妊娠早期叶酸缺乏对仔猪骨骼肌mRNA表达谱的影响及其表观遗传机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
孕期叶酸缺乏(folate deficiency, FD)能够引起胎儿宫内发育迟缓(intrauterine growthretardation, IUGR),而骨骼肌发育不良是IUGR的主要表征。然而,叶酸缺乏对骨骼肌发育的影响及其分子机制还不明确。近年来,提高肉质水平已成为21世纪养猪业及育种专家新的攻关方向;在人类孕前孕后补充叶酸对后代的长远影响已受到专家的质疑并将成为新的研究热点。本研究探讨叶酸的缺乏及补充对骨骼肌形成及发育的影响,旨在为肉质改善和临床叶酸营养提供有力的实验支持。首先,我们以猪为动物模型,观察孕早期叶酸缺乏对仔猪骨骼肌性状及mRNA表达谱的影响。在我们的研究中,全同胞关系的长白猪与莱芜猪作为杂交体系,在怀孕0-6个月喂养叶酸缺乏饲料或正常饲料,观察初生仔猪背最长肌(Longissimus dorsi, LD)性状并收集标本,用4×44KAgilent猪芯片进行表达谱检测。无论在正交组(LR♂×LW♀)还是反交组(LW♂×LR♀),叶酸缺乏组出生仔猪体重均低于正常对照组,而对仔猪体长体高无显著影响;叶酸缺乏组仔猪肌纤维密度降低,LD中甘油三酯含量更高。芯片结果显示在LR♂×LW♀叶酸缺乏组与对照组比较,子代LD中有3154个基因差异表达,而反交组有3885个差异基因(differentially expressed genes, DEGs);结果还表明在正反交之间叶酸主要通过影响不同的差异基因而发挥作用。功能分析表明,孕期母猪叶酸缺乏影响了仔猪LD中几乎所有的生物学过程;GO与KEGG筛查出脂肪发育及脂代谢相关的基因与通路,说明母猪叶酸缺乏可能通过调控相关基因而影响了仔猪的脂肪沉积。
     另一方面,C2C12细胞株在低血清诱导条件下能够分化为多核的肌管,是体外研究成肌细胞增殖和分化的首选模型。我们以C2C12为模型,分别研究叶酸对成肌细胞增殖及分化的影响并探讨其可能的机制。C2C12培养于乏叶酸培养基D2429中来观察叶酸对肌形成的影响。根据叶酸浓度分成三个组:叶酸缺乏组(Folate-0mg/l,L),正常叶酸浓度组(Folate-4mg/l,N)及高叶酸浓度叶酸组(Folate-40mg/l,H)。我们首先研究叶酸对C2C12增殖及分化的影响,结果发现叶酸缺乏能够促进C2C12细胞增殖而抑制其分化,而高浓度叶酸能促进C2C12的增殖及分化。在C2C12增殖过程中,正常组MyoD mRNA表达明显高于叶酸缺乏与高浓度叶酸组(P<0.05)。通过亚硫酸盐测序(bisulphite sequencing,BS)发现MyoD转录起始位点(Transcription start site,TSS)上游-16bp to+26bp中的5个CpG位点在H组高甲基化,在N组低甲基化。在C2C12分化过程中,我们发现随着叶酸浓度的升高Myogenin mRNA表达增强;在检测的-374bpto+6bp380bp中,靠近TSS的第7和第8CpG位点在高H组高甲基化,而在L组第5和第9位点高甲基化,在L组第2、3、4位点高甲基化;Myogenin第一外显子区甲基化情况在三组之间没有明显不同。叶酸可能正是通过影响基因启动子区CpG位点甲基化情况而影响MyoD和Myogenin的表达。
     我们进一步利用MeDIP-chip技术检测了叶酸对C2C12分化过程中全基因组甲基化的影响。结果表明每两组之间启动子区和CpG岛区都存在大量差异甲基化区域(differentially methylated regions, DMRs)。启动子区的DMRs又根据CpG含量分为HCP、ICP及LCP,在各组之间DMRs主要是HCP;各组之间CpG岛中的DMRs主要位于启动子区CpG岛中。在N vs L之间启动子区共有180DMRs (84hypermethylatedand96hypomethylated),在H vs L之间共有199DMRs (95hypermethylated and104hypomethylated),在H vs N之间共有201DMRs (104hypermethylated and97hypomethylated)。在甲基化谱中N vs L与H vs L存在较多的common DMRs;而无论是甲基化上调还是甲基化下调的DMRs比较,N vs L与H vs L之间common DMRs均较少。对DMRs所在基因进行功能分析表明N vs L的DMRs主要富集于细胞分化及发育过程,而H vs L的DMRs更多富集于细胞周期及各种细胞代谢过程。说明从叶酸缺乏状态补充到正常叶酸浓度状态,与从正常叶酸浓度补充到高浓度叶酸状态是通过调控不同基因甲基化状态及不同的生物学过程而影响C2C12的分化。对甲基化谱及表达谱关联分析表明,DMRs与DEGs之间存在一些关联基因,也就是说在C2C12分化过程中,不同浓度叶酸对基因启动子区甲基化的影响可能是一些基因差异表达的直接原因;另一方面,我们可以看出两组之间的DMRs并不是DEGs的唯一原因,即在不同浓度叶酸条件下引起的基因差异表达是各种调控综合作用的结果。
     总之,本研究结果显示孕期叶酸缺乏能够改变仔猪背最长肌的基因表达从而影响仔猪骨骼肌的形成,并且母猪叶酸缺乏能够影响仔猪的脂肪沉积。另一方面,体外细胞水平研究发现叶酸缺乏与补充能够影响C2C12的增殖及分化,DNA甲基化是叶酸调控骨骼肌形成的重要机制之一。本研究将为肉质改良及叶酸营养研究提供遗传学和表观遗传学研究基础。
Folate deficiency during pregnancy can cause fetal intrauterine growth restriction, of whichthe skeletal dysplasia is a major manifestation. However, the effect of folate deficiency onskeletal muscle development and its molecular mechanisms are unknown. Factors influencingmuscle development are very important in the formation of porcine meat quality trait. Thisresearch was to discuss the effects of folate deficiency during pregnancy on development ofthe skeletal muscle in piglets, aimed at providing strong experimental support for meat qualityimprovement and clinical folate nutrition. Firstly, we take the pig as the animal model todetermine the effect of maternal folate deficiency on the skeletal muscle transcriptome ofpiglets. In our study full-sibling Landrace (LR) and full-sibling Chinese local breed Laiwu(LW) pigs were used for reciprocal cross matings, and sows were fed either a folate deficientor a normal diet during early-mid gestation. Longissimus dorsi (LD) muscle samples werecollected from newborn piglets and a4×44K Agilent porcine oligo microarray was used fortranscriptome analysis of porcine LD muscle. The results showed that folate deficiency duringearly-mid pregnancy affected piglet body weight, LD muscle fiber number and content ofintramuscular triglyceride. The microarray results indicated that3154genes weredifferentially expressed between folate deficient and normal piglets from the LR♂×LW♀cross, and3885differentially expressed genes (DEGs) in the ones from the LW♂×LR♀cross. Most of the genes that are regulated by folate deficiency in the LD muscle of pigletswere different between LR♂×LW♀and LW♂×LR♀crosses. From functional analyses,sow folate deficiency affected almost all biological processes in the progeny. Lipidmetabolism-related genes and associated metabolic pathways were regulated extensively byfolate deficiency, especially in LR♂×LW♀cross piglets.
