5083细晶铝合金的热变形行为和多层结构成形工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超塑成形/扩散连接组合技术在钛合金多层构件制造方面取得了发展,但仅就航空航天领域而言,还存在巨大的发展空间,在技术推动和需求牵引的双重作用下,开发现有材料的超塑性和其它连接技术与超塑成形的组合技术研究在宇航结构制造领域具有极其重要的意义。在满足现代飞行器性能要求的前提下开发铝合金的多层结构即可降低制造成本又可减轻重量。但由于铝合金的氧化膜问题使其不容易进行扩散连接,因而通过超塑成形/扩散连接成形铝合金的多层结构就比较困难。
     5083铝合金是典型的Al-Mg系合金,具有高的物理性能和机械强度,并有优良的可加工性、抗腐蚀性、可焊接性及低廉的价格等优点,因此被广泛应用于航天、航空,船舶等行业。本文以该合金为研究材料,尝试着采用激光连接代替传统的扩散连接并结合超塑成形的组合技术成形铝合金的多层结构。为此,本文详细地对5083铝合金的超塑性及其变形机理、热成形性能、激光焊接性能等方面进行了研究,确定了使该合金获得良好热变形性能和焊接性能的工艺条件,从而为激光连接+超塑成形(LBW+SPF)组合技术成形铝合金的多层结构的发展和应用提供了可靠的依据。
     初始的商业5083铝合金板晶粒比较粗大,其平均晶粒尺寸远大于10μm,通过热机械处理法获得了平均晶粒尺寸为3μm的细晶板。采用透射电镜对细晶5083在150~300℃温度范围内的退火组织演变进行了研究。确定了对组织超塑性有利的合适的退火温度为250℃。对细晶5083铝合金在温度为380~570℃和应变速率为4.17×10-4~1.0×10-2s-1的范围内进行了单向拉伸实验,结果表明:在同一应变速率下,温度在380~550℃范围时,材料的延伸率随着温度的升高而不断增大;当温度升高到550℃时,材料的延伸率达到最大值530%;但当温度继续升高到570℃时延伸率反而下降;在同一温度下,材料的延伸率随着应变速率的降低而增大。同时,计算了不同温度和应变速率下的应变敏感指数m值。通过金相显微镜和扫描电镜观察并分析了超塑变形过程中的液相行为和空洞行为。
     为了进一步考察细晶5083铝合金的成形性能,对其进行了非等温拉深实验。研究了不同凹模温度、拉深速度以及压边间隙对该合金非等温拉深成形性能的影响,确定了使该铝合金具有最佳拉深性能的工艺参数。结果表明:在200~300℃的温度范围内,细晶5083铝合金薄板的极限拉深比(LDR)随凹模温度的升高而明显增大,当凹模温度达到275℃时, LDR达到最大值2.9;当在较佳的凹模温度和不同的拉深速度下进行拉深时,细晶5083铝合金非等温拉深工艺在一定的拉深速度范围内对应变速率不敏感,当拉深速度≤2mm/min时均能拉深成功。
     利用3kW的CO2激光器对细晶5083铝合金薄板进行了激光穿透焊实验研究,接头分别采用对接和搭接两种形式。实验结果得出了两种接头下的最佳焊接工艺参数和接头的显微硬度分布规律。对对接焊试样进行高温拉伸结果表明:焊缝强度高于母材,破坏位置出现在母材一侧。对对接焊板材在500℃进行了自由胀形实验,得到了相对胀形高度为0.59的胀形件。对搭接焊试样进行拉伸结果表明:搭接焊试样在室温下的抗拉强度为186Mpa,约为非细晶母材在室温拉伸时的64%;而在500℃时搭接焊试样的抗拉强度约为细晶母材的91%。
     根据对细晶5083铝合金搭接激光穿透焊的研究结果,采用获得的最佳焊接工艺参数(激光功率1200kW,焊接速率2mm/min,离焦量0,氩气保护)对不等厚的细晶5083铝合金板按照设计好的连接位置进行激光连接成多层结构,然后采用氩弧焊对多层结构进行封边并留出气道,最后利用超塑成形工艺成形了细晶5083铝合金的三层和四层结构。其中多层结构的面板厚度为1.1mm,芯板厚度为0.9mm。超塑成形工艺参数为:成形温度500℃,成形时间45min,成形压力为1.2MPa。分别分析了成形后的几种多层结构的面板与芯板厚度变化和面板与芯板、芯板之间的连接情况。结果表明:几种多层结构的整体成形均较好,它们的面板与芯板变形都比较均匀,各连接处的结合情况也都较好,几乎没有缺陷发生。
The technology of superplastic forming and diffusion bonding (SPF/DB) has made the development for multi-sheet structure manufacturing of titanium alloy. However, there is a huge space for development in aviation and aerospace fields. So, the researches on superplasticity of existing materials and technologies of other bonding methods combined with superplastic forming have extremely important significance. To develope the multi-layer structure of aluminum alloys can reduce manufacturing cost and weight under meeting the performance requirements of modern aircraft. However, the obstinate oxide film of aluminum alloy leads to that diffusion bonding of the alloy is not easy. This problem exists so that the multi-layer structure of aluminum alloy by SPF/DB becomes more difficult.
