经冠脉自体骨髓单个核细胞移植修复梗死心肌的实验观察
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:心肌梗死(MI)是心肌的急性坏死,病情凶险,病死率高。传统观念认为,心肌细胞坏死后不能再生,成纤维细胞增生修复,形成瘢痕组织,并逐步发生心室重构,发展为顽固性心力衰竭。目前的药物治疗、介入治疗和冠脉旁路移植术能够恢复一定的血供,但均不能充分补充有效工作的心肌,无法改善MI的远期预后。近年来,细胞移植治疗心肌梗死为重建受损心肌带来新的希望。虽然相关基础实验及临床研究比较广泛,但研究结果均不一致,存在争议。细胞移植后的分化问题、细胞移植能否长期持久地改善心脏功能、改善缺血心功能的机制以及细胞移植是否引起心律失常这些问题均不明确。
     目的:1.结扎犬冠状动脉左前降支建立心肌梗死模型。2.观察骨髓单个核细胞悬液(BM-MNCs)的制备及经冠脉注射的可行性。3.观察经冠脉移植BM-MNCs对梗死后心功能的影响。4.观察荧光染料CM-Dil标记BM-MNCs的效率及荧光在体的时间。5.观察标记的BM-MNCs能否在梗死心肌内存活并且分化成为心肌样细胞。6.观察BM-MNCs移植对血管形成的影响及对血管内皮生长因子(VEGF)、碱性成纤维细胞生长因子(bFGF)、基质金属蛋白酶-9(MMP-9) mRNA表达的影响。7.观察BM-MNCs移植后心肌的有效不应期有无改变。8.观察BM-MNCs移植有无导致恶性心律失常发生的潜在风险。9.观察BM-MNCs移植后能否纠正缝隙连接排列紊乱而减少心律失常的发生。
     方法:1.杂种犬16只,随机分为移植组(n=10)和对照组(n=6)两组,结扎冠状动脉前降支建立犬心肌梗死模型。2.移植组的实验犬全麻后无菌条件下于髂前/后上嵴抽取骨髓25-30ml, ficoll淋巴细胞分离液密度梯度离心法分离得BM-MNCs, CM-Dil标记待移植的BM-MNCs,用倒置相差荧光显微镜观察细胞数目和标记效率,调整细胞浓度为3×107-1×108/ml。3.结扎冠脉后2h恢复血流,于冠脉结扎点远端插入套管针,向套管内注射制备好的BM-MNCs,对照组移植等量生理盐水,最后完全结扎LAD。术后予抗生素3天,饲养观察6周。4.所有实验犬于梗死后2h(细胞移植前)、移植后6周行血流动力学检查,测量左室收缩压、左室舒张末压;以热稀释法测量心排血量。5.所有实验犬于梗死后2h(细胞移植前)、移植后6周进行超声心动图检查,测量左室舒张末内径、左室收缩末内径、左室舒张末容积、左室收缩末容积、射血分数、短轴缩短率和每搏量。6.移植后6周,氯化钾注射法处死犬,取梗死区、梗死周边区心肌,观察CM-Dil示踪的细胞的分布,免疫荧光染色检测CM-DiI示踪的细胞是否表达心肌细胞特异性蛋白-心肌β-肌球蛋白重链(cardiac myosin heavy chain,β-MHC)、连接蛋白43(Connexin 43, Cx43)。vWF免疫组化染色,计算毛细血管密度。RT-PCR检测VEGF、bFGF和MMP-9的mRNA表达。7.梗死后6周测定心脏不同部位的有效不应期,免疫组化染色检测Connexin 43的表达。
     结果:1.BM-MNCs经CM-DiI标记后,细胞膜着色,紫外光激发呈现红色。标记效率为95%-100%。2.细胞移植治疗6周后,在BM-MNCs移植治疗的犬心肌组织均可见到CM-DiI标记的红色细胞;细胞移植组的心肌MHC、Connexin43免疫荧光染色均为阳性,呈现绿色荧光;与CM-Dil标记的红色荧光供体细胞进行叠加,可见βMHC、Connexin 43染色双阳性的细胞,呈现黄色荧光。3.对照组心肌梗死后6周和心肌梗死后2h比较,各项血流动力学指标均无显著改善(P>0.05);而在移植组,细胞移植后6周LVEDP较梗死后2h(细胞移植前)明显降低,差异有显著性(5.1±3.07 vs 9.2±4.34,P<0.05);与梗死后6周的对照组比较,LVEDP亦明显降低,差异有显著性(5.1±3.07 vs 11.67±3.42,P<0.01)。移植组细胞移植后6周CO较心肌梗死后2h(细胞移植前)明显升高,差异有显著性(3.1±0.89 vs 2.14±0.49,P<0.01);与梗死后6周的对照组比较,CO亦明显升高,差异有显著性(3.1±0.89 vs 2.39±0.43,P<0.05)。余指标无显著变化(P>0.05)。4.对照组心肌梗死后6周和心肌梗死后2h比较,各项超声心动指标均无显著改善(P>0.05);移植组细胞移植后6周,ESD、ESV、EDV、LVEF、FS、SV均较移植前有明显改善,与梗死后6周的对照组相比,亦有明显改善(P<0.05),其中移植组EF较对照组提高7%左右,余指标无显著变化(P>0.05)。5.BM-MNCs移植后6周,移植组有明显的血管新生,梗死边缘区新生血管数量,,移植组明显高于对照组(19.32±2.47 vs 9.47±1.28,P<0.01),而两组的梗死中心区的新生血管数量无显著性差异(3.44±0.51 vs 3.07±0.3,P>0.05)。6.移植组促血管生长因子VEGF188的mRNA表达水平显著高于对照组(1.16±0.38 vs 0.45±0.15,P<0.01);移植组VEGF164的mRNA表达水平显著高于对照组(1.17±0.3 vs 0.42±0.17,P<0.01);移植组促血管生长因子bFGF的mRNA表达水平显著高于对照组(0.90±0.21 vs 0.63±0.28,P<0.05);移植组基质金属蛋白酶MMP-9的mRNA表达水平显著低于对照组(0.59±0.18 vs 0.93±0.3,P<0.05)。7.移植组与对照组相比,梗死6周测得梗死区、梗死周边区和正常区有效不应期无明显差别(85±9.26 vs90±7.07ms,P>0.05)(87.78±9.37 vs 90±7.07,P>0.05)(85±11.95 vs 88.33±9.4,P>0.05);移植组和对照组正常心肌区之间Connexin43表达无显著性差异(3543.7±446.00 vs 3431.67±421.54,P>0.05);移植组梗死边缘区Cx43较对照组明显增多(2312.50±412 vs 1356.17±332.73,P<0.05),但仍明显少于正常区相应部位(2312.50±412 vs 3543.7±446.00,P<0.05);在梗死中心区移植组和对照组比较差异无显著性(327.00±98.67 vs 311.33±78.74,P>0.05)。
     结论:1.荧光染料CM-DiI标记BM-MNCs细胞效率高,荧光在活体细胞内存在的时间大于6周,可成功示踪移植的BM-MNCs。2. CM-DiI示踪的细胞能在梗死心肌内存活并且分化成为具有心肌细胞特异性标记-β-MHC的心肌样细胞,并同时表达Connexin 43。3.经冠脉内注射移植自体BM-MNCs可以改善急性心肌梗死后心脏收缩和舒张功能。4.经冠脉BM-MNCs移植可以促进血管生成,提高促血管生长因子VEGF188、VEGF164和bFGF的mRNA表达水平,减少基质金属蛋白酶MMP-9的mRNA表达水平。5.心肌梗死急性期行BM-MNCs移植后,移植细胞对于心梗恢复期心律失常的发生具有一定程度的改善作用,同时未观察到明显的致心律失常源性。
