减毒沙门氏菌递呈PEDV/TGEV双基因核酸疫苗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪流行性腹泻病毒(PEDV)和猪传染性胃肠炎病毒(TGEV)主要引起猪的病毒性腹泻,这两种病原引起的腹泻对2周龄内新生仔猪危害尤为严重,可导致感染仔猪发生严重的腹泻、呕吐与脱水,死亡率高达100%,给养猪业造成严重的经济损失。如何增强猪的肠道特异性黏膜免疫对其防治具有重要意义。本研究在临床分离鉴定PEDV的基础上,基于PEDV和TGEV相似的致病机理和免疫特点,创新性研究增强黏膜免疫诱导效力的新型口服基因疫苗的免疫机理,以PEDV S基因及TGEV S双基因为靶基因,pVAXD双启动子真核表达质粒为载体,进行减毒沙门氏菌携带的PEDV和TGEV二联DNA疫苗的构建与免疫原性研究,主要研究内容如下:
     1.猪流行性腹泻病毒的分离鉴定
     本文用Vero细胞成功地从仔猪腹泻粪样中分离了PEDV四川分离株(SC-L株),并对其生物学特性进行了初步研究。PEDV SC-L在Vero细胞上连续传代,增殖稳定,典型病变在接毒后48小时开始出现,表现为细胞变圆、细胞肿胀、最终细胞皱缩、破碎并脱落。通过透射电镜观察发现:病毒粒子在感染细胞胞浆内可见散在或呈晶格状排列的空心或实心的病毒粒子;病毒粒子成堆或成串排列在细胞膜上,与细胞膜融合,然后以胞外分泌的方式被释放到细胞膜外。病毒对5-溴脱氧尿核苷不敏感,是一种RNA病毒,对氯仿、乙醚敏感,60℃或以上处理30min便会失去感染力。通过对其S基因S1区进行序列测定,发现与韩国DR13株同源性最高,核苷酸同源性高达99.2%。遗传进化树分析显示所分离毒株与韩国DR13分离株亲缘关系最近。该毒株的成功分离为该病的诊断和防制积累了基础材料。
     2. PEDV S基因主要抗原区域基因片断的克隆及原核表达研究
     采用PCR方法从PEDV S基因TA克隆质粒中扩增出S基因的主要抗原区域基因片段Sa,扩增得到的Sa片段插入到pMD19-T simple中,构建的重组质粒命名为pMD19-T-Sa。对核苷酸序列进行测定和分析:扩增的基因长度为739bp,可编码247个氨基酸残基。本研究将Sa插入pET-32a(+)原核表达质粒,构建了原核表达质粒pET-32a(+)-PEDV-Sa,在大肠杆菌BL21中进行原核表达,SDS-PAGE电泳鉴定,原核表达质粒pET-32a(+)-PEDV-Sa表达的目的融合蛋白大小为45Kd,表达的蛋白经亲和层析法纯化后免疫家兔,制备PEDV Sa重组蛋白的多克隆抗血清。
     3. PEDV S基因与TGEV S基因双基因共表达真核质粒的构建
     采用RT-PCR扩增PEDV S基因S1区(包含病毒的主要中和表位和受体结合区域)和TGEV SC-H株S基因(包含A、B、C、D四个抗原位点),分别将其插入pMD19-T simple载体,构建重组质粒pMD19-T-PSl与pMD19-T-TS。对pMD19-T-PS1与pMD19-T-TS的核苷酸序列进行测定:克隆的PEDV SC-L株S1基因长约2367bp,编码789个氨基酸残基,TGEV SC-H株S基因长约1896bp,编码632个氨基酸残基。序列比对分析显示:PEDV SC-L株S1基因编码的氨基酸序列与其它PEDV毒株的同源性在88.8%-98.6%,TGEV SC-H株与其它TGEV毒株S基因编码的氨基酸序列同源性在95.5%~99.7%之间。研究以pVAXD双启动子真核表达质粒为载体,构建了能够同时表达PEDV S1和TGEV S基因的真核表达质粒pVAXD-PS1-TS以及分别单独表达PEDV S1基因和TGEV S基因的真核表达质粒pVAXD-PS1和pVAXD-TS。将构建成功的三种真核表达质粒以脂质体法分别转染COS-7细胞,通过间接免疫荧光检测发现:真核表达质粒转染的COS-7细胞在倒置荧光显微镜下呈现特异性荧光;表明上述构建的三种重组质粒可在体外表达。PEDV S1基因与TGEV S基因真核表达质粒pV AXD-PS1-TS、pV AXD-PS1与pVAXD-TS的成功构建为PEDV和TGEV DNA疫苗的进一步研究奠定了基础。
     4.携带PEDV S和TGEV S双基因的减毒沙门氏菌口服疫苗免疫研究
     研究将三种真核表达质粒pV AXD-PS1-TS、pV AXD-PS1与pVAXD-TS分别电转化入减毒鼠伤寒沙门氏菌SL7207中,构建了同时携带PEDV S1和TGEV S基因的重组减毒沙门氏菌SL7207(pVAXD-PS1-TS);以及携带PEDV S1基因的重组减毒沙门氏菌SL7207(pVAXD-PS1)和携带TGEV S基因的重组减毒沙门氏菌SL7207(pVAXD-TS)。小鼠灌胃接种重组减毒沙门氏菌后,提取小鼠肠道细胞总RNA,通过RT-PCR检测S1与S基因的转录。将重组菌SL7207(pVAXD-PS1)与SL7207(pVAXD-TS)混合以1×109CFU/只的剂量灌胃接种小鼠,SL7207(pVAXD-PS1-TS)以1×109CFU/只的剂量灌胃接种,间接ELISA方法检测免疫后小鼠的特异性PEDV和TGEV血清IgG以及肠道IgA抗体水平。结果:重组减毒沙门氏菌可有效激发免疫小鼠特异性PEDV(?)TGEV血清IgG以及肠道IgA抗体的产生,具有良好的免疫原性。通过比较单基因混合免疫组和双基因免疫组之间的抗体水平进一步表明:单基因混合免疫组的特异性血清IgG与肠道IgA抗体在三个免疫组中最高,且在免疫后第六周显著高于(P<0.05)其它免疫组。研究为PEDV和TGEV口服DNA疫苗的研究和应用奠定了基础。
Porcine Epidemic Diarrhea Virus (PEDV) and Transmissible Gastroenteritis Virus (TGEV) are major factor of swine viral diarrhea, and diarrhea of newborn piglets less than2weeks old caused by these two pathogens is particularly serious, which leads to severe vomiting, diarrhea and dehydration on infected piglets and nearly100%mortality rate, resulting serious economic losses for the swine industry. Thus, the enhancement of swine's specific enteric mucosal immunity plays a vital role in the prevention and therapy for both PEDV and TGEV. Based on the clinically isolated and then identified PEDV, the shared pathogenic mechanism and immune characteristics of PEDV and TGEV are taken into consideration to study on the the pathogenic mechanism of the innovatively contrusted oral DNA vaccine that could enhance mucosal immunity efficiency:PEDV S gene and TGEV S gene are used as target genes and inserted into dual promoter of eukaryotic expression vector pVAXD to conduct and study the immunogenicity of PEDV and TGEV bivalent DNA vaccine delivered by attenuated Salmonella typhimurium SL7207. The main contents were as follows:
