Microbiol Rev,2006a,19:382-402
    Piddock L J V. Multidrug-resistance efflux pumps-not just for resistance. Nat Rev, Microbiol,2006b,4:629-636
    Pomposiello P J, Demple B. Identification of SoxS-Regulated Genes in Salmonella enterica Serovar Typhimurium. J Bacteriol,2000,182:23-29
    Poole K. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother,2005,56: 20-51
    Pornillos O, Chen Y J, Chen A P, Chang G. X-ray Structure of the EmrE Multidrug Transporter in Complex with a Substrate.2005, Science,310:1950-1954
    Prouty A M, Brodsky I E, Falkow S, Gunn J S. Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella Typhimurium. Microbiology,2004, 150:775-783
    Pumbwe L, Randall L P, Woodward M J, Piddock L J V. Evidence for Multiple-Antibiotic Resistance in Campylobacter jejuni Not Mediated by CmeB or CmeF. Antimicrob Agents Chemother,2005,49:1289-1293
    Putman M, Van Veen H W, Konings W N. Molecular Properties of Bacterial Multidrug Transporters. Microbiol Mol Biol Rev,2000,64:672-693
    Rahmati S, Yang S, Davidson A L, Zechiedrich E L. Control of the AcrAB multidrug efflux pump by quorum-sensing regulator SdiA. Mole Microbiol,2002,43:677-685
    Ramos J L, Martinez-Bueno M, Molina-Henares A J, Teran W, Watanabe K, Zhang X D, Gallegos M T, Brennan R, Tobes R. The TetR Family of Transcriptional Repressors. Microbiol Mole Biol Rev,2005,69:326-356
    Randall L P, WoodWard M J. Multiple Antibiotic Resistance (mar) Locus in Salmonella enterica Serovar Typhimurium DT104. Appl Environ Microbiol,2001,67: 1190-1197
    Rapp M, Seppala S, Granseth E, Heijne G V. Emulating Membrane Protein Evolution by Rational Design. Science,2007,315:1282-1284
    Renau T E, Leger R, Filonova L, Flamme E M, Wang M, Yen R, Madsen D, Griffith D, Chamberland S, Dudley M N, Lee V J, Lomovskaya O, Watkins W J, Ohta T, Nakayama K, Ishid Y. Conformationally-Restricted Analogues of Efflux Pump Inhibitors that Potentiate the Activity of Levofloxacin in Pseudomonas aeruginosa. Bioorg Med Chem Lett,2003,13:2755-2758
    Reyes C L, Chang G. Structure of the ABC Transporter MsbA in Complex with ADP.Vanadate and Lipopoly-saccharide. Science,2005,308:1028-1031
    Ricci V, Tzakas P, Buckley A, Coldham N C, Piddock L J V. Ciprofloxacin-Resistant Salmonella enterica SerovarTyphimurium Strains Are Difficult To Select in the Absence of AcrB and TolC. Antimicrob Agents Chemother,2006,50:38-42
    Ricci V, Piddock L J V. Ciprofloxacin selects for multidrug resistance in Salmonella enterica serovar Typhimurium mediated by at least two different pathways. J Antimicrob Chemother,2009a,63:909-916
    Ricci V, Piddock L J V. Only for substrate antibiotics are a functional AcrAB-TolC efflux pump and RamA required to select multidrug-resistant Salmonella Typhimurium. J Antimicrob Chemother,2009b,3:654-657
    Robicsek A, Strahilevitz J, Jacoby G A, Macielag M, Abbanat D, Park C H, Bush K Hooper D C. Fluoroquinolone-modifying enzyme:a new adaptation of a common aminoglycoside acetyltransferase. Nat Med,2006a,12:83-88
    Robicsek A, Jacoby G A, Hooper D C. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 2006b,6:629-640
    Rodriguez J C, Cebrian L, Lopez M, Ruiz M, Jimenez 1, Royo G. Mutant prevention concentration:comparison of fluoroquinolones and linezolid with Mycobacterium tuberculosis. J Antimicrob Chemother,2004,53:441-444
    Rosenberg E Y, Ma D, Nikaido H. AcrD of Escherichia coli Is an Aminoglycoside Efflux Pump. J Bacteriol,2000,182:1754-1756
    Rouch D A, Cram D S, DiBerardino D, Littlejohn T G, Skurray R A. Efflux-mediated antiseptic resistance gene qacA from Staphylococcus aureus:common ancestry with tetracycline-and sugar-transport proteins. Mole Microbiol,1990,4:2051-2062.