Background:Myocardial infarction (MI) causes acute necrosis of cardiomyocytes. It is very dangerous and has a high rate of death. It is considered traditionally that cardiomyocytes can't regenerate after they are dead. Then Fibroblasts proliferate and repair the myocardium and the myocardium changes into scar tissue. It leads to left ventricular (LV) remodeling, which ultimately results in heart failure. Current therapeutic modalities including pharmacological treatment, percutaneous coronary intervention (PCI) and coronary artery bypass graft (CABG) mainly aim at improving the blood supply, but can't provide viable cardiomyocytes and can't well improve long-term prognosis of MI. Cell transplantation offers a new promise of rebuilding the damaged myocardium. Both experimental studies and clinical trials widely are carried out however the results of them are not consistent. It is not clear if the transplanted cells can differentiate into cardiomyocytes and if this therapy can improve one's heart function in the long term. The mechanism underlying this therapeutic effect is not fully understood and whether the cell transplantation causes arrhythmia is unclear.
     Objective:1.Left anterior descending coronary (LAD) artery ligation was used to produce AMI in hybrid canine.2.To explore the method of bone marrow mononuclear cell isolation and the feasibility of BM-MNCs being intracoronarily infused into infarction related artery.3. To investigate the effects of intracoronary autologous bone marrow mononuclear cells transplantation on cardiac function of AMI.4. To evaluate the labeling efficiency of CM-DiI and the lasting time of the fluorescence.5. To observe the survival and the differentiation of grafted bone marrow cells(BM-MNCs) in host myocardium.6. To abserve the effects of BM-MNCs transplantation on angiogenesis and the mRNA expression of cytokines such as VEGF、bFGF and MMP-9.7. To observe whether BM-MNCs transplantation can change the ERP of myocardium.8. To observe whether BM-MNCs transplantation can potentially cause arrhythmia.9. To observe whether the BM-MNCs transplantation can alter the spatial distribution of Connexins, which is important for arrhythmia genesis after MI.
     Methods:1.Sixteen hybrid canines were randomly divided into transplantation group(n=10) and control group(n=6). Left anterior descending coronary (LAD) artery ligation was used to produce AMI model.2. About 25-30ml of bone marrow was aspirated from the dogs' iliac bone of the transplantation group. Bone marrow mononuclear cell (BM-MNCs) suspension was prepared by density centrifugation using ficoll. The BM-MNCs labeled with CM-DiI which are observed in fluorescence microscope are prepared with the concentration of 3 X 107- 1 X 108/ml.3. BM-MNCs suspension was intracoronarily infused into infarction related artery 2 hour after AMI with needle and saline of the same volume was injected for the control dogs.4.We detected LVSP、LVEDP and used Swan-Ganz catheter to detect CO 2 hour after the ligation and 6 weeks after the BM-MNCs transplantation.5. To evaluate the heart function, we used echocardiography to detect LVESD、LVEDD、LVESV、LVEDV、FS、EF、SV 2 hour after the ligation and 6weeks after the BM-MNCs transplantation. 6. Canines are killed and histological examination was performed. The expression of Myosin heavy chain and Connexin 43 was assessed by immunofluorescence staining. Capillary density were assessed by vWF immunohistochemical staining; The mRNA levels of VEGF, bFGF and MMP-9 within infarct area were determined by RT-PCR 7. days after MI.7 The ERP of different areas in myocardium was assessed 6 weeks after cell transplantation, The expression of Connexin 43 was assessed by immunohistochemical staining.