     1. Isolation and identification of Porcine Epidemic Diarrhea Virus (PEDV)
     In this study, PEDV Sichuan strain SC-L was successfully isolated from diarrhea fecal samples via Vero cells, which followed by preliminary study on its biological characteristics. The proliferation of PEDV SC-L on Vero cells was stable during serial passages and typical lesions appeares48hours post-inoculation, the cells get round, swell, and ultimately shrink, splid, and shed from the culture plate. Observed by transmission electron microscopy, the hollow or solid virus particles are scattered or in lattice-like arrangement in infected intracytoplasm; the virus particles pile or cluster on the cell membrane, fusing with the cell membrane and secreting outside the cell membrane. This RNA virus is insensitive to5-bromodeoxyuridine urinary nucleosides but sensitive to chloroform and aether, it loses infectbility when in the circumstance of60℃or above for 30min. By Sequencing S1domain of S gene, it is in the highest homology with South Korea DR13strains with nucleotide homology high up to99.2%. The phylogenetic tree analysis shows that the isolated strains and South Korea DR13isolated strains are in the closest genetic relationship. This successfully isolated strain accounts for material foundation of diagnosis and prevention for PEDV.
     2. Cloning and prokaryotic expression of PEDV S gene main antigtic domain fragment
     The PEDV S gene main antigtic domain fragment Sa were amplified from the PEDV S gene TA cloning plasmid via PCR and then cloned into the pMD19-T simple vector to construct the recombinant plasmid pMD19-T-Sa. The amplified gene is739bp in length and is able to encode247amino acids accroding to the sequence analysis. The recombinant prokaryotic plasmid pET-32a(+)-PEDV-Sa with Sa instered into pET-32a(+) prokaryotic expression plasmid could produce45Kd fusion protein in E.coli BL21, which is detected by SDS-PAGE electrophoresis. The expressed protein was purified by affinity chromatography immune and polyclonal antiserum was prepared by immunizing rabbits with this PEDV Sa recombinant protein.
     3. The construction of PEDV S gene and TGEV S gene co-expression eukaryotic plasmid
     The RT-PCR amplified S1region of PEDV S gene that contains main neutralization epitope and receptor binding region of the virus, and5'fragment of S gene of the TGVE SC-H strain that covers A and B, and C, and D antigens points were respectively cloned into pMD-19T simple vector to construct recombinant of plasmid pMD19-T-PS1and pMD19-T-TS. The amplified PEDV S1gene and TGEV S gene were2367bp and1896bp in length, which respectively encoded789and632amino acids according to the sequence analysis of these two recombinant plamids. Sequence alignment analysis showed that the deduced amino acids from PEDV SC-L strain S1gene and TGEV SC-H strain S gene respectively shared88.8%-98.6%and95.5%-99.7%homology with other PEDV strains and TGEV strains. The eukaryotic plasmid pVAXD-PS1, pVAXD-TS and co-expression plasmid pVAXD-PSl-TS were constructed and tranfected into COS-7cells. Vitro expression of the recombinant plasmids were confirmed via indirect immunofluorscence assay, which indicated that the eukaryotic expression plasmids were correctly constructed and successfully displayed specific immunofluorscence after transfected into COS-7cells, demonstrating that the three contrusted plamids pVAXD-PS1, pVAXD-TS and pVAXD-PS1-TS could successfully express in vitro, these research offered a foundation on which to further develop PEDV and TGEV DNA vaccines.