     Al-Mg based 5083 Al alloy has shown broad applications in aerospace, aviation, shipping and other departments for its special characteristics, such as low price, moderate strength, good corrosion resistance and high formability with moderate superplasticity. In this paper, the superplasticity and its deformation mechanism, foming properties, laser beam welding performance of 5083 Al alloy were sdudied in detail. The good forming and welding process parameters were determined by experiments. These provide a reliable basis for the development and application of multi-layer structure of alumimum alloys using the technique of laser beam welding + superplastic forming (LBW+SPF). To this end, this paper has been focused on the sdudies as following:
     The microstructure with uniform equiaxed fine gain (average size of 3μm) was obtained using the thermo-mechanical processing (TMP) for the 5083 Al alloy plate. The microstructure evolution of the fine-grained 5083 Al alloy has been firstly investigated at annealing temperatures of 150~300℃. The results indicate that the suitable annealing temperature is about 200℃in terms of Organization superplasticity. Uniaxial tensile test was carried out at a temperature range of 500~570℃and a strain rate range of 4.17×10-4~1.0×10-2 s-1. Maximum tensile elongation 530% was obtained at 550℃and strain rate 4.17×10-4s-1, at which maximum strain rate sensitivity index m of 0.68 was attained. The cavities and fracture were observed during uniaxial tensile deformation of the alloy by scanning electronic microscopy (SEM). It indicated that linkage of cavities in large region would induce failure of the material. Moreover, presence of liquid phase at grain boundary also influenced superplastic deformation and behavior of cavities.
     The effect of temperature of female die, deep drawing speeds, blankholder gap and lubricating condition on non-isothermal deep technology of fine-grained 5083 Al alloy was studied under temperature range of 200~300℃. Experimental results show that, fine-grained 5083 Al alloy sheets have good deep drawing formability when temperature of female die is higher than 250℃. When the temperature of female die was 275℃, the limiting drawing ratio (LDR) of the material reached maximum 2.9. Under the optimum female-temperature and different punch speed, the influences of strain rate on the non-isothermal deep drawing process of fine-grained 5083 Al alloy is a little. When the punch speed is equal or lesser than 2mm/min, the deep drawing will be well.
     The laser full penetration welding without filler of fine-grained 5083 Al alloy sheets is investigated with 3kW CO2 laser, butt and lap joints were used in two forms. Butt weld penetration test results show that, the welding surface with high quality is obtained under appropriate laser power and welding speed. The profile of microhardness traverse across the weld exhibits like W shape and that the heat affected zone (HAZ) has serious softening. The results of high temperature tension show that the tensile strength of welded joint is greater than the base metal, which is the side of fractures. Optimal relative height of 0.59 of the free bulging specimen is obtained at 500℃. This result shows that laser butt-welding sheets of fine-grained 5083 Al alloy possess good high temperature formability. The thickness of 1.1mm and 0.9mm for the fine-grained 5083 Al alloy sheets in lap welding penetration test results show that, the profile of microhardness traverse across the weld exhibits like W shape and that the heat affected zone has serious softening. The results of tensile test at room temperature show that the tensile strength of welded joint is 186Mpa, which is about 64% of a general 5083 base metal. And the tensile strength of the welded specimen is about 91% that of the base metal at 500℃.