     Results:1. The implanted cells showed clear membrane red fluorescence.2.6 weeks after the BM-MNCs transplantation, CM-Dil labeled BM-MNCs were mainly located within periinfarct and infarct area. Some BM-MNCs were positive for MHC and Cx43. Combined "CM-Dil and FITC" in images were observed.3. There isn't a significant difference of Hemodynamic indexs between 2 hours after the ligation and 6 weeks after the BM-MNCs transplantation in the control group (P>0.05). Compared to 2 hours after the ligation, LVEDP decreased significantly (5.1±3.07 vs 9.2±4.34, P<0.05) 6 weeks after MI in transplantation group. Compared to control group, LVEDP decreased significantly (5.1±3.07 vs 11.67±3.42, P<0.01) 6 weeks after MI. Compared to 2 hour after the ligation, CO increased significantly (3.1±0.89 vs 2.14±0.49, P<0.01) 6 weeks after MI in transplantation group. Compared to control group, CO increased significantly (3.1±0.89 vs 2.39±0.43, P<0.05)6 weeks after MI in transplantation group.4. There is not a significant difference of all the echocardiography index in control group between 2 hours after the ligation and 6 weeks after MI(P>0.05). Compared to 2 hours after the ligation, ESD、ESV、EDV、LVEF、FS、SV all improved in transplantation group 6 weeks after MI(P<0.05) and the same results exsists compared to the control group 6 weeks after MI(P<0.05). Compared control group, LVEF increased 7% in transplantation group. 5.Transplantation group increased the density of capillary significantly within periinfarct area 6 weeks after MI (19.32±2.47 vs 9.47±1.28, P<0.01), meanwhile within infarct area the density had no significant difference(3.44±0.51 vs 3.07±0.3, P>0.05).6. Transplantation group increase the mRNA level of VEGF 188、VEGF164 and bFGF significantly(1.16±0.38 vs 0.45±0.15, P<0.01) (1.17±0.3 vs 0.42±0.17, P<0.01) (0.90±0.21 vs 0.63±0.28, P<0.05) and decrease mRNA level of MMP-9 significantly (0.59±0.18 vs 0.93±0.3, P<0.05) 7. Compared control group, the ERP of infarct area、periinfarct area and normal area in transplantation group has no significant difference (85±9.26 vs 90±7.07ms, P>0.05) (87.78±9.37 vs 90±7.07, P>0.05) (85±11.95 vs 88.33±9.4, P>0.05). The expression of Cx43 in normal area is similar between transplantation group and control group(3543.7±446.00 vs 3431. 67±421.54, P>0.05). The expression of Cx43 in transplantation group in periinfarct area was significantly higer than that in control group((2312.50±412 vs 1356.17±332.73, P<0.05), but was still much less than in normal area(2312.50±412 vs 3543.7±446.00, P<0.05). The expression of Cx43 in infarct area is similar between transplantation group and control group (327.00±98.67 vs 311.33±78.74, P>0.05).
     Conclusions:1. The labeling efficiency of CM-DiI was more than 95% and the lasting time of the fluorescence in the host was more than 6 weeks. CM-DiI could be a good tracer for the BM-MNCs.2. The implanted BM-MNCs could survive in the infarcted lesion and differentiate into cells expressing MHC.and Cx43.3. The left ventricular systolic and diastolic function could be improved by BM-MNCs implantation.4. The BM-MNCs transplantation can increase capillary density, especially in the border zone of the myocardial infarction. BM-MNCs transplantation can increase the mRNA level of VEGF188、VEGF164 and bFGF, at the same time, it decreases the mRNA level of MMP-9.5. The spatial distribution of Cx43 gap junction was ameliorated by BM-MNCs transplantation, and it may ameliorate the arrhythmic susceptibility.
引文
[1]Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infracted myocardium[J].Nature.2001.410:701-705.
    [2]MacLellan WR and Schneider MD. Genetic dissection of cardiac growth control pathways[J]. Annu Rev Physiol.2000.62:289-319.
    [3]Leri A, Kajstura J and Anversa P. Cardiac stem cells and mechanisms of myocardialregeneration[J]. Physiol Rev.2005.85:1373-1416.
    [4]Blau HM, Brazelton TB, Weimann JM. The evolving concept of a stem cell: entity or function? [J] Cell.2001,105:829-841.
    [5]Orlic D, Hill JM, Arai AE. Stem cells for myocardial regeneration[J]. Circ Res.2002,91:1092-1102.
    [6]Soonpaa MH, Koh Gy, Klug MG, et al. Fomation of nascent intercalted disks between grafted fetal cardiomyocytes and host myocardium[J]. Science,1994 264(5155):98-101.
    [7], Xiao YF. Cardiac application of embryonic stem cells. Sheng Li Xue Bao[J],2003, 55:493-504.
    [8]Min JY, Yang Y, Converso KL, et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats[J].J Appl Physiol,2002,92: 288-296.
    [9]Roell W, Lu ZJ, Bloch W, et al. Cellular cardiomyoplasty improves survival after myocardial injury[J]. Circulation,2002,105:2435-2441.
    [10]Zimmet JM and Hare JM. Emerging role for bone marrow derived mesenchymal stem cells in myocardial regenerative therapy. Basic Res Cardiol,2005,100: 471-481.
    [11]Enasche P,Hagege AA,Vllquin JT, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction[J]. J Am Coll Cardiol 2003;41(7):1078-1083.
    [12]Dib N, McCarthy P, Campbell A, et al. Feasibility and safety of autologous myoblast transplantation in patients with ischemic cardiomyopathy[J].Cell Transplant 2005; 14(1):11-19.
    [13]Urbanek K, Rota M, Cascapera S, et al. Cardiac stem cell possesses the growth factor-receptor system that following activation the regenerative the infarcted myocardium improving ventricular function and long term survival [J]. Circ Res, 2005,97:663-673.
    [14]Beltrami AP, Urbanek K, Kajsturs J, et al. Evidence that human cardiac myocytes divide aftermyocardial infarction[J]. N Engl J Med,2001,344:1750-1757.
    [15]Quaini F, Urbanek K, Beltrami AP,et al. Chimerism of the transplanted heart[J]. N Engl J Med,2002,346:5-15.
    [16]Dawn B, Stein AB, UrbaneK, et al. Cardiac stem cells delivered intra-vascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function[J]. Proc Natl Acad Sci USA,2005,102:3766-3771.
    [17]Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction[J]. Proc Natl Acad Sci U S A,2005,102:11474-11479.
    [18]Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction[J]. Nat Med,2006,12: 459-465.
    [19]Kawamoto A, Tkebuchava T, Yamaguchi J et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia[J]. Circulation,2003,107:461-468.
    [20]Barbash IM, Chouraqui P, Baron J et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium:feasibility,cell migration, and body distribution[J]. Circulation,2003; 108:863-868.
    [21]Orlic D. Adult bone marrow stem cells regenerate myocardium in ischemic heart disease[J]. Ann N Y Acad Sci,2003; 996:152-157.
    [22]Szilvassy SJ, Bass MJ, Van Zant G, et al. Organ-selective homing defines engraftment kinetics of murine hematopoietic stem cell and is compromised by ex vivo expansion[J]. Blood,1999,93:1557-1566.