     On the other hand, mouse C2C12myoblast cells are an system widely used to study genesthat regulate muscle growth and differentiation in vitro. In this study, we take C2C12as thecell model to study the effect of folate deficiency and supplement on proliferation anddifferentiation of myoblasts and its possible mechanisms. C2C12cultured in D2429(mediumlack of folic acid) was used to analyze the effect of folic acid on myogenesis. According to thefolic acid concentration, three groups were divided: folate deficiency (Folate-0mg/l, L),normal folate (Folate-4mg/l, N) and high folate supplement (Folate-40mg/l, H).We firstly studied the effect of folate on proliferation and differentiation of C2C12cells, and found thatfolate deficiency can promote proliferation and inhibit the differentiation of C2C12cells,while high folate can promote the proliferation and differentiation of C2C12cells. In theprocess of C2C12proliferation, the mRNA expression of MyoD in normal folate medium wassignificantly higher than that in folate deficiency and high folate medium (P<0.05). Bybisulphite sequencing, we found that five CpG sites located from-16bp to+26bp DNAaround TSS of MyoD were hypermethylated in high folate group, while were hypomethylatedin normal folate. We also found that in the process of C2C12differentiation, the expression ofMyogenin was enhanced along with the increase of folic acid concentration, and that the2nd,3rd and4th CpG loci located from-374bp to+6bp DNA of Myogenin TSS werehypermethylated in normal folate medium, the7th and8th CpG loci were hypermethylated inhigh folate and the5th and9th ones were hypermethylated in folate deficiency group.However, DNA methylation of the first exon of Myogenin was not significantly differentamong three groups.
     In addition, we tested the influence of the folic acid on genome-wide methylation changesduring C212differentiation by MeDIP-chip. We found that hundreds of genes werehypermethylated or hypomethylated in each group, and differentially methylated regions(DMRs) were found between every two groups both in promoter and in CpG islands. Forexample,180DMRs (84hypermethylated and96hypomethylated) exist in promoter betweenN and L,199(95hypermethylated and104hypomethylated) in H vs L and201(104hypermethylated and97hypomethylated) in H vs N. In methylation profile, we found onlyfew common DMRs between N vs L and H vs N. It showed that different genes wereregulated in folate deficiency and high folate group to regulate C2C12differentiation.Correlation analysis between methylation profile and expression profile revealed that somegenes were regulated by methylation status directly, but at the same time, DNA methylationwas not the only factor to regulate gene expression.
     In conclusion, our results showed that folate deficiency in sows during early-midpregnancy altered the transcriptome of the longissimus dorsi muscle in the offsprings, thusaffecting the process of myogenesis in fetal pigs. We also found that folate deficiency andsupplement can influence the proliferation and differentiation of C2C12, and that DNAmethylation is an important factor regulating genes underlying myogenesis. This studyprovides genetic and epigenetic basis for meat quality improvement and folic acid nutrition.
引文
曹家雪,张红平,杜立新.环境因素对DNA甲基化的影响[J].遗传,2013,35(7):839-846.
    董玉玮,侯进慧,朱必才,李培青,庞永红.表观遗传学的相关概念和研究进展[J].生物学杂志,2005,22(1):1-3.
    黄偲璇,徐丹,汪晖.胚胎(胎儿)发育编程中的表观遗传修饰现象[J].国际病理科学与临床杂志,2008,28(4):4-296.
    乐静,王理,张霆.叶酸缺乏与胚胎发育的甲基化[J].中国优生与遗传杂志,2010(4):1-3.
    李雄彪,马庆英,崔云龙.丁酸和叶酸预防与治疗肠道疾病及其分子基础[J].世界华人消化杂志,2006,14(32):3071-3080.
    李竹;RobertJ Berry;李松;J David Erickson;王红;CynthiaAMoore;赵平;JosephMulinare;洪世欣; LeeYangCWong;呼和牧人; Jacqueline Gindler;郝玲; AdolfoCorrea;朱慧萍; Elaine Gunter.中国妇女妊娠前后单纯服用叶酸对神经管畸形的预防效果[J].中华医学杂志,2000,80(7):493-498
    梁承玮,俞雅珍.叶酸缺乏的小儿中枢神经系统表现[J].实用儿科临床杂志,2010(7):469-472.
    庞广昌,陈庆森,胡志和,解军波.食品和营养的表观遗传观点和展望[J].食品科学,2011,32(17):1-21.
    齐可民.加强生命早期营养基因组学与营养遗传学研究[J].中国儿童保健杂志,2011,19(8):683-685.
    邵雪峰,吴垚,范建英,施晓燕.孕妇叶酸和同型半胱氨酸对胎儿生长发育的影响[J].检验医学与临床,2008,5(5):286-287.
    宋凤彩,樊永谦,崔雪艳,闫素清,吴予明.胎儿宫内发育迟缓与叶酸及微量元素关系的研究[J].中国卫生检验杂志,2000,10(3):292.
    孙红,王留娣.孕期血清叶酸水平与早产,婴儿出生体重的关系[J].重庆医学,2002,31(7):595-596.
    孙居锋,郭志雄,潘惠英,陈立功.叶酸拮抗剂类药物研究进展[J].化学通报,2006,69(1):1-12.
    腾丽娟,张长松,李克.营养与肿瘤表观遗传学关系的研究进展——DNA甲基化机制[J].医学研究生学报,2008,21(1):95-97.
    汪旭,薛京伦.叶酸代谢与人类基因组稳定性的关系研究进展[J].国外医学遗传学分册,2005,28(5):257-261
    王广雷,黄国伟,张绪梅,等丛革新,姬长珍,田志红.叶酸对胎鼠大脑神经干细胞增殖蛋白表达影响[J].中国公共卫生,2008,24(4):462-464.
    王金桃,马晓晨,程玉英,丁玲,周芩.叶酸与宫颈癌关系的病例对照研究[J].中华流行病学杂志,2006,27(5):424-427.
    王丽,赵翠萍. DNA甲基化及其与动脉粥样硬化的关系[J].国际心血管病杂志ISTIC,2012,39(2)
    杨玉柱,王储炎,焦必宁.叶酸的研究进展[J].农产品加工(学刊),2006,5
    张运涛.叶酸对母猪繁殖性能的影响[J].中国饲料,1994,1:27-28.
    赵培亮,游文玮,段安娜.具有抗肿瘤活性的嘧啶类化合物研究进展[J].药学学报,2012,47(5):580-587.
