法舒地尔对oxLDL损伤内皮细胞功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨法舒地尔对氧化型低密度脂蛋白(oxLDL)致内皮细胞损伤的保护作用。
     方法:培养人脐静脉内皮细胞(HUVECs),加入不同浓度的法舒地尔(Fasudil)(0μmol/L、1μmol/L、10μmol/L、100μmol/L)共孵育24h后,用western-blotting方法检测各组细胞eNOS表达量;加入含不同刺激物的培养液,分成对照组、法舒地尔组、oxLDL组、法舒地尔加oxLDL组,孵育24h后用western-blotting方法检测各组细胞eNOS生成量,用硝酸酶还原法检测各组细胞培养液中NO的代谢产物NO2-/NO3-的量来反映的NO释放量。
     结果:HUVECs eNOS蛋白表达量随培养基中Fasudil浓度的升高而增加,Fasudil终浓度为1.0μmol/L、10μmol/L、100μmol/L时eNOS蛋白表达量与对照组(0μmol /L)相比分别升高至121±8﹪、147±13﹪、181±16﹪,呈浓度依赖性递增,各组间差异显著,p<0.05。与不同刺激物共孵育的HUVECs eNOS蛋白表达量:与对照组相比,法舒地尔组显著增加,为基础值的171±15﹪;oxLDL组下降,为基础值的67±6﹪;法舒地尔加oxLDL组增加,为基础值的133±11﹪;各组间差异显著,p<0.01。NO生成量与对照组(48.12±5.34)相比,法舒地尔组(72.52±6.21)升高(p<0.01),法舒地尔加oxLDL组(41.31±5.11)下降(p<0.05),oxLDL组显著降低(26.26±4.54)(p<0.01)。
     结论:oxLDL使培养的人脐静脉内皮细胞eNOS蛋白表达量及NO生成量降低,法舒地尔可逆转或部分纠正其作用,对内皮细胞功能具有保护作用。
Objective To investigate whether fasudil can protect the function of cultivated human umbilical vein endothelial cells(HUVECs) induced by oxidized low density lipoprotein.
     Methods HUVECs were cultivated in four groups with different concentrations of fasudil (0μmol/L,1μmol/L,10μmol/L, 100μmol/L) respectively for 24hs and then the expression amount of eNOS in HUVECs of each group was detected by western-blotting. The HUVECs cultivated in vitro were divided into four groups which were treated by fasudil, oxLDL, fasudil + oxLDL, and normal culture medium respectively. After 24hs, the amount of eNOS in each group was detected by western-blotting. And the amount of the NO2-/NO3- , which is the metabolic product of NO and indicates the release amount of NO, was detected by the nitrate reductase assay (NRA).
     Result In a concentration depend manner, treatment with fasudil (1μmol/L, 10μmol/L, 100μmol/L) increased eNOS protein expression to 121±8﹪,147±13﹪,181±16﹪respectively than the contrast group (fasudil 0μmol/L).The differences between each group were significant, p<0.05. Compared with the basal level in group control, the eNOS protein level was significantly increased in group fasudil(171±15﹪) (p<0.01) and in group fasudil + oxLDL (133±11﹪) (p<0.01), decreased in group oxLDL(67±6﹪) (p<0.01). Compared with group contro(l48.12±5.34),the production of NO was significantly increased in group fasudil(72.52±6.21) (p<0.01), decreased in group oxLDL(26.26±4.54)(p<0.01)and in group fasudil + oxLDL(41.31±5.11) (p<0.05).
     Conclusion OxLDL decreased the production of eNOS and NO in cultivated human umbilical vein endothelial cells, while fasudil could reverse or partly rectify these effects. Fasudil could protect the function of cultivated HUVECs.
引文
1. Lu¨scher TF, Barton M. Biology of the endothelium. Clin Cardiol. 1997;20(suppl II):II-3-II-10.
    2. William V. Everson, Eric J. Smart. Influence of Caveolin, Cholesterol and Lipoproteins on Nitric Oxide Synthase Implications for Vascular Disease. Trends in Cardiovascular Medicine.2001,11:246-250.