    [23]Blau HM, Brazelton TB, Weimann JM.The evolving concept of a stem cell: entity or function? [J] Cell.2001,105:829-841.
    [24]Filip S, English D, Mokry J. Issues in stem cell plasticity[J]. J Cell Mol Med. 2004,8:572-577.
    [25]Honig MG, Hume RI. Fluorescent carbo yanine dyes allow living neurons of identified origin to be studied in long-term cultures[J] J Cell Biol,1986,103:171-187.
    [26]孔国英,刘忠浩,帅建中等.DiI在已固定脑组织中的示踪研究[J].湖南医科大学学报,1994,19:70-72.
    [27]Heil M, Ziegelhoeffer T, Mees B. et al. A different outlook on the role of bone marrow stem cells in vascular growth:bone marrow delivers software not hardware[J]. Circ Res,2004,94:573-574.
    [28]Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms[J]. Circ Res, 2004,94:678-685.
    [29]Jaeschke H,Smith CW. Mechanisms of neutrophil-induced parenchymal cell injury[J]. J Leukoc Biol,1997,6(7):647-653.
    [30]Takayuki S, Kuang JQ, Bittira B,et al.Xenotransplant cardiac chimera:Immune tolerance of adult stem cells[J].Ann Thorac Surg,2002,74:19-24.
    [31]Gordon DW,Nolta JA,Jin YS,et al.Migration of mesenchymal stem cells to heart allografts during chronic rejection[J].Transplantation,2003,75:679-685.
    [32]Liechty KW,Mackenzie TC,Shaaban AF,et al.Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep[J].Nat Med,2000,11:1282-1286.
    [33]Li Ren-Ke,mickle DAG,Weisel RD,et al.Optimal time for cardiomyocyte transplantation to maximize myocardial function after left ventricular injury[J].Ann Thorac Surg,2001,72:1957-1963.
    [34]Scorsin M, Hagege A, Marotte F, et al. Does transplantation of cardiomyocytes improve function of infracted myocardium? [J] Circulation.1997;(suppl 11): 11188-193.
    [35]Tomita S, Li RK, Richard D. W, et al. Autologous transplantation of bone marrow cells improves damaged heart function[J]. Circulation.1999;100(suppl 11):11247-256.
    [36]Tambara K, Sakakibara Y, Sakaguchi G, et al. Transplanted skeletal myoblasts can fully replace theinfarcted myocardium when they survive in the host in large numbers[J].Circulation,2003,108(3):259-263.
    [37]Hofmann M,Wollet KC,Meyer GP,et al. Monitoring of bone marrow cells homing into the infracted human myocardium [J].Circulation,2005,111(17): 2198-2202.
    [38]Kocher AA, Schuster MD, Szabolcs MJ, el al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioplasty prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function[J].Nat Med,2001, 7(4):430-436.
    [39]Hierlihy AM, Seale P, Lobe CG, et al.The Post-natal heart contains a myocardial stem cell population[J]. FEBS Lett,2002,530:239-243.
    [40]Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration[J]. Cell,2003,114(6):763-776.
    [41]Piao H, Youn TJ, Kwon JS, et al. Effects of bone marrow derived mesenchymal stem cells transplantation in acutely infracting myocardium[J].Eur J Heart Fail.2005,7(5):730-8.
    [42]Fortier LA, Nixon AJ, Williams J. et al.Isolation and chondrocytic diferentitation of equine bone marrow-derived mesenchymal stem cells[J]. Am J Vet Res,1998,59 (9):1182-1187.
    [43]Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function[J].Circulation,1999,100(suppl):247-256.
    [44]Meirelles L, Da S, Nardi NB. Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization[J]. Br J Haematol,2003,123: 702-711.
    [45]Wang JS, Shum-Tim D, GaliPeau J, et al.Marow stromal Cells for cellular cardiomyoplasty:feasibility and potential clinical advantages[J].J Thorac Cardiovasc,2000,120(5):999-1006.
    [46]Strauer BE, Brehm M, Zeus T, et al. Intracoronary human autologous stem cell transplantation for myocardial regeneration following myocardial infarction[J]. Dtsch Med Wochenschr,2001,126:932-938.
    [47]Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans[J]. Circulation,2002,106:1913-1918.
    [48]Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologons bone-marrow cell transfer after myocardial infarction:the BOOST randomized controlled dinical trial[J]. Lancet,2004,364:141-148.
    [49]Meyer GP, Wollert KC, Lotz J, et al. Intracoronary bone marrow cell transfer after myocardial infarction:eighteen months'follw-up data from the randomized, controlled BOOST. (Bone marrow transfer to enhance ST-elevation infarct regeneration trial) [J]. Circulation,2006,113:1287-1294.
    [50]Assmus B, Schechinger V, Teupe c, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in acute [J].Myocardial Infarction (TOPCARE-AMI). Circulation,2002,106:3009-3017.
    [51]Britten MB, Abolmaali ND, Assmus B, et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction(TOPCARE-AMI):mechanistic insights from serial contrast enhanced magnetic resonance imaging[J]. Circulation,2003,108:2212-2218.
    [52]Schachinger V, Assmus B, Britten MB, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction:final one-year results of the TOPCARE-AMI Trial [J]. J Am Coil Cardiol.2004.44: 1690-1699
    [53]Schachinger V, Erbs S, Elsasser A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med[J].2006.355: 1210-1221.
    [54]Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med[J].2006.355: 1199-1209.
    [55]Ssmus B, Honold J, Schachinger V, et al. Transcoronary transplantation of progenitor cells after myocardial infarction [J]. N Engl J Med.2006.355:1222-1232.
    [56]Meyer GP, Wollert KC, Lotz J, et al. Intracoronary bone marrow cell transfer after myocardial infarction:eighteen months' follow-up data from the randomized, controlled BOOST (Bone marrow transfer to enhance ST-elevation infarct regeneration) trial [J]. Circulation.2006.113:1287-1294.
    [57]Bruno S, Bussolati B, Scacciatella P, et al. Combined administration of G-CSF and GM-CSF stimulates monocyte-derived pro-angiogenic cells in patients with acute myocardial infarction [J]. Cytokine.2006.34:56-65.