    Baar K. Epigenetic control of skeletal muscle fibre type. Acta Physiol,2010,199(4):477-487
    Bailey L. B., Gregory J. F. Folate metabolism and requirements. J Nutr,1999,129(4):779-782
    Barkow B., Matte J. J., B hme H., Flachowsky G. Influence of folic acid supplements on thecarry-over of folates from the sow to the piglet. Brit J Nutr,2001,85(02):179-184
    Bee G. Effect of early gestation feeding, birth weight, and gender of progeny on muscle fibercharacteristics of pigs at slaughter. J Anim Sci,2004,82(3):826-836
    Bell J. T., Tsai P., Yang T., Pidsley R., Nisbet J., Glass D., Mangino M., Zhai G., Zhang F.,Valdes A. Epigenome-wide scans identify differentially methylated regions for age andage-related phenotypes in a healthy ageing population. Plos Genet,2012,8(4): e1002629
    Bentzinger C. F., Wang Y. X., Rudnicki M. A. Building muscle: molecular regulation ofmyogenesis. Csh Perspect Biol,2012,4(2): a8342
    Bernstein B. E., Mikkelsen T. S., Xie X., Kamal M., Huebert D. J., Cuff J., Fry B., MeissnerA., Wernig M., Plath K. A bivalent chromatin structure marks key developmental genes inembryonic stem cells. Cell,2006,125(2):315-326
    Billington C. J., Schmidt B., Zhang L., Hodges J. S., Georgieff M. K., Schotta G.,Gopalakrishnan R., Petryk A. Maternal diet supplementation with methyl donors andincreased parity affect the incidence of craniofacial defects in the offspring of twistedgastrulation mutant mice. J Nutr,2013,143(3):332-339
    Bird A. Perceptions of epigenetics. Nature,2007,447(7143):396-398
    Bistulfi G., VanDette E., Matsui S., Smiraglia D. J. Mild folate deficiency induces genetic andepigenetic instability and phenotype changes in prostate cancer cells. BMC biology,2010,8(1):6
    Blanchet E., Annicotte J., Lagarrigue S., Aguilar V., Clapé C., Chavey C., Fritz V., Casas F.,Apparailly F., Auwerx J. E2F transcription factor-1regulates oxidative metabolism. NatCell Biol,2011,13(9):1146-1152
    Bock C., Reither S., Mikeska T., Paulsen M., Walter J., Lengauer T. BiQ Analyzer:visualization and quality control for DNA methylation data from bisulfite sequencing.Bioinformatics,2005,21(21):4067-4068
    Bodine S. C., Stitt T. N., Gonzalez M., Kline W. O., Stover G. L., Bauerlein R., Zlotchenko E.,Scrimgeour A., Lawrence J. C., Glass D. J. Akt/mTOR pathway is a crucial regulator ofskeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol,2001,3(11):1014-1019
    Bolster D. R., Kubica N., Crozier S. J., Williamson D. L., Farrell P. A., Kimball S. R.,Jefferson L. S. Immediate response of mammalian target of rapamycin (mTOR)-mediatedsignalling following acute resistance exercise in rat skeletal muscle. J Neurophysiol,2003,553(1):213-220
    Bonneau M., Lebret B. Production systems and influence on eating quality of pork. Meat Sci,2010,84(2):293-300
    Bour B. A., O'Brien M. A., Lockwood W. L., Goldstein E. S., Bodmer R., Taghert P. H.,Abmayr S. M., Nguyen H. T. Drosophila MEF2, a transcription factor that is essential formyogenesis. Gene Dev,1995,9(6):730-741
    Branda R. F., McCormack J. J., Perlmutter C. A., Mathews L. A., Robison S. H. Effects offolate deficiency on the metastatic potential of murine melanoma cells. Cancer Res,1988,48(16):4529-4534
    Braun T., Gautel M. Transcriptional mechanisms regulating skeletal muscle differentiation,growth and homeostasis. Nat Rev Mol Cell Bio,2011,12(6):349-361
    Burdge G. C., Lillycrop K. A. Folic acid supplementation in pregnancy: are there devils in thedetail? Brit J Nutr,2012,108(11):1924-1930
    Burdge G. C., Lillycrop K. A., Jackson A. A., Gluckman P. D., Hanson M. A. The nature ofthe growth pattern and of the metabolic response to fasting in the rat are dependent uponthe dietary protein and folic acid intakes of their pregnant dams and post-weaning fatconsumption. Brit J Nutr,2008,99(03):540-549
    Burdge G. C., Lillycrop K. A., Phillips E. S., Slater-Jefferies J. L., Jackson A. A., Hanson M.A. Folic acid supplementation during the juvenile-pubertal period in rats modifies thephenotype and epigenotype induced by prenatal nutrition. J Nutr,2009,139(6):1054-1060
    Burdge G. C., Slater-Jefferies J., Torrens C., Phillips E. S., Hanson M. A., Lillycrop K. A.Dietary protein restriction of pregnant rats in the F0generation induces alteredmethylation of hepatic gene promoters in the adult male offspring in the F1and F2generations. Brit J Nutr,2007,97(03):435-439
    Butler J. S., Koutelou E., Schibler A. C., Dent S. Y. Histone-modifying enzymes: regulators ofdevelopmental decisions and drivers of human disease. Epigenomics,2012,4(2):163-177
    Calarco J. P., Borges F., Donoghue M. T., Van Ex F., Jullien P. E., Lopes T., Gardner R.,Berger F., Feijó J. A., Becker J. D. Reprogramming of DNA methylation in pollen guidesepigenetic inheritance via small RNA. Cell,2012,151(1):194-205
    Cedar H., Bergman Y. Programming of DNA methylation patterns. Annu Rev Biochem,2012,81:97-117
    Cesana M., Cacchiarelli D., Legnini I., Santini T., Sthandier O., Chinappi M., Tramontano A.,Bozzoni I. A long noncoding RNA controls muscle differentiation by functioning as acompeting endogenous RNA. Cell,2011,147(2):358-369
    Chen J., Tao Y., Li J., Deng Z., Yan Z., Xiao X., Wang D. microRNA-1and microRNA-206regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7.J Cell Biol,2010,190(5):867-879
    Chiang J. K., Sung M. L., Yu H. R., Chang H. I., Kuo H. C., Tsai T. C., Yen C. K., Chen C. N.Homocysteine induces smooth muscle cell proliferation through differential regulation ofcyclins A and D1expression. J Cell Physiol,2011,226(4):1017-1026
    Choi H., Choi S. R., Zhou R., Kung H. F., Chen I. Iron oxide nanoparticles as magneticresonance contrast agent for tumor imaging via folate receptor-targeted delivery. AcadRadiol,2004,11(9):996-1004
    Christensen B. C., Houseman E. A., Marsit C. J., Zheng S., Wrensch M. R., Wiemels J. L.,Nelson H. H., Karagas M. R., Padbury J. F., Bueno R. Aging and environmental exposuresalter tissue-specific DNA methylation dependent upon CpG island context. Plos Genet,2009,5(8): e1000602
    Crider K. S., Yang T. P., Berry R. J., Bailey L. B. Folate and DNA methylation: a review ofmolecular mechanisms and the evidence for folate’s role. Adv Nutr,2012,3(1):21-38