     4. Oral immunization of attenuated Salmonella typhimurium harbouring PEDV S and TGEV S vaccine
     The eukaryotic expression plasmids pVAXD-PS1, pVAXD-TS and pVAXD-PS1-TS were transformed by electroporation into attenuated Salmonella typhimurium SL7207to construct recombinant attenuated Salmonella typhimurium harbouring double-gene of PEDV and TGEV. After orally inoculated with a recombinant attenuated Salmonella on mice, we extract total cellular RNA from the terminal ileum of inoculated mice and detected the transcription of S1and S gene via RT-PCR. In safety analysis, the mice were orally inoculated with recombinant Salmonella at the dosage of1×109CFU per unit, the results showed that recombinant strain was relatively safe. Mice were orally inoculated at dosages of1×109CFU per unit of mixed recombinant strains SL7207(pVAXD-PS1) and SL7207(pVAXD-TS), and SL7207(pVAXD-PS1-TS) at the dosage of1×109CFU per unit, specific serum IgG and intestinal mucosal IgA antibody were detected by indirect ELISA. The results indicated that the recombinant attenuated Salmonella can provide good immunogenicity by effectively eliciting production of specified PEDV and TGEV serum IgG and intestinal IgA antibodies. Comparing the antibody levels between single-gene and double-gene immunity group, highest level of specific serum IgG and intestinal mucosal IgA antibody comes from single-gene immunity group. And was still significantly higher than (P<0.05) other two immunity group6weeks post-immunization. This study laid a foundation for the research and application of PEDV and TGEV oral DNA vaccine.
引文
[1]Pensaert M B, de Bouck P. A new coronavirus-like particle associated with diarrhea in swine [J]. Arch Virol,1978,58(3):243-247.
    [2]Debouck P, Pensaert M. Experimental infection of pigs with a new porcine enteric coronavirus, CV 777 [J]. Am J Vet Res,1980,41(2):219-223.
    [3]Timoney J F, Gillespie J H, Scott F W, et al. Microbiology and Infectious Disease of Domestic Animals [J]. Comstock Publishing Associates, Ithaca,1988:897-898.
    [4]Sueyoshi M, Tsuda T, Yamazaki K, et al. An immunohistochemical investigation of porcine epidemic diarrhoea [J]. J Comp Pathol,1995,113(1):59-67.
    [5]Park S J, Kim H K, Song D S, et al. Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field isolates in Korea [J]. Arch Virol,2011,156(4):577-585.
    [6]陈建飞,冯力,时洪艳,等.猪流行性腹泻病毒ch/S株n蛋白基因的遗传变异及其原核表达[J].中国预防兽医学报,2007,(11):1008-0589.
    [7]Chasey D, Cartwright S F. Virus-like particles associated with porcine epidemic diarrhea [J]. Res Vet Sci,1978,25(2):255-256.
    [8]Hofmann M, Wyler R. Quantitation, biological and physicochemical properties of cell culture-adapted porcine epidemic diarrhea coronavirus (PEDV) [J]. Vet Microbiol, 1989,20(2):131-142.
    [9]Kocherhans R, Bridgen A, Ackermann M. Completion of the porcine epidemic diarrhoea coronavirus(PEDV)genome sequence [J]. Virus Genes,2001,23(2):137-144.
    [10]Gorbalenya AE, Koonin EV, Donchenko AP, et al. Coronavirus genome:prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis[J]. Nucleic Acids Res,1989,17(12):4847-4861.
    [11]Kim S Y, Song D S, Park B K. Differential detection of transmissible gastroenteritis virus and porcine epidemic diarrhea virus by duplex RT-PCR [J]. J Vet Diagn Invest, 2001,13(6):516-520.
    [12]Callebaut P, Debouck P, Pensaert M. Enzyme-linked immunosorbent assay for the detection of the coronavirus-like agent and its antibodies in pigs with porcine epidemic diarrhea [J]. Vet Microbiol,1982,7(4):295-306.
    [13]Ren X, Suo S, Jang YS. Development of a porcine epidemic diarrhea virus M protein-based ELISA for virus detection[J]. Biotechnol Lett,2011,33(2):215-220.
    [14]Ren X, Li P. Development of reverse transcription loop-mediated isothermal amplification for rapid detection of porcine epidemic diarrhea virus[J]. Virus Genes, 2011,42(2):229-235.
    [15]Sanchez CM, Jimenez G, Laviada MD, et al. Antigenic homology among coronaviruses related to transmissible gastroenteritis virus [J]. Virology,1990,174(2): 410-417.
    [16]孙东波,冯力,时洪艳,等.猪流行性腹泻病毒分子生物学研究进展[J].动物医学进展,2006,(10):1007-5038.
    [17]宣华,刑德坤,王殿瀛等.应用猪胎肠单层细胞培养猪流行性腹泻病毒的研究[J].中国兽医学报,1984,03.
    [18]Hofmann M, Wyler R. Propagation of the virus of porcine epidemic diarrhea in cell culture[J]. J Clin Microbiol,1988,26(11):2235-2239.
    [19]马思奇,王明,周金法等.猪流行性腹泻病毒适应Vero细胞培养及以传代细胞毒制备氢氧化铝灭活疫苗免疫效力试验[J].中国畜禽传染病,1994,(02):15-19.
    [20]Kim O, Chae C, Kweon CH. Monoclonal antibody-based immunohistochemical detection of porcine epidemic diarrhea virus antigen in formalin-fixed, paraffin-embedded intestinal tissues[J]. J Vet Diagn Invest,1999,11(5):458-462.
    [21]Song D S, Yang J S, Oh J S, et al. Differentiation of a Vero cell adapted porcine epidemic diarrhea virus from Korean field strains by restriction fragment length polymorphism analysis of ORF3 [J]. Vaccine,2003,21(17-18):1833-1842.