    3. Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev. Jan 2001;81(1):153-208.
    4. Kelly RB. Microtubules, membrane traffic, and cell organization. Cell 1990; 61:5-7.
    5. Jialal I., Devaraj S. The role of ox-LDL in atherogenesis. Journal of Nutrition. 1996,126:1053S–1057S.
    6. Alison Blair, Philip W. Shaul, Ivan S. Yuhanna, et al. Oxidized Low Density Lipoprotein Displaces Endothelial Nitric-oxide Synthase (eNOS) from Plasmalemmal Caveolae and Impairs eNOS Activation. J Biol Chem 1999; 274:32512-9.
    7. Alan Hall. Rho GTPases and the Actin Cytoskeleton. Science.1998,279:509-514.
    1.王淳本,宗义强,吴万生等。两步超速离心法快速分离大量血浆极低密度脂蛋白及低密度脂蛋白。同济医科大学学报。1995,24(3):169-171。
    2. Jialal I., Devaraj S. The role of ox-LDL in atherogenesis. Journal of Nutrition. 1996,126:1053S–1057S.
    3. Alan Hall. Rho GTPases and the Actin Cytoskeleton. Science.1998,279:509-514.
    4. Hiroaki Shimokawa, Akira Takeshita. Rho-Kinase Is an Important Therapeutic Target in Cardiovascular Medicine. Arterioscler Thromb Vasc Biol. September 2005.
    5. M. Rouhanizadeh, Juliana Hwang, Roza E. Clempus, et al. Oxidized- 1- palmitoyl -2- arachidonoyl-sn-glycero-3-phosphorylcholine induces vascular endothelial superoxide production: Implication of NADPH oxidase. Free Radical Biology & Medicine.2005.39: 1512– 1522.
    6. Geerten P. van Nieuw Amerongen, Mario A. Vermeer, Victor W. M. van Hinsbergh. Role of RhoA and Rho Kinase in Lysophosphatidic Acid–Induced Endothelial Barrier Dysfunction. Arterioscler Thromb Vasc Biol. 2000, 20: 127-133.
    7. Stefan Seibold, Dorothea Schürle , Alexandra Heinloth, et al. Oxidized LDL Induces Proliferation and Hypertrophy in Human Umbilical Vein Endothelial Cells via Regulation of p27Kip1 Expression: Role of RhoA. J Am Soc Nephrol. 2004,15: 3026–3034,
    8. Dayuan Li, MD; Jawahar L. Mehta, MD, PhD. Antisense to LOX-1 Inhibits Oxidized LDL–Mediated Upregulation of Monocyte Chemoattractant Protein-1 and Monocyte Adhesion to Human Coronary Artery Endothelial Cells. Circulation. 2000:2889-2895.
    9. Richard L. Klemke, Shuang Cai, Ana L. Giannini, et al. Regulation of Cell Motility by Mitogen-activated Protein Kinase. The Journal of Cell Biology. 1997,137:481–492.
    10. James K, Liao, Wee Soo Shin, Wen Yee Lee, et al. Oxidized Low-density Lipoprotein Decreases the Expression of Endothelial Nitric Oxide Synthase. The Journal of Biological and Chemistry.1995,270:319-324.
    11. Masao Takemoto, Jianxin Sun, Junko Hiroki, et al. Rho-Kinase Mediates Hypoxia-Induced Downregulation of Endothelial Nitric Oxide Synthase. Circulation. 2002,106:57-62.
    12. William V. Everson, Eric J. Smart. Influence of Caveolin, Cholesterol and Lipoproteins on Nitric Oxide Synthase Implications for Vascular Disease. Trends in Cardiovascular Medicine.2001,11:246-250.
    13. Shaul PW. Endothelial nitric oxide synthase, caveolae and the development of atherosclerosis. J Physiol. 2003 Feb 15, 547(Pt 1):21-33.