    Crott J. W., Liu Z., Choi S., Mason J. B. Folate depletion in human lymphocytes up-regulatesp53expression despite marked induction of strand breaks in exons5–8of the gene.Mutat Res-Gen Tox En,2007,626(1):171-179
    Crott J. W., Liu Z., Keyes M. K., Choi S., Jang H., Moyer M. P., Mason J. B. Moderate folatedepletion modulates the expression of selected genes involved in cell cycle, intracellularsignaling and folate uptake in human colonic epithelial cell lines. J Nutr Biochem,2008,19(5):328-335
    Crott J. W., Mashiyama S. T., Ames B. N., Fenech M. The effect of folic acid deficiency andMTHFR C677T polymorphism on chromosome damage in human lymphocytes in vitro.Cancer Epidem Biomar,2001,10(10):1089-1096
    Czeizel A. E. Periconceptional folic acid containing multivitamin supplementation. Eur JObstet Gyn R B,1998,78(2):151-161
    Das P. M., Singal R. DNA methylation and cancer. J Clin Oncol,2004,22(22):4632-4642Dayal S., Devlin A. M., McCaw R. B., Liu M., Arning E., Bottiglieri T., Shane B., Faraci F.M., Lentz S. R. Cerebral Vascular Dysfunction in Methionine Synthase–Deficient Mice.Circulation,2005,112(5):737-744
    de la Garza R. D., Quinlivan E. P., Klaus S. M., Basset G. J., Gregory J. F., Hanson A. D.Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis.P Natl Acad Sci Usa,2004,101(38):13720-13725
    Deaton A. M., Bird A. CpG islands and the regulation of transcription. Gene Dev,2011,25(10):1010-1022
    Deaton A. M., Webb S., Kerr A. R., Illingworth R. S., Guy J., Andrews R., Bird A. Cell type–specific DNA methylation at intragenic CpG islands in the immune system. GenomeRes,2011,21(7):1074-1086
    Devinoy E., Rijnkels M. Epigenetics in mammary gland biology and cancer. J MammaryGland Biol,2010,15(1):1-4
    Dianov G. L., Timehenko T. V., Sinitsina O. I., Kuzminov A. V., Medvedev O. A., Salganik R.I. Repair of uracil residues closely spaced on the opposite strands of plasmid DNA resultsin double-strand break and deletion formation. Mol Gen Genet,1991,225(3):448-452
    Doi A., Park I., Wen B., Murakami P., Aryee M. J., Irizarry R., Herb B., Ladd-Acosta C., RhoJ., Loewer S. Differential methylation of tissue-and cancer-specific CpG island shoresdistinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts.Nat Genet,2009,41(12):1350-1353
    Dominguez-Salas P., Cox S. E., Prentice A. M., Hennig B. J., Moore S. E. Maternalnutritional status, C1metabolism and offspring DNA methylation: a review of currentevidence in human subjects. P Nutr Soc,2012,71(01):154-165
    Dominguez-Salas P., Moore S. E., Cole D., Da Costa K., Cox S. E., Dyer R. A., Fulford A. J.,Innis S. M., Waterland R. A., Zeisel S. H. DNA methylation potential: dietary intake andblood concentrations of one-carbon metabolites and cofactors in rural African women. AmJ Clin Nutr,2013,97(6):1217-1227
    Duthie S. J. Folic acid deficiency and cancer: mechanisms of DNA instability. Brit Med Bull,1999,55(3):578-592
    Duthie S. J., Grant G., Pirie L. P., Watson A. J., Margison G. P. Folate deficiency alters hepaticand colon MGMT and OGG-1DNA repair protein expression in rats but has no effect ongenome-wide DNA methylation. Cancer Prev Res,2010,3(1):92-100
    Duthie S. J., Hawdon A. DNA instability (strand breakage, uracil misincorporation, anddefective repair) is increased by folic acid depletion in human lymphocytes in vitro. FasebJ,1998,12(14):1491-1497
    Duthie S. J., Narayanan S., Blum S., Pirie L., Brand G. M. Folate deficiency in vitro inducesuracil misincorporation and DNA hypomethylation and inhibits DNA excision repair inimmortalized normal human colon epithelial cells. Nutr Cancer,2000,37(2):245-251
    Dwyer C. M., Stickland N. C., Fletcher J. M. The influence of maternal nutrition on musclefiber number development in the porcine fetus and on subsequent postnatal growth. JAnim Sci,1994,72(4):911-917
    Ehrlich M., Lacey M. DNA methylation and differentiation: silencing, upregulation andmodulation of gene expression. Epigenomics,2013,5(5):553-568Eisen E. J., Roberts R. C. Postnatal maternal effects on growth and fat deposition in miceselected for large and small size. J Anim Sci,1981,53(4):952-965
    Esfandiari F., Villanueva J. A., Wong D. H., French S. W., Halsted C. H. Chronic ethanolfeeding and folate deficiency activate hepatic endoplasmic reticulum stress pathway inmicropigs. Am J Physiol-Gastr L,2005,289(1): G54-G63
    Fan Z., Sartin J. L., Tao Y. Pharmacological analyses of two naturally occurring porcinemelanocortin-4receptor mutations in domestic pigs. Domest Anim Endocrin,2008,3(44):383-390
    Feil R., Fraga M. F. Epigenetics and the environment: emerging patterns and implications. NatRev Genet,2012,13(2):97-109
    Feng S., Jacobsen S. E., Reik W. Epigenetic reprogramming in plant and animal development.Science,2010,330(6004):622-627
    Friso S., Choi S., Girelli D., Mason J. B., Dolnikowski G. G., Bagley P. J., Olivieri O., JacquesP. F., Rosenberg I. H., Corrocher R. A common mutation in the5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation throughan interaction with folate status. P Natl Acad Sci Usa,2002,99(8):5606-5611
    Gagnidze K., Pfaff D. W. Epigenetic Mechanisms: DNA Methylation and Histone ProteinModification: Springer,2013
    Garcia L. A., King K. K., Ferrini M. G., Norris K. C., Artaza J. N.1,25(OH)2vitamin D3stimulates myogenic differentiation by inhibiting cell proliferation and modulating theexpression of promyogenic growth factors and myostatin in C2C12skeletal muscle cells.Endocrinology,2011,152(8):2976-2986
    George L., Mills J. L., Johansson A. L., Nordmark A., Olander B., Granath F., Cnattingius S.Plasma folate levels and risk of spontaneous abortion. Jama,2002,288(15):1867-1873
    Gluckman P. D., Hanson M. A., Cooper C., Thornburg K. L. Effect of in utero and early-lifeconditions on adult health and disease. New Engl J Med,2008,359(1):61-73
    Gomes A. R., Soares A. G., Peviani S., Nascimento R. B., Moriscot A. S., Salvini T. F. Theeffect of30minutes of passive stretch of the rat soleus muscle on the myogenicdifferentiation, myostatin, and atrogin-1gene expressions. Arch Phys Med Rehab,2006,87(2):241-246