    [22]Zhang W, Brown SC, Moran C. Alanyl aminopeptidase N (ANPEP) microsatellite: now a framework marker on porcine chromosome 7 map [J]. Anim Genet,1996,27(5): 378-379.
    [23]Kadoi K, Sugioka H, Satoh T, et al. The propagation of a porcine epidemic diarrhea virus in swine cell lines [J]. New Microbiol,2002,25(3):285-290.
    [24]Kusanagi K, Kuwahara H, Katoh T, et al. Isolation and serial propagation of porcine epidemic diarrhea virus in cell cultures and partial characterization of the isolate [J]. J Vet Med Sci,1992,54(2):313-318.
    [25]Kocherhans R, Bridgen A, Ackermann M, et al. Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence [J]. Virus Genes,2001,23(2): 137-144.
    [26]Bridgen A, Kocherhans R, Tobler K, et al. Further analysis of the genome of porcine epidemic diarrhoea virus [J]. Adv Exp Med Biol,1998,440:781-786.
    [27]Kubota S, Sasaki O, Amimoto K, et al. Detection of porcine epidemic diarrhea virus using polymerase chain reaction and comparison of the nucleocapsid protein genes among strains of the virus [J]. J Vet Med Sci,1999,61(7):827-830.
    [28]Shibata I, Tsuda T, Mori M, et al. Isolation of porcine epidemic diarrhea virus in porcine cell cultures and experimental infection of pigs of different ages [J]. Vet Microbiol,2000,72(3-4):173-182.
    [29]Tobler K, Ackermann M. PEDV leader sequence and junction sites [J]. Adv Exp Med Biol,1995,380:541-542.
    [30]Duarte M, Gelfi J, Lambert P, et al. Genome organization of porcine epidemic diarrhoea virus [J]. Adv Exp Med Biol,1993,342:55-60.
    [31]Lee H K, Yeo S G. Cloning and sequence analysis of the nucleocapsid gene of porcine epidemic diarrhea virus Chinju99 [J]. Virus Genes,2003,26(2):207-212.
    [32]Ashley C R, Caul E O. Potassium tartrate-glycerol as a density gradient substrate for separation of small, round viruses from human feces [J]. J Clin Microbiol,1982,16(2): 377-381.
    [33]Yeo S G, Hernandez M, Krell P J, et al. Cloning and sequence analysis of the spike gene of porcine epidemic diarrhea virus Chinju99 [J]. Virus Genes,2003,26(3): 239-246.
    [34]Eda S, Bannantine J P, Waters W R, et al. A highly sensitive and subspecies-specific surface antigen enzyme-linked immunosorbent assay for diagnosis of Johne's disease [J]. Clin Vaccine Immunol,2006,13(8):837-844.
    [35]Duarte M, Laude H. Sequence of the spike protein of the porcine epidemic diarrhoea virus [J]. J Gen Virol,1994,75 (Pt 5):1195-1200.
    [36]孙东波,冯力,陈建飞等.猪流行性腹泻病毒ch/Jl毒株S基因的克隆、序列分析及线性抗原表位区的鉴定[J].病毒学报,2007,(03):1000-8721.
    [37]Knuchel M, Ackermann M, Muller H K, et al. An ELISA for detection of antibodies against porcine epidemic diarrhoea virus (PEDV) based on the specific solubility of the viral surface glycoprotein [J]. Vet Microbiol,1992,32(2):117-134.
    [38]Kang T J, Seo J E, Kim D H, et al. Cloning and sequence analysis of the Korean strain of spike gene of porcine epidemic diarrhea virus and expression of its neutralizing epitope in plants [J]. Protein Expr Purif,2005,41(2):378-383.
    [39]Sun D B, Feng L, Shi H Y, et al. Spike protein region (aa 636-789) of porcine epidemic diarrhea virus is essential for induction of neutralizing antibodies [J]. Acta Virol,2007,51(3):149-156.
    [40]Kang T J, Kim Y S, Jang Y S, et al. Expression of the synthetic neutralizing epitope gene of porcine epidemic diarrhea virus in tobacco plants without nicotine [J]. Vaccine,2005,23(17-18):2294-2297.
    [41]Oszvald M, Kang T J, Tomoskozi S, et al. Expression of a synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit of Escherichia coli heat labile enterotoxin in rice endosperm [J]. Mol Biotechnol,2007, 35(3):215-223.
    [42]Bae J L, Lee J G, Kang T J, et al. Induction of antigen-specific systemic and mucosal immune responses by feeding animals transgenic plants expressing the antigen [J]. Vaccine,2003,21(25-26):4052-4058.
    [43]Zhou Y L, Ederveen J, Egberink H, et al. Porcine epidemic diarrhea virus (CV 777) and feline infectious peritonitis virus (FIPV) are antigenically related [J]. Arch Virol, 1988,102(1-2):63-71.
    [44]Kweon C H, Lee J G, Han M G, et al. Rapid diagnosis of porcine epidemic diarrhea virus infection by polymerase chain reaction [J]. J Vet Med Sci,1997,59(3):231-232.
    [45]Utiger A, Tobler K, Bridgen A, et al. Identification of the membrane protein of porcine epidemic diarrhea virus [J]. Virus Genes,1995,10(2):137-148.
    [46]Jinghui F, Yijing L. Cloning and sequence analysis of the M gene of porcine epidemic diarrhea virus LJB/03 [J]. Virus Genes,2005,30(1):69-73.