    Ruiz J. Mechanisms of resistance to quinolones:target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemother,2003,51: 1109-1117
    Rybak M J. Pharmacodynamics:Relation to antimicrobial resistance. Am J Infect Control, 2006,34:S38-S44
    Schumacher M A, Miller M C, Grkovic S, Brown M H, Skurray R A, Brennan R G. Structural Mechanisms of QacR Induction and Multidrug Recognition. Science,2001, 294:2158-2163
    Seeger M A, Schiefner A, Eicher T, Verrey F, Diederichs K, Pos K M. Structural Asymmetry of AcrB Trimer Suggests a Peristaltic Pump Mechanism.2006, Science 313:1295-1298
    Sharoni M, Steiner-Mordoch S, Schuldiner S. Exploring the Binding Domain of EmrE, the Smallest Multidrug Transporter. J Biol Chem,2005,280:32849-32855
    Shilling R A, Venter H, Velamakanni S, Bapna A, Woebking B, Shahi S, Veen H W. New light on multidrug binding by an ATP-binding-cassette transporter. Trends Pharmacol Sci,2006,27:195-203
    Smith H J, Nichol K A, Hoban D J, Zhanel G G. Stretching the mutant prevention concentration (MPC) beyond its limits. J Antimicrob Chemother,2003,51: 1323-1325
    Stavri M, Piddock L J V, Gibbons S. Bacterial efflux pump inhibitors from natural sources. J Antimicrob Chemother,2007,59:1247-1260
    Straaten T, Zulianello L, Diepen A, Granger D L, Janssen R, Dissel J P. Salmonella enterica Serovar Typhimurium RamA, Intracellular Oxidative Stress Response, and Bacterial Virulence. Infect Immun,2004a,72:996-1003
    Straaten T, Janssen R, Mevius D J, Dissel J T. Salmonella Gene rma (ramA) and Multiple-Drug-Resistant Salmonella enterica Serovar Typhimurium. Antimicrob Agents Chemother,2004b,48:2292-2294
    Sulavik M C, Dazer M, Miller P F. The Salmonella typhimurium mar Locus:Molecular and Genetic Analyses and Assessment of Its Role in Virulence. J Bacteriol,1997, 179:1857-1866
    Sulavik M C, Houaeweart C, Cramer C, Jiwani N, Murgolo N, Greene J, Didomenico B, Shaw K J, Miller G H, Hare R, Shimer G. Antibiotic Susceptibility Profiles of Escherichia coli Strains Lacking Multidrug Efflux Pump Genes. Antimicrob Agents Chemother,2001,45:1126-1136
    Tenover, F C, Weigel L M, Appelbaum P C, McDougal L K, Chaitram J, McAllister S, Clark N, Killgore G, OHara C M, Jevitt L, Patel J B, Bozdogan B. Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob Agents Chemother,2004,48:275-280
    Tibbetts R J, Lin T L, Wu C C. Insertional mutation of mar A vitiates inducible multiple antimicrobial resistance in Salmonella enterica subsp. enterica serovar Choleraesuis. Vet Microbiol,2005,109:267-274
    Tobes R, Ramos J L. Arac-Xyls database:a family of positive transportional regulators in bacteria. Nucleic Acids Res,2002,30:318-321
    Truong-Bolduc Q C, Zhang X M, Hooper D C. Characterization of NorR Protein, a Multifunctional Regulator of nor A Expression in Staphylococcus aureus. J Bacteriol, 2003.185:3127-3138
    Truong-Bolduc Q C, Dunman P M, Strahilevitz J, Projan S J, Hooper D C. MgrA Is a Multiple Regulator of Two New Efflux Pumps in Staphylococcus aureus. J Bacteriol, 2005,187:2395-2405
    Truong-Bolduc Q C, Strahilevitz J, Hooper D C. NorC, a New Efflux Pump Regulated by MgrA of Staphylococcus aureus. Antimicrob Agents Chemother,2006,50: 1104-1107
    Tuckman M, Petersen P J, Howe A Y M, Orlowski M, Mullen S, Chan K, Bradford P A, Jones C H. Occurrence of Tetracycline Resistance Genes among Escherichia coli Isolates from the Phase 3 Clinical Trials for Tigecycline. Antimicrob Agents Chemother,2007,51:3205-3211
    Turner A K, Nair S, Wain J. The acquisition of full fluoroquinolone resistance in Salmonella Typhi by accumulation of point mutations in the topoisomerase targets. J Antimicrob Chemother,2006,58:733-740
    Turner R J, Taylor D E, Weiner J H. Expression of Escherichia coli TehA Gives Resistance to Antiseptics and Disinfectants Similar to That Conferred by Multidrug Resistance Efflux Pumps. Antimicrob Agents Chemother,1997,41:440-444
    Ubukata K, Itoh-Yamashita N, Konno M. Cloning and Expression of the norA Gene for Fluoroquinolone Resistance in Staphylococcus aureus. Antimicrob Agents Chemother,1989,33:1535-1539
    Valderramos S G, Fidock D A. Transporters involved in resistance to antimalarial drugs. Trends Pharmacol Sci,2006,27:594-601
    Van Bambeke F, Glupczynski Y, Plesiat P, Pechere J C, Tulkens P M. Antibiotic efflux pumps in prokaryotic cells:occurrence, impact on resistance and strategies for the future of antimicrobial therapy. J Antimicrob Chemother,2003,51:1055-1065