    Greenwood P. L., Hunt A. S., Hermanson J. W., Bell A. W. Effects of birth weight andpostnatal nutrition on neonatal sheep: II. Skeletal muscle growth and development. J AnimSci,2000,78(1):50-61
    Grimaldi A., Tettamanti G., Martin B. L., Gaffield W., Pownall M. E., Hughes S. M.Hedgehog regulation of superficial slow muscle fibres in Xenopus and the evolution oftetrapod trunk myogenesis. Development,2004,131(14):3249-3262
    Group M. R. C. V. Prevention of neural tube defects; results of the Medical Research Councilvitamin study. Lancet,1991,338:131-137
    Hagarman J. A., Motley M. P., Kristjansdottir K., Soloway P. D. Coordinate regulation ofDNA methylation and H3K27me3in mouse embryonic stem cells. PLoS One,2013,8(1):e53880
    Halevy O., Novitch B. G., Spicer D. B., Skapek S. X., Rhee J., Hannon G. J., Beach D., LassarA. B. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21byMyoD. Science,1995,267(5200):1018-1021
    Halsted C. H., Villanueva J. A., Devlin A. M., Niemel O., Parkkila S., Garrow T. A., WallockL. M., Shigenaga M. K., Melnyk S., James S. J. Folate deficiency disturbs hepaticmethionine metabolism and promotes liver injury in the ethanol-fed micropig. P NatlAcad Sci Usa,2002,99(15):10072-10077
    Hasty P., Bradley A., Morris J. H., Edmondson D. G., Venuti J. M., Olson E. N., Klein W. H.Muscle deficiency and neonatal death in mice with a targeted mutation in the myogeningene., Nature,1993,364:501-506
    Heijmans B. T., Kremer D., Tobi E. W., Boomsma D. I., Slagboom P. E. Heritable rather thanage-related environmental and stochastic factors dominate variation in DNA methylationof the human IGF2/H19locus. Hum Mol Genet,2007,16(5):547-554
    Heijmans B. T., Tobi E. W., Stein A. D., Putter H., Blauw G. J., Susser E. S., Slagboom P. E.,Lumey L. H. Persistent epigenetic differences associated with prenatal exposure to faminein humans. P Natl Acad Sci Usa,2008,105(44):17046-17049
    Hewitt A. J., Knuff A. L., Jefkins M. J., Collier C. P., Reynolds J. N., Brien J. F. Chronicethanol exposure and folic acid supplementation: Fetal growth and folate status in thematernal and fetal guinea pig. Reprod Toxicol,2011,31(4):500-506
    Hobbs C. A., Sherman S. L., Yi P., Hopkins S. E., Torfs C. P., Hine R. J., Pogribna M., RozenR., James S. J. Polymorphisms in genes involved in folate metabolism as maternal riskfactors for Down syndrome. Am J Hum Genet,2000,67(3):623-630
    Hoile S. P., Lillycrop K. A., Grenfell L. R., Hanson M. A., Burdge G. C. Increasing the folicacid content of maternal or post-weaning diets induces differential changes inphosphoenolpyruvate carboxykinase mRNA expression and promoter methylation in rats.Brit J Nutr,2012,108(05):852-857
    Hussien M., McNulty H., Armstrong N., Johnston P. G., Spence R., Barnett Y. Investigation ofsystemic folate status, impact of alcohol intake and levels of DNA damage inmononuclear cells of breast cancer patients. Brit J Cancer,2005,92(8):1524-1530
    Ishido M., Kami K., Masuhara M. In vivo expression patterns of MyoD, p21, and Rb proteinsin myonuclei and satellite cells of denervated rat skeletal muscle. Am J Physiol-Cell Ph,2004,287(2): C484-C493
    Jacob R. A., Gretz D. M., Taylor P. C., James S. J., Pogribny I. P., Miller B. J., Henning S. M.,Swendseid M. E. Moderate folate depletion increases plasma homocysteine and decreaseslymphocyte DNA methylation in postmenopausal women. J Nutr,1998,128(7):1204-1212
    James S. J., Pogribna M., Pogribny I. P., Melnyk S., Hine R. J., Gibson J. B., Yi P., Tafoya D.L., Swenson D. H., Wilson V. L. Abnormal folate metabolism and mutation in themethylenetetrahydrofolate reductase gene may be maternal risk factors for Downsyndrome. Am J Clin Nutr,1999,70(4):495-501
    Jhaveri M. S., Wagner C., Trepel J. B. Impact of extracellular folate levels on global geneexpression. Mol Pharmacol,2001,60(6):1288-1295
    Jirtle R. L., Skinner M. K. Environmental epigenomics and disease susceptibility. Nat RevGenet,2007,8(4):253-262
    Joe A. W., Yi L., Natarajan A., Le Grand F., So L., Wang J., Rudnicki M. A., Rossi F. M.Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis.Nat Cell Biol,2010,12(2):153-163
    Jones P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. NatRev Genet,2012,13(7):484-492
    Kadam S. Global Landscape of DNA Methylation and Gene Expression in Hematopoiesis andMonocytic Differentiation. City of Hope's Irell&Manella Grad. Sch. Of Biomedical Sci..2013:130
    Katula K. S., Heinloth A. N., Paules R. S. Folate deficiency in normal human fibroblasts leadsto altered expression of genes primarily linked to cell signaling, the cytoskeleton andextracellular matrix. J Nutr Biochem,2007,18(8):541-552
    Kay P. H., Pereira E., Marlow S. A., Turbett G., Mitchell C. A., Jacobsen P. F., Holliday R.,Papadimitriou J. M. Evidence for adenine methylation within the mouse myogenic geneMyo-D1. Gene,1994,151(1):89-95
    Khosla S., Dean W., Brown D., Reik W., Feil R. Culture of preimplantation mouse embryosaffects fetal development and the expression of imprinted genes. Biol Reprod,2001,64(3):918-926
    Kim J., Yu J. Interrogating genomic and epigenomic data to understand prostate cancer.Bba-Rev Cancer,2012,1825(2):186-196
    Kim K., Friso S., Choi S. DNA methylation, an epigenetic mechanism connecting folate tohealthy embryonic development and aging. J Nutr Biochem,2009,20(12):917-926
    Kim Y. I. Folate: a magic bullet or a double edged sword for colorectal cancer prevention?Gut,2006,55(10):1387-1389
    Kim Y. Role of folate in colon cancer development and progression. J Nutr,2003,133(11):3731S-3739S
    Kim Y., Pogribny I. P., Basnakian A. G., Miller J. W., Selhub J., James S. J., Mason J. B.Folate deficiency in rats induces DNA strand breaks and hypomethylation within the p53tumor suppressor gene. Am J Clin Nutr,1997,65(1):46-52
    Klose R. J., Bird A. P. Genomic DNA methylation: the mark and its mediators. Trends inbiochemical sciences,2006,31(2):89-97
    K k S., Atalay S., Sava i M., Eken H. S. Characterization of Calpastatin Gene in Purebredand Crossbred Turkish Grey Steppe Cattle. Kafkas Univ Vet Fak,2013,19(2)
    Kotsopoulos J., Sohn K., Kim Y. Postweaning dietary folate deficiency provided throughchildhood to puberty permanently increases genomic DNA methylation in adult rat liver. JNutr,2008,138(4):703-709