     Multi-sheet structures of an aluminum alloy were fabricated through laser beam welding combined with superplastic forming technique. The novel welding design and bonding have been developed to improve the formation quality of the structure for the alumimum alloy. Forming process parameters are: forming temperature is 500℃, forming time is 45min, and forming pressure is 1.2MPa.The distribution in thickness within the formed structure and bonding conditions between face- and core-sheets were investigated. It reveals homogeneous deformation and well-bonding property of the structure. This verifies the feasibility of the processing procedures for the multi-sheet structures of an aluminum alloy.
引文
1刘勤.金属的超塑性.上海交通大学出版社. 1989
    2刘黎明,陶华,肖于德. Al-Mg系铝合金超塑性薄壁管材.中南大学学报(自然科学版). 2007,38(4):608-611
    3韩文波.多层结构超塑成形/扩散连接工艺及数值模拟研究.哈尔滨工业大学博士论文. 2004
    4徐先懂,宋述稳. SPF/ DB在空心叶片制造中的应用.金属成形工艺. 2002,20(6):49-56
    5黄岩,马龙翔.铝合金的超塑成形和扩散焊接(SPF/DB).材料科学进展. 1988,4(2):11-17
    6刘俊.铝合金激光焊接工艺特性.现代制造工程. 2003,(3):55-56
    7 Yajie Quan, Zhenhua Chen, Zhaohui Yu, Xiaosan Gong, Mei Li. Characteristics of laser welded wrought Mg–Al–Mn alloy. Materials Characterization. 2008, 59(12): 1799-1804
    8齐向前,李玉昌,武建军,童翔.铝合金激光焊接技术特性.焊接技术. 2005,34(3):30-32
    9骆红,胡伦骥,黄树槐,刘建华,胡席远.铝合金的激光焊接.激光技术. 1998,22(2):94-98
    10朱宏,金忠华.铝及铝合金激光焊接技术的研究现状.电子工艺技术. 1997,18(4):129-132
    11刘世永,孟德,黄德康.铝合金激光焊接的研究现状.机械工程材料. 2004,28(9):5-8
    12管仁国,温景林.超细晶Al-Mg合金材料的研究现状与对策.轻合金加工技术. 2005,33(2):1-9
    13 R. Z. Valiev. Nanomaterial advantage. Nature. 2002, 419: 887-889
    14 Y. Iwahashi, J. Wang, Z. Horita, et al. Principle of equal channel angular pressing for the proeessing of ultra-fine grained materials. Scripta Materialia. 1996, 35: 143-146
    15 R. Z. Valiev, A. V. Korznikov, R. R. Mulyukov. Structure and properties of ultra fine grained materials by sever plastic deformation. Materials Science and Engineering. 1993, A186:141-148
    16 R. Z. Valiev, N. A. Krasilnikov, N. K. Tsenev. Plastic deformation of alloys with submicron grained structure. Materials Science and Engineering. 1991, A137: 35-39
    17李金山,曹海涛,胡锐,陈忠伟,耿兴国.等径角挤压法制备超细晶的研究现状.特种铸造及有色合金. 2004,(3):1-3
    18陈彦博,赵晶磊,李英龙,宋丹,温景林.连续ECAP技术制备超细晶铝.中国有色金属学报. 2006,16(12):2054-2059
    19毕见强,孙康宁,范润华,刘睿. 2A12铝块体超细晶材料的ECAP制备.人工晶体学报. 2006,35(2):221-223
    20陈勇军,王渠东,彭建国,翟春泉,丁文江.大塑性变形制备细晶材料的研究、开发与展望.材料导报. 2005,19(4):77-80
    21凌人蛟,王姗.镁合金变形细化晶粒的研究现状.航天制造技术. 2007,(5):28-31
    22 V. S. Vladimir, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe, R. Z. Valiev. Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling. Materials Science and Engineering. 2003, A343: 43-50
    23 J. Mao, S.B. Kang, J.O. Park. Grain refinement, thermal stability and tensile properties of 2024 aluminum alloy after equal-channel angular pressing. Journal of Materials Processing Technology. 2005, 159: 314–320