    [58]Fegler G. Measurement of cardiac output in anaesthetized animals by a thermo-dilution method [J]. Quarterly Journal of Experimental Physiology, 1954,39:153-64.
    [59]Nico HJ, et al. Coronary Thermodilution to Assess Flow Reserve:Validation in HulnallS. Circulation,2002,105(5):2482-2486
    [60]McKay RG, Pfefer MA, Pastemak RC, et al. Left ventricular remodeling following myocardial infarction [J]. Circulation,1986,74:693.
    [61]Ervenbaeher JA, Weiss JL, Eaton LW, et al. Late effects of acute infarct dilatation on heart size:a two dimensional echocardiographic study [J]. Am J Cardiol,1982,49:1120.
    [62]Anversa P,Olivetti G, Capasso JM. Cellular basis of ventricular remodeling after myocardial infarction [J]. Am J Cardiol,1991; 68:7D-16D
    [63]Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation.1990; 81: 1161-1172.
    [64]Reinecke H,Poppa V,Murry CE,et al.Skeletal muscle stem cells do not transdifferentiate into carmyocytes after cardiac grafting [J].1 Mol Cell Cardiol 2002;34:241-9.
    [65]Leobon B,Garcin I,Menasche P,et al.Myoblasts transplanted into rat infracted myocardium are function isolated from their host [J].Proc Natl Acad Sci USA 2003;100:7808-11.
    [66]Yau TM,Tomits S,Weisel RD,et al.Beneficial effect of autologous cell transplantation on infracted heart function:comparison between bone marrow stromal cells and heart cell [J].Ann Thorac Surg 2003;75:169-77.
    [67]Shi Q,Rafii S,Wu MH,et al.Evidence for circulating bone marrow-derived endothelial cells [J].Blood,1998;92:362-7.
    [68]KalKa C,Masuda H,Takabashi T,et al.Transplantion of ex vivo expanded endothelial progenitor cells for therapertic neovaschlarization [J].Proc Natl Acad Sci USA 200;97:3422-7.
    [69]Krarse DS,Theise ND,Collector MI,et al.Multi-organ,multi-lineage engraftment by a single bone marrow-derived stem cell [J].Cell,2001;105:369-77.
    [70]Makino S,Fukuda k,Miyoshi S,et al.Cardiomyocytes can be generated from marrow stromal cells in vitro [J].J Clin Invest 1999;103:697-705.
    [71]Asahara T,Murohara T,Sullivan A,et al.Isolation of putative ptrogenetor putative progenitor endothelial cells for angiogenesis [J].Science,1997:275:964-7.
    [72]Badorff C,Brandes RP,Popp R,et al.Transdifferentiation of blood-derived numan adult endothelial progenitor cells into functionally active cardiomyocytes [J]. Circulation,2003; 107:1024-32.
    [73]Bachinsky WB, Barnathan ES, Liu H. et al. Sustained inhibition of intimal thickening, In vitro and vivo effects of polymeric betacyclodextfin sulfate [J]. J Clin Invest,1995,96:2583-2592.
    [74]Beltrami AP, UrbanekK, Kajstura J et al. Evidence that human cardiac myocytes divide after myocardial infarction [J]. N Engl J Med.2001;344:1750-1757.
    [75]Reiss K, Cheng W, Pierzchalski P et al.Insulin-like growth factor-1 receptor and its ligand regulate the reentry of adult ventricular myocytes into the cell cycle [J]. Exp Cell Res.1997; 235:198-209.
    [76]Monteiro P, AntunesA, Goncalves LM, Providencia LA. Long-term clinical impact of coronary-collateral vessels after acute infarction [J]. Rev Port Cardiol.2003;22:1051-1061.
    [77]Perez-Castellano N, Garcia EJ, Abeytua M et al. Influence of collateralcirculation on in-hospital death from anterior acute myocardial infarction [J]. J Am Coll Cardiol,1998; 31:512-518.
    [78]Kodama K, KusuokaH, Sakai A et al. Collateral channels that develop after an acute myocardial infarction prevent subsequent left ventricular dilation [J]. J Am Coll Cardiol,1996:27:1133-1139.
    [79]Pfefer MA, Braunwald E. Ventricular remodeling after myocardial infarction: experimental observations and clinical implications[J]. Circulation,1990,81: 1161-1172.
    [80]Fucher S, Baffour R, Zhou YE, et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with Chronic experimental myocardial ischemia [J]. J Am Col Cardiol.2001;37:1726-32;
    [81]Strauer BE, Brehm M, Zeus T, et al. Repair of infracted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans.Circulation.2002;106:1913-8.
    [82]Kamihata H, Matsubara H, Nishiue T, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhance collateral perfusion and Regional function via side supply of angioblast, angiogenic ligands and cytokines[J].Circulation.2001;104:1046-52.
    [83]Hamano K, Nishida M, Hirata K, et al. Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease. Clinical trial and preliminary results [J]. Jpn Cir J.2001;65:845-7.
    [84]Strauer BE, Brehm M, Zeus T, et al. Myocardial regeneration after intracoronary Transplantation of human autologous bone stem cells following acute myocardial infarction [J]. Dtsch Med Wschr.2001;126:932-8.
    [85]Dobert N, Britten M, Assmus B, et al. Transplantation of progenitor cells after Reperfused acute myocardial infarction:evaluation of perfusion and myocardial viability with FDG-PET and thallium SPECT [J]. Eur J Nucl Med Mol Imaging. 2004;3:[Epub ahead of print].
    [86]Hung FT, Yok LK, John KFC et al. Angiogenesis in ischemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation [J]. Lancet.2003; 361:47-49;
    [87]Tepper OM, Galiano RD, Kalka C, et al. Endothelial progenitor cells:the promise of vascular stem cells for plastic surgery. Plast Reconstr Surg,2003, 111:846.
    [88]Bdolah Y, Sukhatme VP, Kammanehi SA. Angiogenie imbalance in the pathophysiology of preeclampsia:newer insights [J]. Semin Nephrol,2004,24: 548-556.