    [47]Bridgen A, Duarte M, Tobler K, et al. Sequence determination of the nucleocapsid protein gene of the porcine epidemic diarrhoea virus confirms that this virus is a coronavirus related to human coronavirus 229E and porcine transmissible gastroenteritis virus [J]. J Gen Virol,1993,74 (Pt 9):1795-1804.
    [48]余丽芸,侯喜林.流行性腹泻病毒E基因与pSFV重组RNA的构建[J].黑龙江八一农垦大学学报,2005,(01):1002-2090.
    [49]殷震,刘景华主编.动物病毒学[M].北京:科学出版社,1997.
    [50]Fennestad K L, Mansa B, Christensen N, et al. Pathogenicity and persistence of pleural effusion disease virus isolates in rabbits [J]. J Gen Virol,1986,67 (Pt6): 993-1000.
    [51]Jung K, Ahn K, Chae C. Decreased activity of brush border membrane-bound digestive enzymes in small intestines from pigs experimentally infected with porcine epidemic diarrhea virus [J]. Res Vet Sci,2006,81(3):310-315.
    [52]王明,马思奇,周金法等.猪流行性腹泻灭活疫苗的研究[J].中国畜禽传染病,1993,(05):1008-0589.
    [53]钱永清,闻唐陈,苏许张.猪流行性腹泻的免疫研究[J].上海畜牧兽医通讯,1999,(03):1000-7725.
    [54]童昆周,李力复,林志雄等.猪流行性腹泻弱毒疫苗的研究[J].中国兽医科技,1996,26(1):3-4.
    [55]佟有恩,冯力,李伟杰等.猪流行性腹泻弱毒株的培育[J].中国畜禽传染病,1998,20(6):329-332.
    [56]Kweon C H, Kwon B J, Lee J G, et al. Derivation of attenuated porcine epidemic diarrhea virus (PEDV) as vaccine candidate [J]. Vaccine,1999,17(20-21):2546-2553.
    [57]Song D S, Oh J S, Kang B K, et al. Oral efficacy of Vero cell attenuated porcine epidemic diarrhea virus DR13 strain [J]. Res Vet Sci,2007,82(1):134-140.
    [58]孙东波.猪流行性腹泻病毒S蛋白抗原表位鉴定及受体结合域的初步筛选[D].北京,中国农业科学院,2008.
    [59]Chang S H, Bae J L, Kang T J, et al Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus [J]. Mol Cells,2001,4(2):295-299.
    [60]Kang T J, Han S C, Yang M S, et al. Expression of synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit of Escherichia coli heat-labile enterotoxin in tobacco plants [J]. Protein Expr Purif,2006,46(1):16-22.
    [61]Song D S, Kang B K, Oh J S, et al. Multiplex reverse transcription-PCR for rapid differential detection of porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine group A rotavirus [J]. J Vet Diagn Invest,2006,18(3):278-281.
    [62]Hou X L, Yu L Y, Liu J, et al. Surface-displayed porcine epidemic diarrhea viral (PEDV) antigens on lactic acid bacteria [J]. Vaccine,2007,26(1):24-31.
    [63]葛俊伟.猪流行性腹泻病毒主要结构蛋白不同抗原片段在重组干酪乳杆菌中的表达及其免疫学评价[D].哈尔滨:东北农业大学,2008.
    [64]Jones T, Pritchard G, Paton D. Transmissible gastroenteritis of pigs [J]. Vet Rec,1997, 141(16):427-428.
    [65]陈焕春,刘超,金梅林等.猪传染性胃肠炎病毒的分离鉴定[J].华中农业大学学报,1992,1(11):82-86.
    [66]任晓峰,李一经,贾永清等.猪传染性胃肠炎病毒国内分离株S基因克隆及与国外株的同源性比较[J].中国兽医科技,2002,32(4):3-6.
    [67]颜其贵,欧洋,郭万柱等.猪传染性胃肠炎病毒SC-1株的分离与基因的克隆分析[J].中国兽医学报,2007,27(5):613-615.
    [68]Siddell S G. The coronaviridae [J]. New York Plenum Press,1995
    [69]Wesley R D, Woods R D, Cheung A K. Genetic basis for the pathogenesis of transmissible gastroenteritis virus [J]. J Virol,1990,64(10):4761-4766.
    [70]Harada K, Kaji T, Kuamagai T, et al. Studies on Transmissible gastroenteritis in pigs. IV. Physicochemical and biological properties of TGE virus [J]. Natl Inst Anim Health Q (tokyo),1968,8(3):140-147.
    [71]Kemeny L J. Antibody response in pigs inoculated with transmissible gastroenteritis virus and cross reactions among ten isolates [J]. Can J Comp Med,1976,40(2): 209-214.
    [72]Rasschaert D, Duarte M, Laude H. Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions [J]. J Gen Virol,71 (11): 2599-2607.
    [73]王树成,赵祥平,刘宏等.猪传染性胃肠炎病毒在组织细胞上增殖的研究[J].中国畜禽传染病,1998,(1):21-72.
    [74]马思奇,王明,王玉春.家畜传染病[M].猪传染性胃肠炎免疫的研究,1985,4-10.
    [75]陈溥言.兽医传染病学(第五版) [M].北京,中国农业出版社,2006,225-229.
    [76]Wentworth D E, Holmes K V. Binding of transmissible gastroenteritis coronavirus to brush border membrane sialoglycoproteins [J]. J Virol,2003,77(21):11846-11848.
    [77]Weingartl H M and Derbyshire J B. Cellular receptors for transmissible gastroenteritis virus on porcine enterocytes [J]. Adv Exp Med Biol,1995,380:325-329.