    14.李宗信,黄小波,李斌等。应用原子力显微镜实时观察oxLDL对大鼠脑微血管内皮细胞膜结构的影响。中国血液流变学杂志。2004,(14)3:315-323。
    1. Lu¨scher TF, Barton M. Biology of the endothelium. Clin Cardiol. 1997;20(suppl II):II-3-II-10.
    2. Kinlay S, Libby P, Ganz P. Endothelial function and coronary arterydisease. Curr Opin Lipidol. 2001;12:383–389.
    3. Cohen AR, Vanhoutte PM. Endothelium-dependent hyperpolarization beyond nitric oxide and cyclic GMP. Circulation 1995;92:3337-49.
    4. Simonsen U, Wadsworth RM, Buus NH, Mulvany MJ. In vitro simultaneous measurements of relaxation and nitric oxide concentration in rat superior mesenteric artery. J Physiol 1999;516:271-82.
    5. Nathan C, Xie QW. Regulation of the biosynthesis of nitric oxide. J Biol Chem 1994;269:13725-8.
    6. Gross SS, Wolin MS. Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol 1995;57:737-69.
    7. Sautebin L, Ialenti A, Ianaro A, Dr Rosa M. Modulation by nitric oxide of prosta- glandin biosynthesis in the rat. Br J Pharmacol 1995;114:323-8.
    8. Davidge ST, Baker PN, McLaughlin MK, Roberts JM. Nitric oxide produced by endothelial cells increases production of eicosanoids through activation of prosta- glandin H synthase. Circ Res 1995;77:274-83.
    9. Fleming I, Busse R. NO: primary EDRF. J Mol Cell Cardiol 1999;31:5-14.
    10. Lincoln TM, Komalavilas P, Cornwell TL. Pleiotropic regulation of vascular smooth muscle tone by cyclic GMP-dependent protein kinase. Hypertension 1994; 23:1141-7.
    11. Dukarm RC, Russell JA, Morin FC 3rd, Perry BJ, Steinhorn RH. The cGMP- specific phosphodiesterase inhibitor E4021 dilates the pulmonary circulation. Am J Respir Crit Care Med 1999;160(3):858-65.
    12. Jackson G, Benjamin N, Jackson N, Allen MJ. Effects of sildenafil citrate on human hemodynamics. Am J Cardiol 1999;83(5A):13C-20C.
    13. Behrendt D, Ganz P. Endothelial function: from vascular biology to clinical applications. Am J Cardiol. 2002;90(suppl):40L–48L.
    14. Cooke JP. Does ADMA cause endothelial dysfunction? Arterioscler Thromb Vasc Biol. 2000;20:2032–2037.
    15. Hecker M, Bara AT, Bauersachs J, Busse R. Characterization of endothelium- derived hyperpolarizing factor as a cytochrome P450-derived arachidonic acid metabolite in mammals. J Physiol 1994;481:407-14.
    16. Corriu C, Félétou M, Canet E, Vanhoutte PM. Inhibitors of the cytochrome P450 mono-oxygenase and endothelium-dependent hyperpolarizations in the guinea-pig isolated carotid artery. Br J Pharmacol 1996;117:607-10.
    17. Vanheel B, Van de Voorde J. Influence of various cytochrome P450 on hyper- polarizations and relaxations in the main mesenteric artery of the rat. In:Vanhoutte PM, editor. Endothelium-dependent hyperpolarizations. The etherlands: Harwood Academic Publishers; 1999. p. 85-96.
    18. Fulton D, McGiff JC, Quilley J. Role of phospholipase C and phopholipase A2 in the nitric oxide-independent vasodilator effect of bradykinin in the rat perfused heart. J Pharmacol Exp Ther 1996;278:518-26.
    19. Weintraub NL, Stephenson AH, Sprague RS, Lonigro AJ. Role of phospholipase A2 in EDHF-mediated relaxation of the porcine coronary artery. In: Vanhoutte PM, editor. Endothelium-dependent hyperpolarizations. The Netherlands: Harwood Academic Publishers; 1999. p. 97-108.