    Kumar K. A., Lalitha A., Pavithra D., Padmavathi I. J., Ganeshan M., Rao K. R., Venu L.,Balakrishna N., Shanker N. H., Reddy S. U. Maternal dietary folate and/or vitamin B12restrictions alter body composition (adiposity) and lipid metabolism in Wistar ratoffspring. J Nutr Biochem,2013,24(1):25-31
    Kuo H., Liao K., Leveille S. G., Bean J. F., Yen C., Chen J., Yu Y., Tai T. Relationship ofhomocysteine levels to quadriceps strength, gait speed, and late-life disability in olderadults. J Gerontol A-Biol,2007,62(4):434-439
    Lane R. H., Chandorkar A. K., Flozak A. S., Simmons R. A. Intrauterine growth retardationalters mitochondrial gene expression and function in fetal and juvenile rat skeletal muscle.Pediatr Res,1998,43(5):563-570
    Larsson S. C., Giovannucci E., Wolk A. A prospective study of dietary folate intake and riskof colorectal cancer: modification by caffeine intake and cigarette smoking. CancerEpidem Biomar,2005,14(3):740-743
    Leclerc D., Campeau E., Goyette P., Adjalla C. E., Christensen B., Ross M., Eydoux P.,Rosenblatt D. S., Rozen R., Gravel R. A. Human methionine synthase: cDNA cloning andidentification of mutations in patients of the cblG complementation group offolate/cobalamin disorders. Hum Mol Genet,1996,5(12):1867-1874
    Li Y., Tollefsbol T. O. Impact on DNA methylation in cancer prevention and therapy bybioactive dietary components. Curr Med Chem,2010,17(20):2141
    Liang P., Song F., Ghosh S., Morien E., Qin M., Mahmood S., Fujiwara K., Igarashi J.,Nagase H., Held W. A. Genome-wide survey reveals dynamic widespread tissue-specificchanges in DNA methylation during development. BMC genomics,2011,12(1):231
    Lillycrop K. A., Burdge G. C. Epigenetic changes in early life and future risk of obesity. Int JObesity,2011,35(1):72-83
    Lillycrop K. A., Phillips E. S., Jackson A. A., Hanson M. A., Burdge G. C. Dietary proteinrestriction of pregnant rats induces and folic acid supplementation prevents epigeneticmodification of hepatic gene expression in the offspring. J Nutr,2005,135(6):1382-1386
    Lillycrop K. A., Slater-Jefferies J. L., Hanson M. A., Godfrey K. M., Jackson A. A., Burdge G.C. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in theoffspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNAmethyltransferase-1expression is involved in impaired DNA methylation and changes inhistone modifications. Brit J Nutr,2007,97(06):1064-1073
    Ling B. M. T., Bharathy N., Chung T., Kok W. K., Li S., Tan Y. H., Rao V. K., Gopinadhan S.,Sartorelli V., Walsh M. J. Lysine methyltransferase G9a methylates the transcription factorMyoD and regulates skeletal muscle differentiation. P Natl Acad Sci Usa,2012,109(3):841-846
    Liu D., Black B. L., Derynck R. TGF-β inhibits muscle differentiation through functionalrepression of myogenic transcription factors by Smad3. Gene Dev,2001,15(22):2950-2966
    Lorincz M. C., Schübeler D., Hutchinson S. R., Dickerson D. R., Groudine M. DNAmethylation density influences the stability of an epigenetic imprint andDnmt3a/b-independent de novo methylation. Mol Cell Biol,2002,22(21):7572-7580
    Ly A., Lee H., Chen J., Sie K. K., Renlund R., Medline A., Sohn K., Croxford R., ThompsonL. U., Kim Y. Effect of maternal and postweaning folic acid supplementation onmammary tumor risk in the offspring. Cancer Res,2011,71(3):988-997
    Mann M. R., Bartolomei M. S. Epigenetic reprogramming in the mammalian embryo:struggle of the clones. Genome Biol,2002,3(2):1001-1003
    Matte J. J., Girard C. L. Effects of intramuscular injections of folic acid during lactation onfolates in serum and milk and performance of sows and piglets. J Anim Sci,1989,67(2):426-431
    Matte J. J., Girard C. L., Brisson G. J. The role of folic acid in the nutrition of gestating andlactating primiparous sows. Livest Prod Sci,1992,32(2):131-148
    Maunakea A. K., Nagarajan R. P., Bilenky M., Ballinger T. J., D Souza C., Fouse S. D.,Johnson B. E., Hong C., Nielsen C., Zhao Y. Conserved role of intragenic DNAmethylation in regulating alternative promoters. Nature,2010,466(7303):253-257
    McKay J. A., Waltham K. J., Williams E. A., Mathers J. C. Folate depletion during pregnancyand lactation reduces genomic DNA methylation in murine adult offspring. Genes Nutr,2011,6(2):189-196
    McNeil C. J., Beattie J. H., Gordon M. J., Pirie L. P., Duthie S. J. Differential effects ofnutritional folic acid deficiency and moderate hyperhomocysteinemia on aortic plaqueformation and genome-wide DNA methylation in vascular tissue from ApoE-/-mice.Clinical epigenetics,2011,2(2):361-368
    Megeney L. A., Kablar B., Garrett K., Anderson J. E., Rudnicki M. A. MyoD is required formyogenic stem cell function in adult skeletal muscle. Gene Dev,1996,1(010):1173-1183
    Meissner A., Mikkelsen T. S., Gu H., Wernig M., Hanna J., Sivachenko A., Zhang X.,Bernstein B. E., Nusbaum C., Jaffe D. B. Genome-scale DNA methylation maps ofpluripotent and differentiated cells. Nature,2008,454(7205):766-770
    Melnyk S., Pogribna M., Miller B. J., Basnakian A. G., Pogribny I. P., James S. J. Uracilmisincorporation, DNA strand breaks, and gene amplification are associated withtumorigenic cell transformation in folate deficient/repleted Chinese hamster ovary cells.Cancer Lett,1999,146(1):35-44
    Merks J., Mathur P. K., Knol E. F. New phenotypes for new breeding goals in pigs. Animal,2011,6(4):535
    Mithal A., Bonjour J., Boonen S., Burckhardt P., Degens H., Fuleihan G. E. H., Josse R., LipsP., Torres J. M., Rizzoli R. Impact of nutrition on muscle mass, strength, and performancein older adults. Osteoporosis Int,2013,24(5):1555-1566
    Morris M. S., Jacques P. F., Rosenberg I. H., Selhub J. Folate and vitamin B-12status inrelation to anemia, macrocytosis, and cognitive impairment in older Americans in the ageof folic acid fortification. Am J Clin Nutr,2007,85(1):193-200
    Nagata K., Nakamura T., Fujihara S., Tanaka E. Ultrasound modulates the inflammatoryresponse and promotes muscle regeneration in injured muscles. Ann Biomed Eng,2013,41(6):1095-1105
    Naidu P. S., Ludolph D. C., To R. Q., Hinterberger T. J., Konieczny S. F. Myogenin and MEF2function synergistically to activate the MRF4promoter during myogenesis. Mol Cell Biol,1995,15(5):2707-2718