    [78]Delmas B J, Gelfi R L, Haridon L K, et al. Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV [J]. Nature,1992,357:417-420.
    [79]斯特劳BE主编.赵德明,张中秋,沈建忠译.猪病学(第八版)[M].北京,中国农业大学出版社,2000,306-338.
    [80]Wentworth D E and Holmes K V. Evidence for a putative second receptor for porcine transmissible gastroenteritis virus on the villous enterocytes of newborn pigs [J]. J Virol,1994,68(11):7253-7259.
    [81]Eleouet J F, Rasschaert D, Lambert P, et al. Complete sequence (20 kilobases) of the polyprotein-encoding gene of transmissible gastroenteritis virus [J]. Virology,1995, 206(2):817-822.
    [82]Enjuanes L, Van der Zejst, BAM. Molecular basis of transmissible gastroenteritis virus epidemiology in coronaviridae [M]. New Yourk:Plenum Press,1995.
    [83]Eleouet JF, Rasschaert D, Lambert P, et al. Complete genomic sequence of the transmissible gastroenteritis virus [J]. Adv Exp Med Biol,1995,380:459-461.
    [84]Hiscox J A, Mawditt K L, Cavanagh D, et al. Investigation of the control of coronavirus subgenomic mRNA transcription by using T7-generated negative-sense RNA transcripts [J]. J Virol,1995,69(10):6219-6227.
    [85]Sara A, Ander I, Isabe S, et al. Transcription regulatory sequences and mRNA expression levels in the cornavirus transmissible gastroenteritis virus [J]. J Virol,2002, 76(3):1293-1308.
    [86]Hiscox J A, Cavanagh D and Britton P. Quantification of individual subgenomic mRNA species during replication of the coronavirus transmissible gastroenteritis virus [J]. Virus Res,1995,36(2-3):119-130.
    [87]Delmas B and Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression [J]. J Virol,1990,64(11):5367-5375.
    [88]Laude H, Godet M and Bernard S. Functional domains in the spike protein of transmissible gastroenteritis virus [J]. Adv Exp Med Biol,1995,380:299-340.
    [89]Sune C, Jimenez G and Correa I. Mechanism of transmissible gastroenteritis coronavitus neutralization [J]. Virology,1990,177(2):559-569.
    [90]Ballesteros L, Sanchez C, Enjuanes L, et al. Two amino acid changes at the N-terminus of TGEV spike protein result in the loss of enteric tropism [J]. Virology, 1997,227(2):378-388.
    [91]Christine K, Graham D, Yolken R, et al. Point mutations in the S protein connects the sialic acid binding activity with the enteropathogenicity of TGEV [J]. J Virol,1997, 71(4):3285-3287.
    [92]Bernard S and Laude H. Site-specific alteration of transmissible gastroenteritis virus spike protein results in markedly reduced pathogenicity [J]. J Gen Virol,1995,76 (Pt9):2235-2241.
    [93]Godet M, Grosclaude J, Delmas B, et al. Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein [J]. J Viro,1994,68(12):8008-8016.
    [94]Jimenez G, Correa I and Melgosa MP. Critical epitopes in transmissible gastroenteritis virus neutralization [J]. J Virol,1986,60(1):131-139.
    [95]Gebauer F, Posthumus WP, Correa I, et al. Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein [J]. Virology,1991,183(1): 225-238.
    [96]De Diego M, Laviada M, Enjuanes L, et al Epitope Specificity of Protective Lactogenic Immunity against Swine Transmissible Gastroenteritis Virus [J]. Journal of virology,1992,66(11):6502.
    [97]Gebauer F, Posthumus W, Correa I, et al. Residues Involved in the Antigenic Sites of Transmissible Gastroenteritis Coronavirus S Glycoprotein[J].Virology,1991,183(1): 225-238.
    [98]Britton P, Carmenes RS, Page KW, et al. The integral membrane protein from a virulent isolate of transmissible gastroenteritis virus:molecular characterization, sequence and expression in Escherichia coli [J]. Mol Microbiol,1988,2(4):497-505.
    [99]Escors D, Ortego J and Enjuanes L. The membrane M protein carboxy terminal binds to transmissible gastroenteritis coronavirus core and contributes to core stability [J]. J Virol,2001,75(3):1312-1324.
    [100]Motokawa K, Hohdutsu T, Hashimoto H, et al. Comparison of the ammo acid sequence and phylogenetic analysis of the peplomer, integral membrane and nucleocapsid proteins of feline, canine and porcine coronaviruses[J]. Microbiol Immunol,1996,40(6):425-433.
    [101]Escors D, Ortego J and Enjuanes L. The membrane M protein carboxy terminal binds to transmissible gastroenteritis coronavirus core and contributes to core stability [J]. J Virol,2001,75(3):1312-1324..
    [102]Rasschaert D, Lalude H. The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus [J]. J Gen Virol,1987, 68(Pt 7):1883-1890.
    [103]Risco C, Anton IM, Sune C, et al. Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion [J]. J Virol,1995,69(9):5269-5277.
    [104]Riffault S, Carrat C, Besnardeau L, et al. In vivo induction of interferon-alpha in pig by non-infectious coronavirus:tissue localization and in situ phenotypic characterization of interferon-alpha-producing cells [J]. J Gen Virol,1997,78(10): 2483-2487.
    [105]Pulford DJ and Britton P. Expression and cellular localisation of porcine transmissible gastroenteritis virus N and M proteins by recombinant vaccinia viruses [J].Virus Res,1991,18(2-3):203-217.