    20. Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH. K+ is an endothe- lium-derived hyperpolarizing factor in rat arteries. Nature 1998;396:269-72.15. Coleman HA, Tare M, Parkington HC. EDHF is not K+ but may be due to spread of current from the endothelium in guinea pig arterioles. Am J Physiol 2001; 280: H2478-83.
    21. Coleman HA, Tare M, Parkington HC. EDHF is not K+ but may be due to spread of current from the endothelium in guinea pig arterioles. Am J Physiol 2001; 280: H2478-83.
    22. Barlow RS, White RE. Hydrogen peroxide relaxes porcine coronary arteries by stimulating BKCa channel activity. Am J Physiol 1998; 275: H1283-9.
    23. Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H,Takeshita A. Hydrogen peroxide is an endothelium-derived hyper- polarizing factor in mice. J Clin Invest 2000;106(12): 1521-30.
    24. Campbell WB, Gebremedhin D, Pratt PF, Harder DR. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res 1996;78:415-23.
    25. Coleman RA, Smith WL, Narumiya S. International union of pharmacology classification of prostanoid receptors and their subtypes. Pharmacol Rev 1994;46:205-29.
    26. Delpy E, Coste H, Gouville AC. Effects of cyclic GMP elevation on isoprenaline-induced increase in cyclic AMP and relaxation in rat aortic smooth muscle: role of phosphodiesterase3. Br J Pharmacol 1996;119:471-8.
    27. Drexler H. Factors involved in the maintenance of endothelial function.Am J Cardiol. 1998;82:3S–4S.
    28. Shimizu S, Ishii M, Yamamoto T, Kawanishi T, Momose K, et al. Bradykinin induces generation of reactive oxygen species in bovine aortic endothelial cells. Res Commun Chem Pathol Pharmacol 1994;84:301-14.
    29. Lüscher TF, Oemar BS, Boulanger CM, Hahn AWA. Molecular and cellular biology of endothelin and its receptors. In: Lindpainter K, Ganten D, editors. Molecular rewievs. London: Chapman & Hall; 1996. p. 96-104.
    30. Celermajer DS. Endothelial dysfunction: does it matter? Is it reversible? J Am Coll Cardiol. 1997;30:325–333.
    31. Ludmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315:1046–1051.
    32. Anderson TJ, Gerhard MD, Meredith IT, et al. Systemic nature of endothelial dysfunction in atherosclerosis. Am J Cardiol. 1995;75:71B–74B.
    33. Corretti M, Anderson TJ, Benjamin EJ, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery. J Am Coll Cardiol. 2000;39:257–265.
    34. Fichtlscherer S, Rosenberger G, Walter DH, et al. Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease.Circulation. 2000;102:1000–1006.
    35. Vita JA , Keaney JF . Endothelial function : a barometer for cardiovascular risk.Circulation,2002,106:640.
    36. Mombouli JV, Vanhoutte PM. Endothelial dysfunction: from physiology to therapy. J Mol Cell Cardiol 1999;31:61-74.
    37. Fleming I, Bauersachs J, Fisslthaler B, Busse R. Ca2+-independent activation of the endothelial nitric oxide synthase in response to tyrosine phosphatase inhibitors and fluid shear stress. Circ Res 1998;82:686-95.
    38. Taddei S, Virdis A, Mattei P, Ghiadoni L, Fasolo CB, et al. Hypertension causes premature aging of endothelial function in humans. Hypertension 1997; 29: 736-43.
    39. Nakashima M, Mombouli JV. Age-dependent decrease in endothelium-dependent hyperpolarizations to endothelin-3 in the rat mesenteric artery. J Cardiovasc Pharmacol 1993;22(8):S352-4.
    40. Panza JA, Casino PR, Badar DM, Quyyumi AA. Effect of increased availability of endothelium-derived nitric oxide precursor on endothelium-dependent vascular relaxation in normal subjects and in patients with essential hypertension. Circulation 1993;87:1475-81.
    41. Gerhard M, Roddy MA, Creager SJ, Creager MA. Aging progressively impairs endothelium-dependent vasodilatation in forearm resistance vessels of humans. Hypertension 1996;27:849-53.