    [89]Asahara T, Murohara T, Sullivan A, et al. Isolation of putative endothelial progenitor cells for angiogenesis [J]. Science,1997;275:964
    [90]Hill J M, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk [J]. N Engl J Med,2003;348:593
    [91]Shi Q, Rafii S, Wu MH, et al. Evidence for circulation bone marrow-derived endothelial cells [J]. Blood,1998,92:362-367.
    [92]Sagrario O, Michael I, Stephen H et al. Neuronald effects and delayed wound healing in the mice 1AC king fibroblast growth factor-2 [J]. Proc Natlcdad Sci USA,1998; 95:5672.
    [93]Vale PR, Isner JM, Rosenfield K. Therapeutic angiogenesis in critical limb and myocardial ischemia [J]. J Interv Cardiol,2001:14:511-528.
    [94]MuroharaT, Ikeda H, Duan J et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization [J]. J Clin Invest 2000;105: 1527-1536.
    [95]梁雪梅,马学毅.骨髓来源的血管内皮祖细胞移植治疗实验性大鼠股动脉闭塞症观察[J].中国康复理论与实践,2004;10(6):348.
    [96]Sun Y and Weber KT. Infarct scar:a dynamic tissue [J]. Cardiovasc Res.2000. 46:250-256.
    [97]黎志宏,张湘生.体外培养骨髓单个核细胞分泌促血管生长因子的实验研究[J].中国医师杂志,2006;8(4):456-457.
    [98]Takahashi M, Li TS, Suzuki R, et al. Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury [J]. Am J Physiol Heart Circ Physiol. 2006.291:H886-893.
    [99]Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts [J]. Nat Med.2003.9:1195-1201.
    [100]Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med [J].2005.11:367-368.
    [101]Ohnishi S, Yasuda T, Kitamura S, et al. Effect of hypoxia on gene expression of bone marrow-derived mesenchymal stem cells and mononuclear cells [J]. Stem Cells.2007;25:1166-1177.
    [102]Pohorak Z. Cohen T. Sivan R, et al. VEGF145, a secreted VEGF isoform that binds to extra cellular matrix [J]. J Biol Chem,1997,172:7151-7158
    [103]Thomas KA. Vascular endothelial growth factor a potent and selective angiogenic agent [J]. J Eiol Chem,1996,271:603-609
    [104]Bittl JA. Advances in coronary angioplasty [J]. N Engl J Med,1996,335: 1290-1293
    [105]Detillieux KA, Sheikh F, Kardami E, et al. Biological activities of fibroblast growth factor-2 in the adult myocardium [J]. Cardiovasc Res.2003.57:8-19.
    [106]Matsumoto R, Omura T, Yoshiyama M, et al. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction [J]. Arterioscler Thromb Vasc Biol.2005.25:1168-1173.
    [107]Song H, Kwon K, Lim S, et al. Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions [J]. Mol Cells. 2005.19:402-407.
    [108]Wang Y, Haider HK, Ahmad N, et al. Combining pharmacological mobilization with intramyocardial delivery of bone marrow cells over-expressing VEGF is more effective for cardiac repair [J]. J Mol Cell Cardiol.2006.40:736-745.
    [109]Muhlhauser J, Merrill MJ, Pili R, et al. VEGF 165 expressed by a replication-deficient recombinant adenovirus vector induces angiogenesis in vivo [J]. Circ Res.1995.77:1077-1086.
    [110]Vale PR, Losordo DW, Milliken CE, et al. Left ventricular electromechanical mapping to assess efficacy of phVEGF(165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia [J]. Circulation.2000.102:965-974.
    [111]Ducharme A, Frantz S, Aikawa M, et al. Targeted deletion of matrix metalloproteinase-9 attenuated left ventricular enlargement and collagen accumulation after experimental myocardial infarction [J]. J Clin Invest, 2000,106:55-62
    [112]Mukherjee R, Brinsa TA, Dowdy KB, et al. Myocardial infarct expansion and matrix metalloproteinase inhibition [J]. Circulation,2003,107:618-625.
    [113]King MK, Coker ML, Goldberg A.et al. Selective matrix metalloproteinase inhibition with developing heart failure:effects on left ventricular function and structure [J]. Circ Res,2003,92:177-185.
    [114]Deb A, Wang S, Skelding KA, et al. Bone marrow-derived cardiomyocytes are present in adult human heart[J]. Circulation,2003,107:1247
    [115]Losordo DW, Vale PR, Hendel RC, et al. Phase 1/2 placebo controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia[J]. Circulation,2002,105:2012-2018.
    [116]Wang JS, Shum-Tim D, Chedrawy E, et al. The coronary delivery of marrow stromal cells for myocardial regeneration:pathophysiologic and therapeutic implications[J]. J Thorac Caldiovasc Surg,2001,122:699-705.
    [117]Kocher AA, Schuster MD, Szaboles MJ. et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function[J]. Nat Med,2001, 7:430-436.
    [118]Menasche P, Hagege AA, Scorsin M, et al. Myoblast transplantation for heart failure [J].Lancet.2001; 357:279-280.
    [119]Menasche P, Hagege AA, Vilquin JT, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction [J]. J Am Coll Cardiol 2003;41:1078-83.
    [120]Siamak Davani, Aliette Marandin, Nursen Mersin, et al. Mesenchymal Progenitor Cells Differentiate into an Endothelial Phenotype, Enhance Vascular Density, and improve Heart Function in a Rat Cellular Cardiomyoplasty Model [J]. Circulation 2003;108;253-258
    [121]Guo-sheng LIN, Jing-jun LU, Xue-jun JIANG, et al. Autologous transplantation of bone marrow mononuclear cells improved heart function after myocardial infarction[J]. Acta Pharmacol Sin 2004 Jul; 25 (7):876-886
    [123]Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans [J]. Circulation,2002,106:1913-1918
    [124]Assmus B, Schachinger V, eupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction[J].Circulation.2002.106: 3009-3017.
    [125]Patel PM, Plomikov A, Kanagaramam P, et al. Altering ventricular activation remodels gap junction distribution in canine heart[J]. J Cardiovasc Electrophysiol,2001,12:570-577.
    [126]Peters NS, Coromilas J, Severs NJ, et al. Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia[J].Circulation,1997,95(4):988-996.