    Neuhouser M. L., Nijhout H. F., Gregory J. F., Reed M. C., James S. J., Liu A., Shane B.,Ulrich C. M. Mathematical modeling predicts the effect of folate deficiency and excess oncancer-related biomarkers. Cancer Epidem Biomar,2011,20(9):1912-1917
    Niculescu M. D., Zeisel S. H. Diet, methyl donors and DNA methylation: interactionsbetween dietary folate, methionine and choline. J Nutr,2002,132(8):2333S-2335S
    Nishio K., Goto Y., Kondo T., Ito S., Ishida Y., Kawai S., Naito M., Wakai K., Hamajima N.Serum folate and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphismadjusted for folate intake. J Epidemiol,2008,18(3):125
    Oakley Jr G. P. The scientific basis for eliminating folic acid–preventable spina bifida: amodern miracle from epidemiology. Ann Epidemio,2009,19(4):226-230
    Ono Y., Calhabeu F., Morgan J. E., Katagiri T., Amthor H., Zammit P. S. BMP signallingpermits population expansion by preventing premature myogenic differentiation in musclesatellite cells. Cell Death Differ,2011,18(2):222-234
    Palacios D., Summerbell D., Rigby P. W., Boyes J. Interplay between DNA methylation andtranscription factor availability: implications for developmental activation of the mouseMyogenin gene. Mol Cell Biol,2010,30(15):3805-3815
    Pedersen B. K., Febbraio M. A. Muscle as an endocrine organ: focus on muscle-derivedinterleukin-6. Physiol Rev,2008,88(4):1379-1406
    Pickell L., Li D., Brown K., Mikael L. G., Wang X. L., Wu Q., Luo L., Jerome Majewska L.,Rozen R. Methylenetetrahydrofolate reductase deficiency and low dietary folate increaseembryonic delay and placental abnormalities in mice. Birth Defects Res A,2009,85(6):531-541
    Pogribny I. P., James S. J., Jernigan S., Pogribna M. Genomic hypomethylation is specific forpreneoplastic liver in folate/methyl deficient rats and does not occur in non-target tissues.Mutat Res-Fund Mol M,2004,548(1):53-59
    Pogribny I. P., Miller B. J., James S. J. Alterations in hepatic p53gene methylation patternsduring tumor progression with folate/methyl deficiency in the rat. Cancer Lett,1997,115(1):31-38
    Portis E., Acquadro A., Comino C., Lanteri S. Analysis of DNA methylation duringgermination of pepper (apsicum annuum L.) seeds using methylation-sensitiveamplification polymorphism (MSAP). Plant Sci,2004,166(1):169-178
    Potthoff M. J., Olson E. N. MEF2: a central regulator of diverse developmental programs.Development,2007,134(23):4131-4140
    Qiao Y., Huang Z., Li Q., Liu Z., Dai R., Pan Z., Xie Z., Liu H. Developmental Changes ofthe LPL mRNA Expression and Its Effect on IMF Content in Sheep Muscle. Agr SciChina,2008,7(1):104-111
    Raghunathan K., Schmitz J. C., Priest D. G. Impact of schedule on leucovorin potentiation offluorouracil antitumor activity in dietary folic acid deplete mice. Biochem Pharmacol,1997,53(8):1197-1202
    Ramsahoye B. H. Measurement of genome wide DNA methylation by reversed-phasehigh-performance liquid chromatography. Methods,2002,27(2):156-161
    Reed K., Poulin M. L., Yan L., Parissenti A. M. Comparison of bisulfite sequencing PCR withpyrosequencing for measuring differences in DNA methylation. Anal Biochem,2010,397(1):96-106
    Rehfeldt C., Lefaucheur L., Block J., Stabenow B., Pfuhl R., Otten W., Metges C. C., KalbeC. Limited and excess protein intake of pregnant gilts differently affects body compositionand cellularity of skeletal muscle and subcutaneous adipose tissue of newborn andweanling piglets. Eur J Clin Nutr,2012,51(2):151-165
    Rhodes L. J., Jackson A. A., Hanson M. A., Burdge G. C., Lillycrop K. A. Folic acidsupplementation in the juvenile-pubertal period in rats leads to persistent tissue-specificchanges in the expresison and methylation of the tumour suppressor gene BRCA1. P NutrSoc,2011,70(OCE4): E201
    Rosenquist T. H., Finnell R. H. Genes, folate and homocysteine in embryonic development. PNutr Soc,2001,60(01):53-61
    Sato Y., Honda Y., Iwamoto J., Kanoko T., Satoh K. Amelioration by mecobalamin ofsubclinical carpal tunnel syndrome involving unaffected limbs in stroke patients. J NeurolSci,2005,231(1):13-18
    Schenk S., Cook J. N., Kaufman A. E., Horowitz J. F. Postexercise insulin sensitivity is notimpaired after an overnight lipid infusion. Am J Physiol-Endoc M,2005,288(3):E519-E525
    Schjoldager J. G., Tveden-Nyborg P., Lykkesfeldt J. Prolonged maternal vitamin C deficiencyoverrides preferential fetal ascorbate transport but does not influence perinatal survival inguinea pigs. Brit J Nutr,2013,110(09):1573-1579
    Schmittgen T. D., Livak K. J. Analyzing real-time PCR data by the comparative CT method.Nat Protoc,2008,3(6):1101-1108
    Shane B.1Folate Chemistry and Metabolism. Folate in health and disease,2010:1
    Shen L., Kondo Y., Guo Y., Zhang J., Zhang L., Ahmed S., Shu J., Chen X., Waterland R. A.,Issa J. J. Genome-wide profiling of DNA methylation reveals a class of normallymethylated CpG island promoters. PLoS genetics,2007,3(10): e181
    Shrubsole M. J., Gao Y., Cai Q., Shu X. O., Dai Q., Hébert J. R., Jin F., Zheng W. MTHFRpolymorphisms, dietary folate intake, and breast cancer risk results from the ShanghaiBreast Cancer Study. Cancer Epidem Biomar,2004,13(2):190-196
    Sinclair K. D., Allegrucci C., Singh R., Gardner D. S., Sebastian S., Bispham J., Thurston A.,Huntley J. F., Rees W. D., Maloney C. A. DNA methylation, insulin resistance, and bloodpressure in offspring determined by maternal periconceptional B vitamin and methioninestatus. P Natl Acad Sci Usa,2007,104(49):19351-19356
    Skinner M. K. Environmental epigenetic transgenerational inheritance and somatic epigeneticmitotic stability. Epigenetics,2011,6(7):838-842
    Smith A. D., Kim Y., Refsum H. Is folic acid good for everyone? Am J Clin Nutr,2008,87(3):517-533
    Smith Z. D., Chan M. M., Mikkelsen T. S., Gu H., Gnirke A., Regev A., Meissner A. A uniqueregulatory phase of DNA methylation in the early mammalian embryo. Nature,2012,484(7394):339-344
    Smith Z. D., Gu H., Bock C., Gnirke A., Meissner A. High-throughput bisulfite sequencing inmammalian genomes. Methods,2009,48(3):226-232
    Smith Z. D., Meissner A. DNA methylation: roles in mammalian development. Nat RevGenet,2013,14(3):204-220