    24 N. A. Smimova, V. I. Levit, V. I. Pilyugin, et al. Fiz Met Metalloved, 1986, 62: 566
    25杜予晅,张新明.强变形制备超细晶金属材料的方法.材料导报. 2006,20:241-244
    26 R. Z.Valiev, R. K. Islamgaliev, I. V. Alexandrov. Bulk nanostruetured materials from severe Plastic deformation. Progress Mater. Sei., 2000, 45(2):103-189
    27 R. Wadsaek, R. Pippan, B. Sehedler. Structural refinement of chromium by severe plastic deformation. Fusion Eng. Design. 2003,66-68: 265-269
    28 R. K. Islamgaliev, N. F. Yunusova, I. N. Sabirov, et al. Deformation behavior of nanostruetured aluminum alloy Processed by severe plastic deformation. Mater Sci Eng A. 2001, 319-321: 877-881
    29 Y. Saito, N. Tsuji, H. Utsunomiya, et al. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding process. Scripta Mater. 1998, 39(9):1221-1227
    30王耀奇,侯红亮,李志强.纯铝累积叠轧焊高温力学性能与显微组织研究.塑性工程学报. 2006,13(5):45-47
    31 N. Tsuji, Y. Saito, Y. Ito, H. Utsunomiya, T. Sakai. Ultra- fine grained ferrous and aluminum alloys produced by accumulative roll-bonding. The minerals, metals & Materials Society ,2000, 207-218
    32侯红亮,王耀奇,赵祖德.累积叠轧连接技术及其研究进展.航空制造技术. 2007,( 8):30-34
    33魏伟,史庆南.室温ARB技术制备超细晶铜板的研究.有色金属. 2007,59(1):35-37
    34赵恩军,邢振环,管仁国,李江委,王付兴.叠轧深变形制备的超细晶Al-1%Mg合金组织与热稳定性.轻合金加工技术. 2007,35(11):49-53
    35 J. Richert, M. Richert, Krakow. A new method for unlimited deformation of metals and alloys. Aluminium. 1986, 8: 604-607
    36 M. Richert, H. P. Stuwe, M. J. Zehetbauer, etal. Work hardening and microstructure of AIMg5 after severe plastic deformation by cyclic extrusion and compression. Mater. Sci. Eng.. 2003, A355:180-185
    37 J. W. Yeh, S. Y. Yuan, C. H. Peng. Microstructure and tensile properties of an AI-12%Si alloy produced by reciprocating extrusion. Metall Mater Trans, 1999, 30A,2503-2513
    38 D. H. Shin, J. J. Park, Y. S. Kim, et al. Constrained Groove Pressing and its Application to Grain Refinement of Aluminum. Meterials Science and Engineering. 2002, A328: 98-103
    39 A. Krishnaiah, U. Chakkingal, P. Venugopal. Production of Ultrafine Grain Sizes in Aluminum Sheets by Severe Plastic Deformation Using the Technique of Groove Pressing. Scripta Materialia. 2005, 52: 1229-1233
    40 J. Y. Huang, Y. T. Zhu, D. J. Alexander, et al. Development of repetitive corrugation and Straightening. Meterials Science and Engineering. 2004, A371: 35-39
    41 K. P. Peng, L. F. Su, L. L. Shaw, et al. Grain Refinement and Crack Prevention in Constrained Groove Pressing of two-phase Cu-Zn Alloys. Scripta Materialia. 2007, 56: 987-990
    42 J. W. Lee, J. J. Park. Numerical and Experimental Investigations ofConstrained Groove Pressing and Rolling for Grain refinement. Journal of Materials Processing Technology. 2002, 130: 208-213