    [127]Yao JA, Hussain W, Patel P, et al. Remodeling of gap junctional channel function in epicardial border zone of healing canine infarcts[J]. Circ Res,2003, 92(4):437-443.
    [128]Stevenson WG, Weiss IN, Wiener I, et al. Resetting of ventricular tachycardia: implications of localizing the area of slow conduction [J]. J Am Coll Cardiol, 1988; 11:522-529.
    [129]Stevenson WG, Friedman PL, Sager PT, et al. Exploring post infarction reentrant ventricular tachycardia with entrainment mapping [J]. J Am Coll Cardiol,1997; 29:1180-1189.
    [130]Yao JA,Hussain W,Patel P, et al. Remodeling of gap junctional channel function in epicardial border zone of healing canine infarcts.Circ Res.2003;92(4):437-43
    [131]Peters NS, Coromilas J, Severs NJ, et al. Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation [J].1997;95(4):988-96.
    [132]Menasche P, Hagege AA, Vilquin JT, et al J Am Coll Cardiol,2003;4(7) 1:1 078-1083.
    [133]Bel A, Messas E, Agbulut O,et al. Circulation,2003;108(Suppl):Ⅱ247-Ⅱ 252.
    [134]Zhang YM, Hartzell C, Narlow M, et al. Stem cell-derived cardiomyocytes demonstrate arrhythmic potential[J].Circulation,2002;106(10):1294-9.
    [135]Kanter HL, Saffitz JE, Beyer EC. Cardiac myocytes express multiple gap junction proteins [J]. Circ Res,1992,70:438-444
    [136]Green CR, Severs NJ. Distribution and role of gap junctions in normal myocardium and human ischemic heart disease [J]. Histochemistry,1993,99: 105.
    [137]Peters NS, Green CR, Poole-Wilson PA, et al. Reduced content of connexin 43 gap junctions in ventricular myocardium from hypertrophied and ischemic human hearts [J]. Circulation,1993,88:864-865.
    [138]Matsuahita T,Oyamada M, Fujimoto K, et al. Remodeling of cell-cell and cell-extracellular matrix interations at the border zone of rat myocardial infarcts [J]. Circ Res,1999,85:1046-1055.
    [139]Ikeda T,Yashiam M, UOhida T, et al. Attachment of meandering reentrant wave fronts to anatomic obstacles in the atrium.[J]. Circ Res,1997:81:753-764.
    [140]Daleau P, Boudriau S, Michaud M, et al.Preconditioning in the absence or presence of sustained ischemia modulates myocardial Cx43 protein levels and gap junction distribution[J]. Can J Physiol Pharmacol,2001,79(5):371-378.
    [141]Kuhlmann MT, Kirchhof P, Kloeke R, et al. G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis[J]. J Exp Mod,2006,203(1):87-97.
    [142]Ando M, Katare RG, Kakinuma Y, et al. Eferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein [J]. Circulation,2005,112(2):164-170.
    [143]Smith Jn, Green CR, Peters NS, et al.Altered patterns of gap junction distribution in ischemic heart disease:An immunohistochemical study of human myocardium using laser scanning confocal microscopy [J]. Am J Pathol, 1991,139 (4):801-821.
    [144]霍明章,于德洁,赫维,等.犬陈旧性心肌梗死时连接蛋白43的分布[J].中国医学科学院学报,2001,23(3):255-258.
    [1]Hescheler J, Fleischman. Indispensable tools:embryonic stem cells yield insights into the human heart [J]. J Clin invest,2001,108:363-364.
    [2]Min JY, Yang Y, Converso KL. et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats [J]. J Appl Physiol,2002, 92:288-296.
    [3]Condorelli GG, Borello Ude, Angelis L, et al.Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle:syndromes [J]. Minerva Cardioangiol,2003,51(5):547-560.
    [4]Waksman R, Fournadjiev J, Baffour R, et al.Transepicardial autologous bone marrow-derived mononuclear cell therapy in a porcine model of chronically infracted myocardium [J]. Cardiovasc Radiat Med,2004,5(3):125-131.
    [5]Wang JS, Shum-Tim D,Galipeau J,et al.Marrow stromal cells for cellular cardiomyoplasty:feasibility and potential clinical advantages [J]. J Thorac Cardiovasc Surg,2002,120:999-1005.
    [6]Martin BJ,Shake JG,Brawn J,et al.Mesenchymal stem cell implantation improves regional function in infracted swine myocardium [J]. Circulation,2000,102(Suppl Ⅱ):Ⅱ 682
    [7]Pak HN,Qayyum M,Kim DT,et al.Mesenchymal stem cell injection induces cardiac nerve sprouting and increased tenascin expression in a swine model of myocardial infarction[J].J Cardiovasc Electrophysiol,2003,14:841-845.
    [8]Kocher AA,Schuster MD,Szabulcs MJ, et al.Neovascularization of ischemic myocardium by human bone marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function[J]. Nat Med,2001, 7:430-436.
    [9]Marell D, Desroslers C,Alfy M, et al.Cell transplantation for myocardial repair: an experimental approach[J]. Cell Transplant,1992,1:383-390
    [10]Murry CE, Wlseman RW, Schwartz SM, et al. Skeletal myoblast transplantation for repair of myocardial necrosis[J]. J Clin Invest,1996,98:2512-2523.
    [11]Siminiak T, Kurpisz M. Myocardial replacement therapy[J]. Circulation,2003, 108:1167-1171.
    [12]Taylor DA. Cellular cardiomyoplasty with autologous skeletal myoblasts for ischemic heart disease[J]. Curt Control Trials Cardiovasc Med,2001,2:208- 210
    [13]Nadal-Ginard B, Anversa P, Kajstura J, et al. Cardiac stem cells and myocardial regeneration[J]. Novartis Found Symp,2005,265:142-154.
    [14]Anversa P, Kajstura J, Leri A, et al. Life and death of cardiac stem cells a paradiam shift in cardiac biology[J]. Circulation,2006,113(11):1451-1463.
    [15]Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration [J]. Cell,2003, 114(6):763-776.
    [16]Laflamme MA, Myerson D, Saffitz JE, et al. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts[J]. Circ Res,2002,90(6):634-640.