    Sordella R., Jiang W., Chen G., Curto M., Settleman J. Modulation of Rho GTPase signalingregulates a switch between adipogenesis and myogenesis. Cell,2003,113(2):147-158
    Sram R. J., Binkova B., Lnenickova Z., Solansky I., Dejmek J. The impact of plasma folatelevels of mothers and newborns on intrauterine growth retardation and birth weight. MutatRes-Fund Mol M,2005,591(1):302-310
    Steffens A. A., Hong G., Bain L. J. Sodium arsenite delays the differentiation of C2C12mousemyoblast cells and alters methylation patterns on the transcription factor myogenin.Toxicol Appl Pharm,2011,250(2):154-161
    Stempak J. M., Sohn K., Chiang E., Shane B., Kim Y. Cell and stage oftransformation-specific effects of folate deficiency on methionine cycle intermediates andDNA methylation in an in vitro model. Carcinogenesis,2005,26(5):981-990
    Sudimack J., Lee R. J. Targeted drug delivery via the folate receptor. Adv Drug Deliver Rev,2000,41(2):147-162
    Tai P. W., Fisher-Aylor K. I., Himeda C. L., Smith C. L., MacKenzie A. P., Helterline D. L.,Angello J. C., Welikson R. E., Wold B. J., Hauschka S. D. Differentiation and fiber
    type-specific activity of a muscle creatine kinase intronic enhancer. Skelet Muscle,2011,1:25
    Taparia S., Gelineau-van Waes J., Rosenquist T. H., Finnell R. H. Importance offolate-homocysteine homeostasis during early embryonic development. Clinical ChemicalLaboratory Medicine,2007,45(12):1717-1727
    Terruzzi I., Senesi P., Montesano A., La Torre A., Alberti G., Benedini S., Caumo A., Fermo I.,Luzi L. Genetic polymorphisms of the enzymes involved in DNA methylation andsynthesis in elite athletes. Physiol Genomics,2011,43(16):965-973
    Thayer M. J., Welntraub H. Activation and repression of myogenesis in somatic cell hybrids:Evidence for trans-negative regulation of MyoD in primary fibroblasts. Cell,1990,63(1):23-32
    Torrens C., Brawley L., Anthony F. W., Dance C. S., Dunn R., Jackson A. A., Poston L.,Hanson M. A. Folate supplementation during pregnancy improves offspringcardiovascular dysfunction induced by protein restriction. Hypertension,2006,47(5):982-987
    Tortorella L. L., Milasincic D. J., Pilch P. F. Critical proliferation-independent window forbasic fibroblast growth factor repression of myogenesis via the p42/p44MAPK signalingpathway. J Biol Chem,2001,276(17):13709-13717
    van den Donk M., Buijsse B., van den Berg S. W., Ocké M. C., Harryvan J. L., Nagengast F.M., Kok F. J., Kampman E. Dietary intake of folate and riboflavin, MTHFR C677Tgenotype, and colorectal adenoma risk: a Dutch case-control study. Cancer EpidemBiomar,2005,14(6):1562-1566
    Wang J., Chen L., Li D., Yin Y., Wang X., Li P., Dangott L. J., Hu W., Wu G. Intrauterinegrowth restriction affects the proteomes of the small intestine, liver, and skeletal muscle innewborn pigs. J Nutr,2008,138(1):60-66
    Weber M., Hellmann I., Stadler M. B., Ramos L., P bo S., Rebhan M., Schübeler D.Distribution, silencing potential and evolutionary impact of promoter DNA methylation inthe human genome. Nat Genet,2007,39(4):457-466
    Wells J. C. The thrifty phenotype as an adaptive maternal effect. Biol Rev,2007,82(1):143-172
    Wigmore P. M., Evans D. J. Molecular and cellular mechanisms involved in the generation offiber diversity during myogenesis. Int Rev Cytol,2002,216:175-232
    Williams K., Christensen J., Pedersen M. T., Johansen J. V., Cloos P. A., Rappsilber J., HelinK. TET1and hydroxymethylcytosine in transcription and DNA methylation fidelity.Nature,2011,473(7347):343-348
    Wilson A., Platt R., Wu Q., Leclerc D., Christensen B., Yang H., Gravel R. A., Rozen R. ACommon Variant in Methionine Synthase Reductase Combined with Low Cobalamin(Vitamin B12) Increases Risk for Spina Bifida. Mol Genet Metab,1999,67(4):317-323
    Wouters M. G., Boers G. H., Blom H. J., Trijbels F. J., Thomas C. M., Borm G. F.,Steegers-Theunissen R. P., Eskes T. K. Hyperhomocysteinemia: a risk factor in womenwith unexplained recurrent early pregnancy loss. Fertil Steril,1993,60(5):820-825
    Wu G., Bazer F. W., Datta S., Gao H., Johnson G. A., Lassala A., Li P., Satterfield M. C.,Spencer T. E. Intrauterine growth retardation in livestock: implications, mechanisms andsolutions. Arch Fur Tierzucht-Arch Anim Breed,2008,51:4-10
    Wu G., Bazer F. W., Wallace J. M., Spencer T. E. Board-invited review: intrauterine growthretardation: implications for the animal sciences. J Anim Sci,2006,84(9):2316-2337
    Wuelling M., Vortkamp A. Transcriptional networks controlling chondrocyte proliferation anddifferentiation during endochondral ossification. Pediatr Nephrol,2010,25(4):625-631
    Yajnik C. S., Deshpande S. S., Jackson A. A., Refsum H., Rao S., Fisher D. J., Bhat D. S.,Naik S. S., Coyaji K. J., Joglekar C. V. Vitamin B12and folate concentrations duringpregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study.Diabetologia,2008,51(1)
    Yan T., Shao F., Wang Y., Lu X., Gu Z. Molecular Cloning and Tissue Expression of Myf5Gene in Squaliobarbus curriculus. Journal of Changshu Institute of Technology,2011,8:21
    Yuan Y., Shi X., Liu Y., Yang G. FoxO1regulates muscle fiber-type specification and inhibitscalcineurin signaling during C2C12myoblast differentiation. Mol Cell Biochem,2011,348(1-2):77-87
    Zhang X., Liu H., Cong G., Tian Z., Ren D., Wilson J. X., Huang G. Effects of folate on notchsignaling and cell proliferation in neural stem cells of neonatal rats in vitro. J Nutr SciVitamino,2008,54(5):353-356
    Zhu M. J., Ford S. P., Means W. J., Hess B. W., Nathanielsz P. W., Du M. Maternal nutrientrestriction affects properties of skeletal muscle in offspring. J Physio,2006,575(1):241-250
    Zhu M., Ford S. P., Nathanielsz P. W., Du M. Effect of maternal nutrient restriction in sheepon the development of fetal skeletal muscle. Biol Reprod,2004,71(6):1968-1973
    Zhu W. Y., Alliegro M. A., Melera P. W. The rate of folate receptor alpha (FRα) synthesis infolate depleted CHL cells is regulated by a translational mechanism sensitive to mediafolate levels, while stable overexpression of its mRNA is mediated by gene amplificationand an increase in transcript half‐life. J Cell Biochem,2001,81(2):205-219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700