    43 R. Kaibyshev,F. Musin,D. R. Lesuer,et al. superplastic behavior of an Al-Mg alloy at elevated temperature. Meterials Science and Engineering. 2003, A342: 169-177
    44 Y. B. Lee, D. H. Shin, K. T. Park, et al. Effect of Annealing Temperature on Microstructure and Mechanical Properties of a 5083 Al Alloy Deformed at Cryogenic Temperature. Scripta Materialia. 2004, 51:355-359
    45 I. C. Hsiao, J. C. Huang. Development of Low Temperature Superplasticity in Commercial 5083 Al-Mg Alloys. Scripta Meterialia, 1998, 40 (6): 697-703
    46 R. Verma, A. K. Ghosh, S. Kim, et al. Grain Refinement and Superplasticity in 5083 Al. Materials Science Engineering, 1995, A191: 143-150
    47吴诗惇.金属超塑性变形理论.国防出版社. 1997,80-154
    48 T. H. Alden. The Origin of Superplasticity In the Sn-5%Bi Alloy. Acta Metall. 1967, 15: 469-479
    49林兆荣.金属超塑成形原理及应用.航空工业出版社. 1990
    50 M. F. Ashby, R. A. Verrall. Diffusion-Accommodated Flow and Superplasticity. Acta Metallurgica, 1973, 21: 149-163
    51赵俊,黎文献,肖于德等.铝合金超塑变形研究进展.材料导报. 2004,18(3):27-31
    52 K. Higashi, T. G. Nieh, J. Wadsworth. Effect of Temperature on the Mechanical Properties of Mechanically-alloyed Materials at High Strain Rates. Acta Metallurgic Materialia, 1995, 43 (9): 3275-3282
    53 T. G. Nieh, J. Wadsworth. High-strain-rate superplasticity in aluminum matrix composites. Materials Science and Engineering. 1991, A147: 129-142
    54东键司[日].实用铝合金的超塑性(上).顾景诚译.轻金属. 1991,6:60-63
    55 D. Y. Maeng, J. H. Lee, S. I. Hong, et al. Mierostrueture and mechanical properties of rapidly solidified AI-7wt%Mg-X (X=Cr, Zr or Mn) alloys. Materials Science Engineering. 2001,A 311:128-134
    56 V. Pancholi, B. P. Kashyap. Effect of layered microstructure on superplasticforming property of AA8090 Al–Li alloy. Journal of Materials Processing Technology. 2007,186: 214–220
    57 R. Kaibyshev, E. Avtokratova, A. Apollonov, R. Davies. High strain rate superplasticity in an Al-Mg-Sc-Zr alloy subjected to simple thermomechanical processing. Scripta Materialia. 2006, 54: 2119–2124
    58 Z. Y. Ma, R. S. Mishra. Development of ultrafine-grained microstructure and low temperature (0.48 Tm) superplasticity in friction stir processed Al–Mg–Zr. Scripta Materialia. 2005, 53: 75-80
    59刘玉梅,高玉芹.稀土量不同的Al-Zn-Mg合金超塑性变形中的第二相状态.吉林大学自然科学学报,1996,11(4):68-70
    60李献民,崔建忠等. 01420合金的超塑性行为.材料研究学报. 2000,4(3):318-321
    61 T. G. Nieh, L. M. Hsiung, J. Wadsworth. Superplastic behavior of a powder metallurgy TiAl alloy with a metastable microstructure. Intermetallics. 1999,7: 163-170
    62 R. S. Mishra, T. R. Bieler. A. K. Mukherjee. Superplasticity in power metallurgy aluminum alloys and composite. Acta metall, mater. 1995, 43(3): 877-891
    63丘惠中,吴志红.铝合金超塑成形技术的发展及其在航空航天领域的应用.宇航材料工艺. 1994,(6):38-43