    [17]Linke A, Mtiller P, Nurzyska D, et al. Differentiation of pluripotent embryonic stem cells into cardiomyocytes[J]. Proc Natl Acad Sci US A,2005,102(5): 8966-8971.
    [18]Fukuda K.Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering[J]. Artif Organs,2001,25 (3):187-193
    [19]Hakuno D, Fukuda K, Makino S, et al. Bone marrow-derived regenerated cardiomyocytes(CMG cells)express functional adrenergic and muscarinic receptors[J].Circulation,2002,105(3):380-386
    [20]Wang JS, Shum-Tim D, Chedrawy E, et al.The coronary delivery of Marrow stromal cells for myocardial regeneration:Pathophysiologic and therapeutic implications[J]. J Thorac Cardiovasc Surg,2001,122(4):699.
    [21]Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium[J].Nature.2001.410:701-705.
    [22]Wang JS, Shum-Tim D, Galipeau J, et al. Marrow stromal cells for cellular cardiomyoplasty:feasibility and potential clinical advantages [J]. Thorac Cardiovasc Surg,2000,120(5):999-1006
    [23]Davani S, Marandin A, Mersin N, et al.Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model [J]. Circulation, 2003,108(Suppl 1):253-258
    [24]Tremain N, Korkko J, Ibberson D, et al. Micro SAGE analysis of 2353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs multiple cell lineages[J]. Stem Cell, 2001,19(5):408-418
    [25]Toma C, Pittenger MF, Cabiil KS, et al. Human mesenechymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart[J]. Circulation,2002,105(1):93-98
    [26]Pak HN, Qayyum M, Kim DT, et al. Mesenchymal stem cell injection induces cardiac nerve sprouting and increased tenascin expression in a swine model of myocardial infarction[J]. Cardiovasc Electrphysiol,2003,14(8): 841-848.
    [27]Leobon B, Garcin I, Menasche P. et al. Myoblasts transplanted into rat infracted myocardium are functionally isolated from their host[J]. Proc Natl Acad Sci USA,2003;100:7808-11.
    [28]Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium[J].Nature,2004,428: 668-673.
    [29]Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts[J]. Nature.2004, 428:664-668
    [30]Avarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al.Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes[J]. Nature, 2003,425(6961):968-973.
    [31]Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion[J]. Nature,2002,416(6880):542-545.
    [32]Ying QL, Nichols J, Evans EP, et al.Changing potency by spontaneous fusion[J]. Nature,2002,416(6880):545-548.
    [33]Laflamme MA and Murry CE. Regenerating the heart[J]. Nat Biotechnol.2005: 845-856.
    [34]Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction.Experimental observations and clinical implications[J] Circulation. 1990,81:1161-1172
    [35]Kamihata H, Matsubara H, Nishiue T, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines[J]. Circulation,2001,104(9):1046-1052
    [36]Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cadiomyocyte apoptosis, reduces remodeling and improves cardiac function[J]. Nat Med, 2001,7(4):430-436
    [37]Fuchs S, Baffounr R, Zhou YF, et al.Transendecardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia[J]. J Am Coll Cardiol,2001,37(6): 1726-1732
    [38]Werner GS, Lang K, Kuehnert H, et al. Intracoronary verapamil for reversal of no-reflow during coronary angioplasty for acutemyocardial infarction[J]. Catheter Cardiovasc Interv,2002,57:444-451
    [39]Tomiata S,Lir k,Weisel RD,et al.Autologous transplantation of bone marrow cells improve damaged heart function[J].Circulation 1999:100(19) supply:247-256.
    [40]Rehman J, Li J, Orschell CM, et al. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors[J]. Circulation.2003.107:1164-1169.
    [41]Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004.94:678-685.
    [42]Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts [J]. Nat Med.2003.9:1195-1201.
    [43]Zhang YM, Hartzell C, Narlow M, et al.Stem cell-derived cardiomyocytes demonstrate arrhythmic potential [J]. Circ Res,2002,106:1294-1299.
    [44]Menasche P, Hagege AA, Vilquin JT, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction[J]. J Am coll Cardiol,2003,41:1078-1083
    [45]Makkar RR. Lill M. Chen PS. Stem cell therapy for myocardial repair:is it arrhythmogenic? [J].J Am Coll Cardiol,2003,42:2070-2072.
    [46]Smits PC, van Geuns RJ, Poldermans D.et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as primary treatment of ischemic heart failure:clinical experience with six-month follow-up[J]. J Am Coll Cardiol, 2003,42:2063-2069.
    [47]Vulliet PR, Greeley M,Halloran SM.Lancet,2004:363(9411):783-784
    [48]Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors[J]. Cancer Res,2003,63(18):5821-5828.
    [49]Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrow-derived cells[J]. Science,2004,306(5701):1568-1571.
    [50]Fann JR, Alfano CM, Burington BE, et al. Clinical presentation of delirium in patients undergoing hematopoietic stem cell transplantation[J]. Cancer,2005, 103(4):810-820.
    [51]Uckan D, Cetin M, Yigitkanli I, et al. Life-threatening neurological complications after bone marrow transplantation in children[J]. Bone Marrow Transplant,2005,35(1):71-76
    [52]Tauchmanova L, Selleri C, De Rosa G, et al.Endocrine disorders during the first year after autologous stem cell transplant[J]. Am J Med,2005,118(6):664-670
    [53]Vanderheyden M, Mansour S, Bartunek J. Accelerated atherosclerosis following intracoronary haematopoietic stem cell administration[J].Heart,2005,91(4):448
    [54]Menasche P, Hagege AA, Scorsin M, et al.Myoblast transplantation for heart failure[J]. Lancet,2001,357:279-280.
    [55]Gavira JJ, Herreros J, Perez A, et al.Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction:1-year follow-up[J]. J Thorac Cardiovasc Surg,2006,131 (4):799-804.
    [56]Siminiak T, Kalawski R, Fiszer D, et al.Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury:phase I clinical study with 12 months follow-up[J]. Am Heart J,2004,148(3):531-537
    [57]Smits PC, van Geuns RJ, Poldermans D, et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure:clinical experience with six-month follow-up[J]. J Am Coll Cardiol,2003,42:2063-2069.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700