    Van Bambeke F, Michot J M, Van Eldere J, Tulkens P M. Quinolones in 2005:an update. Clin Microbiol Infect Dis,2005,11:256-280
    Waites K B, Duffy L B, Dowzicky M J. Antimicrobial Susceptibility among Pathogens Collected from Hospitalized Patients in the United States and In Vitro Activity of Tigecycline, a New Glycylcycline Antimicrobial. Antimicrob Agents Chemother, 2006,50:3479-3484
    Wang H, Dzink-Fox J L, Chen M J, Levy S B. Genetic Characterization of Highly Fluoroquinolone-Resistant Clinical Escherichia coli Strains from China:Role of acrR Mutations. Antimicrob Agents Chemother,2001,45:1515-1521
    Webber M A, Piddock L J V. Absence of Mutations in marRAB or soxRS in acrB-Over expressing Fluoroquinolone-Resistant Clinical and Veterinary Isolates of Escherichia coli. Antimicrob Agents Chemother,2001,45:1550-1552
    Webber M A, Piddock L J V. The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother,2003,51:9-11
    Weigel L M, Clewell D B, Gill S R, Clark N C, McDougal L K, Flannagan S E, Kolonay J F, Shetty J, Killgore G E, Tenover F C. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science,2003,302: 1569-1571
    Weill F X, Guesnier F, Guibert V, Timinouni M, Demartin M, Polomack L, Grimont P A D. Multidrug Resistancein Salmonella enterica Serotype Typhimurium from Humans in France (1993 to 2003). JClin Microbiol,2006,44:700-708
    White D G, Goldman J D, Demple B, Levy S B. Role of the acrAB Locus in Organic Solvent Tolerance Mediated by Expression of mar A, soxS, or robA in Escherichia coli. J Bacteriol,1997,179:6122-6126
    Wierzbowski A K, Boyd D, Mulvey M, Hoban D J, Zhanel G G. Expression of the mef(E) Gene Encoding the Macrolide Efflux Pump Protein Increases in Streptococcus pneumoniae with Increasing Resistance to Macrolides. Antimicrob Agents Chemother,2005,49:4635-4640
    Woolridge D P, Vazquez-Laslop N, Markham P N, Chevalier M S, Gerner E W, Neyfakh A A. Efflux of the Natural Polyamine Spermidine Facilitated by the Bacillus subtilis Multidrug Transporter Blt. J Biol Chem,1997,272:8864-8866
    World Health Organization. WHO Global Salm-Surv Progress Report 2002-2005.
    Wu J, Weiss B. Two Divergently Transcribed Genes, soxR and soxS, Control a Superoxide Response Regulon of Escherichia coli. J Bacteriol,1991,173: 2864-2871
    Xu X J, Su X Z, Morita Y L, Kuroda T, Mizushina T, Tsuchiya T. Molecular Cloning and Characterization of the HmrM Multidrug Efflux Pump from Haemophilus Influenzae Rd. Microbiol Immun,2003,47:937-943
    Yamaguchi K, Ohno A of the Levofloxacin Surveillance Group. Investigation of the susceptibility trends in Japan to fluoroquinolones and other antimicrobial agents in a nation wide collection of clinical isolates:a longitudinal analysis from 1994 to 2002. Diagn Microbiol Infect Dis,2005,52:135-143
    Yang S, Rahmati Clayton S, Zechiedrich E L. Relative contributions of the AcrAB, MdfA and NorE efflux pumps to quinolone resistance in Escherichia coli. J Antimicrob Chemother,2003,51:545-556
    Yassien M A, Ewis H E, Lu C-D, Abdelal A T. Molecular Cloning and Characterization of the Salmonella enterica Serovar ParatyphiB rma Gene, Which Confers Multiple Drug Resistance in Escherichia coli. Antimicrob Agents Chemother,2002,46: 360-366
    Yoshida H, Bogaki M, Nakamura S, Ubukata K, Konno M. Nucleotide Sequence and Characterization of the Staphylococcus aureus norA Gene, Which Confers Resistance to Quinolones. J Bacteriol,1990,172:6942-6949
    Yu E W, McDermott G, Zgurskaya H I, Nikaido H, Koshland Jr D E. Structural Basis of Multiple Drug-Binding Capacity of the AcrB Multi drug Efflux Pump.2003, Science 300:976-980
    Zhao X L, Eisner W, Perl-Rosenthal N, Kreiswirth B, Drlica K. Mutant Prevention Concentration of Garenoxacin (BMS-284756) for Ciprofloxacin-Susceptibleor-Resistant Staphylococcus aureus. Antimicrob Agents Chemother,2003, 47:1023-1027
    Zheng J, Cui S H, Meng J H. Effect of transcriptional activators RamA and SoxS on expression of multidrug efflux pumps AcrAB and AcrEF in fluoroquinolone-resistant Salmonella Typhimurium. J Antimicrob Chemother,2009,63:95-102
    Zhou J F, Dong Y Z, Zhao X L, Lee S, Amin A, Ramaswamy S, Domagala J, Musser J M, Drlica K. Selection of Antibiotic-Resistant Bacterial Mutants:Allelic Diversity among Fluoroquinolone-Resistant Mutations. J Infect Dis,2000,182:517-525

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700