    [106]Godet M, L'Haridon R, Vautherot JF, et al. TGEV corona ORF4 encodes a membrane protein that is incorporated into virions [J]. Virol,1992,188(2):666-675.
    [107]Risco C, Anton I M, Enjuanes L, et al. The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins [J]. J Virol,1996, 70(7):4773-4777.
    [108]Chen H, Gill A, Dove B K, et al. Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance [J]. J Virol, 2005,79(2):1164-1179.
    [109]佟有恩,冯力,李伟杰,等.猪传染性胃肠炎与猪流行性腹泻二联弱毒疫苗的研究[J].中国预防兽医学报,1999,21(6):406-410.
    [110]Aynaud J M, Bernard S, Vannier P, et al. Induction of Lactogenic Immunity to Transmissible Gastroenteritis Virus of Swine Using an Attenuated Coronavirus Mutant able to Survive in the Physicochemical Environment of the Digestive Tract [J]. Vet Microbiol,1991,26(3):227—239.
    [111]Tuboly T, Nagy E, Dennis JR., et al. Immunogenicity of the S protein of transmissible gastroenteritis virus expressed in baculovirus [J]. Arch Virol,137(1-2): 55-67.
    [112]Tuboly T, Nagy E and Derbyshire J B. Passive protection of piglets by recombinant baculovirus induced transmissible gastroenteritis virus specific antibodies Can [J]. J Vet Res,1995,59(2):70-72.
    [113]Shoup D I, Jackwood D J, Saif L J, et al. Active and passive immune responses to transmissible gastroenteritis virus (TGEV) in swine inoculated with recombinant baculovirus-expressed TGEV spike glycoprotein vaccines [J]. Am J Vet Res,1997, 58(3):242-250.
    [114]Mielcarek N, Alonso S and Locht C. Nasal vaccination using live bacterial vectors [J]. Adv Drug Deliv Rev,2001,51(1-3):55-69.
    [115]Smerdou C, Anton IM, Plana J, et al. A continuous epitope from transmissible gastroenteritis virus S protein fused to E.coli heat-labile toxin B subunit expressed by attenuated Salmonella induces serum and secretory immunity [J]. Virus Res, 1996,41(1):1-9.
    [116]Smerdou C, Urniza A, Curtis R, et al. Characterization of transmissible gastroenteritis coronavirus S protein expression products in avirulent S typhimurium Acya Au-p:persistence, stability and immune response in swine [J]. Vet Microbiol, 1996,48(1-2):87-100.
    [117]Chen H, Schifferli D M. Mucosal and systemic immune responses to chimeric fimbriae expressed by Salmonella vaccine strains [J]. Infect Immun,2000, 66:3129-39.
    [118]Chen H, Schifferli D M. Enhanced immune responses to viral epitopes by combining macrophage-inducible expression with multimeric display on a Salmonella vector [J]. Vaccine,2001,19(20-22):3009-3018.
    [119]Ho P S, Kwang J, Lee Y K. Intragastric administration of lactococctus lactis expressing transmissible gastroenteritis coronavirus spike glycoprotein induced specific antibody production [J]. Vaccine,2005,23:1335-1342.
    [120]唐丽杰,欧迪葛,俊伟等.表达猪传染性胃肠炎病毒S基因的重组乳酸球菌的构建及免疫原性分析[J].微生物学报,2007,47(2):340-344.
    [121]陆承平.兽医微生物学[M].北京:中国农业出版社,2003,223-231.
    [122]Schoen C, Stritzker J, Goebel W, et al. Bacteria as DNA vaccine carriers for genetic immunization [J]. IJMM,2004,294(5):319-335.
    [123]杨冬梅,王鹏雁,王远志.减毒鼠伤寒沙门菌活疫苗载体研究进展[J].动物医学进展,2007,28(4):85-88.
    [124]Mastroeni P, Chabalgoity J A, Dunstan S J. et al. Salmonella:Immune responses and vaccines [J]. The Veterinary Journal,2000,161(2):132-164.
    [125]Curtiss R,3rd, Hassan J O. Nonrecombinant and recombinant avirulent Salmonella vaccines for poultry [J]. Vet Immunol Immunopathol,1996,54(1-4):365-372.
    [126]Hoiseth S K and Stocker B A. A romatic-dependent S.typhimurium are non-virulent and are effective as live vaccines [J]. Nature,1981,219:238-239.
    [127]Chatfield S N, Fairweather N, Charles I, et al. Construction of a genetically defined Salmonella typhi Ty2 aroA, aroC mutant for the engineering of a candidate oral typhoid-tetanus vaccine [J]. Vaccine,1992,10(1):53-60.
    [128]Miller S I. PhoP/PhoQ:macrophage-specific modulators of Salmonella virulence? [J]. Mol Microbiol,1991,5(9):2073-2078.
    [129]Hohmann E L, Oletta C A, Killeen K P, et al. phoP/phoQ-deleted Salmonella typhi (Ty800) is a safe and immunogenic single-dose typhoid fever vaccine in volunteers [J]. J Infect Dis,1996,173(6):1408-1414.
    [130]Curtiss R D and Kelly S M. Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic [J]. Infect Immun,1987,55:3035-3043.
    [131]Spreng S, Dietrich G and Weidinger G. Rational design of Salmonella-based vaccination strategies [J]. Methods,2006,38(2):133-143.
    [132]Nakayama K, Kelly S M and Curtss III R. Construction of an asd+ expression-cloning vector stable maintenance and high level expression of cloned genes in a Salmonella vaccine strain [J]. Biotechnol,1988,6:693-697.