    64 J. C. Huang, T. H. Chuang. Progress on superplasticity and superplastic forming in Taiwan during 1987-1997. Materials Chemistry and Physics. 1999,57: 195-206
    65颜银标,赵金伟,魏斌,胡颖翰,智建中,张虎成. 7A04铝合金复杂零件超塑成形研究.轻合金加工技术. 2003,31(9):47-49
    66赖小明,李忠平. 7475合金复杂薄壁件的超塑成形技术.航天工艺. 2001,(6):37-40
    67陈明和,谢优华,芮玉龙,左敦稳,王珉. Al-6Mg-0.2Sc合金高应变速率超塑成形性能.中国有色金属学报. 2005,15(11):1665-1669
    68杨永顺,陈拂晓,徐必鸿,辛选荣,朱峰. LC4铝合金尾翼超塑成形的研究.中国机械工程. 1995, 6(4):64-65
    69张凌云.改善超塑性气压胀形零件壁厚分布的工艺方法.金属成形工艺. 2002,20(4):40-42
    70周义,曾志鹏,金泉林.工业铝合金汽车覆盖件的超塑成形研究.塑性工程学报. 2004,11(5):64-66
    71侯德政. L4纯铝零件的超塑性气压成形.锻压机械. 2001,(1):18-19
    72王敏,杨振恒. LF3防锈铝合金板超塑气压成形的研究.锻压技术. 1996,(2):32-35
    73郭明恩,刘瑞.铝抛物面天线超塑胀形工艺与模具.轻合全加工技术. 1995,23(2):24-26
    74吴铁民.铝超塑典型件机械特性及其在航空结构上的应用.飞机设计. 1997,(3):1-13
    75罗子键.金属塑性加工理论与工艺.西北工业大学出版社. 1994
    76肖景容,姜奎华.冲压工艺学.机械工业出版社. 2002:115-120
    77时张杰.铝合金超塑性差温拉深研究.南京航空航天大学硕士学位论文. 2007
    78徐雪峰,童国权.基于有限元仿真的5083铝合金支架超塑性差温拉深.塑性工程学报. 2009,16(3):64-68
    79吴德忠,张凯峰.差温拉深/超塑性胀形复合工艺研究.哈尔滨工业大学学报. 2000,32(5):114-115
    80方洪渊,冯吉才.材料连接过程中的界面行为.哈尔滨工业大学出版社. 2005:133-160
    81黄岩,马龙翔.铝合金的超塑成形和扩散焊接(SPF/DB).材料科学进展. 1988,2(4):11-17
    82熊江涛,张赋升,李京龙,王忠平,陈新红.铝合金LD10固-液相小变形精密扩散焊研究.机械科学与技术.2006,25(1):107-111
    83娜日松,高士友,廖波.铝合金LY11超塑成形/扩散连接中的表面改性.佳木斯大学学报(自然科学版). 1999,17(3):280-283
    84王学刚,严黔,李辛庚. 5A02铝合金的瞬时液相扩散连接技术研究.轻合金加工技术. 2005,33(7):41-43
    85曲文卿,王奇娟,张彦华.铝基复合材料与铝合金的TLP扩散连接.焊接学报. 2002,23(6):67-70
    86李红,韩静涛.不锈钢一铝蜂窝夹芯板的液相扩散连接.北京科技大学学报. 2006,28(2):138-143
    87姜澜,魏绪钓,姚广春等.铝合金搅拌摩擦焊研究现状及应用.材料导报. 2003,17(6):70-72
    88赵衍华,林三宝,申家杰,吴林. 2014铝合金搅拌摩擦焊接头的微观组织及力学性能.航空材料学报. 2006,26(1):67-70
    89周曙君,邢丽,柯黎明,杨学勤,李成刚. 2219铝合金搅拌摩擦焊焊接接头的疲劳性能.失效分析与预防. 2007,2(3):20-24
    90邱寿昆,贺地求,周古昕. 2519铝合金搅拌摩擦焊焊缝组织与性能.铝加工. 2006,(2):5-8
    91季亚娟,栾国红,严铿.铝合金搅拌摩擦焊接头的组织和性能. 2005,34(4):15-17
    92刘会杰,冯吉才,陈迎春,藤井英俊等. 5 mm厚铝合金双面搅拌摩擦焊接.焊接学报. 2004,25(5):9-12
    93王快社,沈洋,王训宏,徐可为. LF2铝合金搅拌摩擦连接研究.西安建筑科技大学学报(自然科学版). 2005,37(3):416-419
    94胡煌辉,栾国红,柴鹏. 6063铝合金搅拌摩擦焊接头性能及组织分析.机车车辆工艺. 2006,(4):4-6
    95 I. Charit, R. S. Mishra. Low temperature superplasticity in a friction-stir-processed ultrafine grained Al–Zn–Mg–Sc alloy. Acta Materialia. 2005, (53): 4211-4223
    96 Z. Y. Ma, R. S. Mishra. Cavitation in superplastic 7075Al alloys prepared via friction stir processing. Acta Materialia. 2003, (51): 3551–3569
    97刘红伟,周琦,朱军,宋建民.7A52铝合金厚板搅拌摩擦焊接头性能研究.兵器材料科学与工程. 2006,29(3):57-60
    98魏少锋,肖于德,丁荣辉,黎文献. A A8009合金与2618合金搅拌摩擦焊接头组织性能.焊接技术. 2007,36(4): 19-21
    99肖荣诗,陈恺,左铁钏.高强铝合金激光焊接新进展.应用激光. 2002,22(2):206-208
    100周万盛,姚君山.铝及铝合金的焊接.机械工业出版社. 2006,272-309
    101胡敏英,吴志生,赵菲,殷瑞峰.铝合金激光焊接的工艺特点及发展现状.热加工工艺. 2007,36(15):88-91
    102 T. Sibillano, A. Ancona, V. Berardi, E. Schingaro, G. Basile, P. M. Lugara. A study of the shielding gas influence on the laser beam welding of AA5083 aluminium alloys by in-process spectroscopic investigation. Optics and Lasers in Engineering. 2006, 44: 1039–1051