    42. Bouloumie G, Fleming I, Busse R. Endothelial dysfunction coincides with an enhanced NO synthase expression and superoxide anion production. Hypertension 1997;30:934-41.
    43. Bauersachs J, Bouloumie A, Mülsch A, Wiemer G, Fleming I, et al. Vasodilator dysfunction in aged spontaneously hypertensive rats: changes in NO synthase III and soluble guanylyl expression and in superoxide anion production. Cardiovasc Res 1998;37:772-9.
    44. Stankevicius E, Martinez AC, Mulvany MJ, Simonsen U. Blunted acetylcholine relaxation and nitric oxide release in arteries from renal hypertensive rats. J Hypertension 2002;20:1571-9.
    45. Gibbons GH. Cardioprotective mechanisms of ACE inhibition. The angiotensin II-nitric oxide balance. Drugs 1997;54(5):1-11.
    46. Vidal F, Colome C, Martinez-Gonzalez J, Badimon L. Atherogenic concentrations of native low-density lipoproteins down-regulate nitric oxide synthase mRNA and protein levels in endothelial cells. Eur J Biochem 1998;252:378-84.
    47. Steinberg D, Witztum JL. Is the oxidative modification hypothesis relevant to human atherosclerosis? Circulation. 2002;105:2107–2111.
    48. Ehara S, Ueda M, Naruko T, et al. Elevated levels of low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation. 2001;103:1955–1960.
    49. Endres M, Laufs U, Huang Z, et al. Stroke protection by 3-hydroxy-3-methyl- glutaryl (HMG)-CoA reductase inhibitors mediated by endothelialnitric oxide synthase. Proc Natl Acad Sci U S A. 1998;95:8880–8885.
    50. Kurose I, Wolf R, Grisham MB, Granger DN. Modulation of ischaemia / reperfu- sion-induced microvascular dysfunction by nitric oxide. Circ Res 1994; 74:376-82.
    51. Kevelaitis E, Mouas C, MenaschéP. Poststorage diastolic abnormalities of heart transplants: is vascular dysfunction or myocardial contracture the culprit? J Heart Lung Transplant 1996;15:461-9.
    52. Kevelaitis E, Nyborg NCB, MenaschéP. Protective effect of reduced glutathione on endothelial function of coronary arteries subjected to prolonged cold storage. Transplantation 1997;64:660-3.
    53. Kevelaitis E, Nyborg NCB, MenaschéP. Coronary endothelial dysfunction of isolated hearts subjected to prolonged cold storage: patterns and contributing factors. J Heart Lung Transplant 1999;18:239-47.
    54. Reddy KG, Nair RN, Sheehan HM, et al. Evidence that selective endothelial dysfunction may occur in the absence of angiographic or ultrasound atherosclerosis in patients with risk factors for atherosclerosis. J Am Coll Cardiol. 1994;23:833–843.
    55. Celermajer DS, Sorensen KE, Bull C, et al. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interactions. J Am Coll Cardiol. 1994;24: 1468–1474.
    56. Zeiher AM, Krause T, Scha¨chinger V, et al. Impaired endothelium dependent vasodilation of coronary resistance vessels is associated with exercise-induced myocardial ischemia. Circulation. 1995;91:2345–2352.
    57. Al Suwaidi J, Hamasaki S, Higano ST, et al. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation. 2000;101:948–954.
    58. Scha¨chinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction and adverse long-term outcome of coronary heart disease. Circulation. 2000;101:1899–1906.
    59. Halcox JPJ, Schenk WH, Zalos G, et al. Prognostic value of coronary vascular endothelial function. Circulation. 2002;106:653–658.
    60. Heitzer T, Schlinzig T, Krohn K, et al. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation. 2001;104:2673–2678.
    61. Neunteufl T, Heher S, Katzenschlager R, et al. Late prognostic value of flow-mediated dilation in the brachial artery of patients with chest pain. Am J Cardiol. 2000;86:207–210.