    [133]Jones B D, Ghori N and Falkow. Salmonella typhimurium inititates murine infection by penetrating and destroying the specialized epithelisl M cells of the Peyer's patches [J]. J Exp Med,1994,180:15-23.
    [134]Pehheiter KL, Mathur N, Giles D, et al. Non-invasive Salmonella typhimurium mutants are avirulent because of an inablitity to enter and destroy M cells of the Peyer's patches [J]. Mol Microbiol,1997,24:697-709.
    [135]Martinoli C, Chiavelli A, Rescigno M. Entry route of Salmonella typhimurium directs the type of induced immune response [J]. Immunity,2007,27(6):975-984.
    [136]Weiss S. Transfer of eukaryotic expression plasmids to mammalian hosts by attenuated Salmonella spp [J]. Int J Med Microbiol,2003,293(1):95-106.
    [137]Fujita K, Mogami A, Hayashi A, et al. Establishment of Salmonella strain expressing catalytically active human UDP-glucuronosyltransferase 1A1(UGT1A1) [J]. Life Sci,2000,66(20):1955-1967.
    [138]Spreng S, Dietrich G, Niewiesk S, et al. Novel bacterial systems for the delivery of recombinant protein or DNA [J]. FEMS Immunol Med Microbiol,2000,27(4): 299-304.
    [139]Paglia P, Medina E, Arioli I, et al. Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella typhimurium, results in protective immunity against a murine fibrosarcoma [J]. Blood,1998,92(9):3172—3176.
    [140]Yrlid U, Wick M J. Salmonella induced apoptosis of infected macrophages results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells [J]. J Exp Med,2000,191(4):613-624.
    [141]Vecino W H, Morin P M, Agha R, et al. Mucosal DNA vaccination with highly attenuated Shigella is superior to attenuated Salmonella and comparable to intramuscular DNA vaccination for T cells against HIV [J]. Immunol Lett,2002, 82(3):197-204.
    [142]Karpenko L I, Nekrasova N A, Ignat'ev G M, et al. Immune response in oral and rectal immunization by the attenuated strain of salmonella carrying the HIV DNA-vaccine [J]. Vopr Virusol,2003,48(4):16-20.
    [143]Christoph S, Jochen S, Werner G. Bacteria as DNA vaccine carriers for genetic immunization [J]. International Journal of Medical Microbiology,2004,294(5): 319-335.
    [144]Woo P C, Wong L P, Zheng B J, et al. Unique immunogenicity of hepatitis B virus DNA vaccine presented by live-attenuated Salmonella typhimurium [J]. Vaccine, 2001,19(20-22):2945-2954.
    [145]Pan Z, Zhang X, Geng S, et al. Priming with a DNA vaccine delivered by attenuated Salmonella typhimurium and boosting with a killed vaccine confers protection of chickens against infection with the H9 subtype of avian influenza virus [J]. Vaccine, 2009,27(7):1018-1023.
    [146]Han Y W, Kim S B, Rahman M, et al. Systemic and mucosal immunity induced by attenuated Salmonella enterica serovar Typhimurium expressing ORF7 of porcine reproductive and respiratory syndrome virus [J]. Comp Immunol Microbiol Infect Dis,2011,34(4):335-345.
    [147]潘志明,黄金林,程宁宁等.稳定携带新城疫病毒DNA疫苗减毒沙门氏茵的构建及其免疫原性[J].病毒学报,2008,24(1):41-46.
    [148]Wang Q L, Pan Q, Ma Y, et al. An attenuated Salmonella-vectored vaccine elicits protective immunity against Mycobacterium tuberculosis [J]. Vaccine,2009,27(48): 6712-6722.
    [149]Wyszynska A, Raczko A, Lis M, et al. Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72Dz/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter [J]. Vaccine,2004,22(11-12):1379-1389.
    [150]Haneda T, Okada N, Kikuchi Y, et al. Evaluation of Salmonella enterica serovar Typhimurium and Choleraesuis slyA mutant strains for use in live attenuated oral vaccines [J]. Comp Immunol Microbiol Infect Dis,2011,34(5):399-409.
    [151]Pompa-Mera E N, Yepez-Mulia L, Ocana-Mondragon A, et al. Trichinella spiralis: intranasal immunization with attenuated Salmonella enterica carrying a gp43 antigen-derived 30mer epitope elicits protection in BALB/c mice [J]. Exp Parasitol, 2011,129(4):393-401.
    [152]Cong H, Gu Q M, Jiang Y, et al. Oral immunization with a live recombinant attenuated Salmonella typhimurium protects mice against Toxoplasma gondii [J]. Parasite Immunol,2005,27(1-2):29-35.
    [153]Pacheco L G C, Zucconi E, Maei V L T, et al. Oral Administration of a Live Aro Attenuated Salmonella Vaccine Strain Expressing 14-kDa Schistosoma mansoni Fatty Acid-binding Protein Induced Partial Protection against Experimental Schistosomiasis [J]. ActaTmpica,2005,95(2):132-142.
    [154]Jiang Z, Zhao P, Zhou Z, et al. Using attenuated Salmonella typhi as tumor targeting vector for MDR1 siRNA delivery [J]. Cancer Biol Ther,2007,6(4):555-560.
    [155]Guo C C, Ding J, Pan B R, et al. Developntent of fin oral DNA vaccine against MG7-Ag of gastric cancer using attenuated Salmonella typhimurium as carrier [J]. World J Gastroenterol,2003,9(6):1191-1195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700