    103 Reinhold Braun. Nd: YAG laser butt welding of AA6013 using silicon andmagnesium containing filler powders. Materials Science and Engineering A. 2006, 426: 250–262
    104 I. R. Whitaker, D.G. McCartney. A The microstructure of CO2 laser welds in an A1-Fe-V-Si alloy. Materials Science and Engineering. 1995, A196: 155 163
    105 T. Sibillano, A. Ancona, V. Berardi, P. M. Lugara. Real-time monitoring of laser welding by correlation analysis: The case of AA5083. Optics and Lasers in Engineering. 2007, 45: 1005–1009
    106 Yaowu Shi, Fei Zhong, Xiaoyan Li, Shuili Gong, Li Chen. Effect of laser beam welding on tear toughness of a 1420 aluminum alloy thin sheet. Materials Science and Engineering. 2007, A465: 153–159
    107孙福娟,刘洪军,张丹峰. LY12CZ铝合金激光焊接工艺.中国激光. 2006,33(2):273-277
    108许国良,程兆谷,夏金安,李现勤,蒋金波,张晓燕. CO2激光焊接铝合金工艺的研究.中国激光. 2000,27(2):183-186
    109 A. Ancona, P. M. Lugara, D. Sorgente, L. Tricarico. Mechanical characterization of CO2 laser beam butt welds of AA5083. Journal of Materials Processing Technology. 2007, 191: 381–384
    110 E. Cical, G. Duffet, H. Andrzejewski, D. Grevey, S. Ignat. Hot cracking in Al–Mg–Si alloy laser welding– operating parameters and their effects. Materials Science and Engineering. 2005, A395: 1–9
    111宋东风,胡绳荪,马力.铝合金激光焊接技术的发展现状.电焊机. 2004,34(9):1-3
    112陈彦宾,苗玉刚,李俐群,吴林.铝合金激光-钨极氩弧双面焊的焊接特性.中国激光. 2007,34(12):1716-1720
    113 G.. Casalino. Statistical analysis of MIG-laser CO2 hybrid welding of Al–Mg alloy. Journal of Materials Processing Technology. 2007, 191: 106–110
    114张旭东,陈武柱,双元卿,王康健. CO2激光-MIG同轴复合焊方法及铝合金焊接的研究.应用激光. 2005,25(1):1-3
    115李志强,郭和平.超塑成形/扩散连接技术在航空航天工业中的应用.航空制造技术. 2004,(11):50-52
    116王长文,张凯锋,王仲仁. Al-Li2091合金超塑成形/扩散连接工艺研究.塑性工程学报. 1998,5(4):1-6
    117张杰,牛济泰,张宝友,周友龙. LF6铝合金的超塑性和扩散连接的组合工艺.焊接学报. 1996,17(4):35-37
    118李志强.钛合金超塑成形/扩散连接四层夹层结构.航空科学技术. 1995,6:23-25
    119刘秀华,汤永琴,孙伯勤.铝合金超微细晶粒技术的进展.轻合金加工技术. 2000,28(7):8-11
    120管仁国,温景林.超细晶Al-Mg合金材料的研究现状与对策.轻合金加工技术. 2005,33(2):1-9
    121王祝堂,田荣章.铝合金及其加工手册(第二版).中南大学出版社. 2000
    122 R. Verma, A. K. Ghosh, S. Kim, et al. Grain Refinement and Superplasticity in 5083 Al [J]. Materials Science Engineering. 1995, A191: 143-150
    123 T. H. Courtney. Mechanical Behavior of Materials [M]. Beijing: China Machine Press, 2004: 293-347
    124 H. L. Xing, C. W. Wang, K. F. Zhang, Z. R. Wang. Recent development in the mechanics of superplasticity and its applications. Journal of Materials Processing Technology. 2004, 151: 196–202
    125刘静安,谢水生.铝合金材料的应用与技术开发.冶金工业出版社. 2004
    126 K. Higashi, T. G. Nieh, M. Mabuchi, J. Wadsworth. Effect of liquid phases on the tensile elongation of superplastic aluminum alloys and composites. Scripta Metallurgica and Materialia, 1995, 32(7): 1079-1084.