    62. Rosenson RS, Tangney CC. Antiatherothrombotic properties of statins: implications for cardiovascular event reduction. JAMA. 1998;279: 1643–1650.
    63. John S, Schlaich M, Langenfeld M, et al. Increased bioavailability of nitric oxide after lipid-lowering therapy in hypercholesterolemic patients: a randomized, placebo-controlled, double-blind study. Circulation. 1998;98:211–216.
    64. Masumoto A, Hirooka Y, Hironaga K, et al. Effect of pravastatin on endothelial function in patients with coronary artery disease (cholesterol-independent effect of pravastatin). Am J Cardiol. 2001;88:1291–1294.
    65. Laufs U, Wassmann S, Hilgers S, et al. Rapid effects on vascular function after initiation and withdrawal of atorvastatin in healthy, normocholesterolemic men. Am J Cardiol. 2001;88:1306–1307.
    66. Martinez-Gonzalez J, Raposo B, Rodriguez C, et al. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibition prevents endothelial NO synthase down- regulation by atherogenic levels of native LDLs: balance between transcriptional andposttranscriptional regulation. ArteriosclerThromb Vasc Biol. 2001; 5:804–809.
    67. Feron O, Dessy C, Desager J-P, et al. Hydroxy-methylglutaryl-coenzyme A reductase inhibition promotes endothelial nitric oxide synthase activation through a decrease in caveolin abundance. Circulation. 2001;103: 113–118.
    68. Laufs U, La Fata V, Plutzky J, et al. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation. 1998;97: 1129–1135.
    69. Koga N.Meaning of low-density lipoprotein-apheresis for hypercholesterolemic patients at high risk for recurrence of coronary heart disease.The Apler,2002,6(5):372-380.
    70. Anderson TJ, Meredith IT, Yeung AC, et al. The effect of cholesterollowering and antioxidant therapy on endothelium-dependent coronary vasomotion. N Engl J Med. 1995;332:488–493.
    71. Tardif JC, Cote G, Lesperance J, et al, for the Multivitamin and Probucol Study Group. Probucol and multivitamins in the prevention of restenosis after coronary angioplasty. N Engl J Med. 1997;337:365–372.
    72. Adams MR, MeCredie R, Jessup W, et a1. Oral L-arginine improves endothelium- dependent dilatation and reduces monocyte adhesion to endothelial cells in young men with coronary artery disease. Atherosclerosis, 1997. 129(2): 261-269.
    73. Lekakis JP,Papamichael CM ,Papmonnou TG.Oral folic acid enhances endothdial function in patients with hypercholesterolaemia receiving statins.Eur J Cardiovasc Prev Rehabil,2004,11(5):416-420.
    74. Chambliss KL, Yuhanna IS, Mineo C, Liu P, German Z, Sherman TS, Mendelsohn ME, Anderson RG & Shaul P (2000). Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ Res 87, E44–52.
    75.刘应才,李其勇,李明显。雌激素替代治疗对绝经后妇女血管内皮舒张功能的影响。中国动脉硬化杂志,2002,10(6):52-53.
    76. Graninger M, Reiter R,Drucker C. Angiotensin receptor blockade decreases markers of vascular inflammation. J Cardiovasc Pharmacol, 2004.44(3):335-339.
    77. Kurzelewski M, Czarnowska E, Beresewicg A. Endothelin in the mechanism of endothelial injury and neutrophil adhesion in the post-ischemic guinea-pig heart. Eur J Pharmaco1. 2002. 434(1-2): 95-107.
    78. Tadden S, Virdis A, Ghiadoni L, et a1. Lacidipine restores endothelium dependant vasodilation in essential hypertensive patients. Hypertension, 1997, 12(30):1610- 1612.
    79. Laufs U, Liao JK. Targeting Rho in cardiovascular disease. Circ Res. 2000; 87:526–528.
    80. Rikitake Y, Liao JK. Rho GTPases, statins and nitric oxide. Circ Res. Dec 9 2005;97(12):1232-1235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700