    127吴诗惇.金属超塑性变形理论.国防工业出版社, 1997:102-157
    128 K. C. Chen, M. J. Tan. Cavity growth and filament formation of superplastically deformed Al 7475 alloy. Materials Science Engineering 2001, A298, 235-244
    129崔约贤,王长利.金属断口分析.哈尔滨工业大学出版社. 1998
    130 Y. Takayama, T. Tozawa, H. Kato. Superplasticity and thickness of liquid phase in the vicinity of solidus temperature in a 7475 aluminum alloy. Acta Materialia. 1999, 47(4), 1263-1270
    131 H. G. Jeong, K. Hiraga, M. Mabuchi, K. Higashi. Effects of addition of magnesium on interface structure and high-strain-rate superplasticity in Si3N4-reinforced Al-alloy composites. Acta Materialia. 1998, 46(17), 6009-6020
    132 H. Iwasaki, M. Mabuchi, K. Higashi. Plastic cavity growth during superplastic flow in AA 7475 Al alloy containing a small amount of liquid. Acta materialia. 2001, 49, 2269-2275
    133 K. Higashi, T. G. Nieh, J. Wadsworth. Effect of temperature on the mechanical properties of mechanically-alloyed materials at high strain rates. Acta Metallurgica et Materia. 1995, 43(9), 3275-3282
    134 M. Mabuchi, K. Higashi. Activation energy for superplastic flow in aluminum matrix composites exhibiting high-strain-rate superplasticity. Scripta Materialia. 1996, 34(12), 1893-1897
    135 K. Jardet, C. Favotto, R. Bellissent, P. Satre. Local order in liquid phases of Al–Ga–Zn alloys. Thermochimica Acta. 2003, 402: 135–143
    136 Y. Plevachuk, V. Sklyarchuk, O. Alekhin, L. Bulavin. Viscosity of liquid phase In-Se-Ti alloys in the miscibility gap region. Journal of Alloys Compound. 2008, 452, 174-179
    137王敏,马彩霞. LY12铝合金在超塑性变形中的空洞行为.塑性工程学报. 2007,14(1):27-30
    138 W. Beere, M. V. Speight. Creep cavitation by vacancy diffusion in plastically deforming solid. Metal Science. 1978, 12(4):172~176
    139 F. A. McClintock. A criterion for ductile fracture by the growth of holes. Journal of Applied Mechanics.1968, 35(6): 363~371
    140 J. W. Hancock. Creep cavitation without a vacacy flux. Metal Science. 1976, 10(9): 319~325
    141刘润广,蒋浩民,姜勇等. 2214铝合金超塑性变形机制. 1996,
    32(12):1244-1247
    142吕宏军. GH4169高温合金板材超细晶处理及超塑成形研究.哈尔滨工业大学博士学位论文.2003
    143张国泽,叶旭明.超塑性合金的差温拉深与立体胀形.热加工工艺. 2004,(6):43-46
    144尹德良.细晶AZ31镁合金变形行为的研究.哈尔滨工业大学博士学位论文. 2005
    145 R. Indranil, C. Manish, J. L. Enrique, et al. Thermal Stability in Bulk Cryomilled Ultrafine-Grained 5083Al Alloy. Metallurgical and Materials Transactions A. 2006, 37A: 721-730
    146冀志超.拉深件成形时的起皱原因及措施.金属成形工艺. 2002,20:48-49
    147范立坤,王荣,张平等. AZ31镁合金板料等温拉深.热加工工艺. 2008,37(3):71-73
    148梅自元,周新建,肖乾.圆筒形件冲压成形中拉深筋的成形性分析.热加工工艺. 2007,36(1):50-52
    149陈彦宾.现代激光焊接技术.科学出版社. 2005
    150洪蕾,陈武柱. CO2激光焊接铝合金的实验研究.应用激光. 2003,23(1):16-18
    151傅文元.铝及铝合金的焊接.造船技术. 1992,(4):33-40
    152王希靖.铝合金5030的激光焊接.甘肃工业大学学报. 1994,20(3):7-12
    153王家金.激光加工技术.中国计量出版社. 1992,340-343
    154 Y. J. Quan, Z. H. Chen, Z. H. Yu, X. S. Gong, M. Li, Characteristics of laser welded wrought Mg-Al-Mn alloy, Materials Characterization. 2008, 59: 1799-1804
    155 Qi Junfeng, Zhang Dongyun, Xiao Rongshi, Chen Kai and Zuo Tiechuan. Joint performance of CO2 laser beam welding 5083-H321 aluminum alloy. China Welding, 2007,16 (2):40-45
    156郑修麟.材料的力学性能.西北工业大学出版. 2000:46-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700