委陵菜黄酮衍生物抗糖尿病活性及其作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     建立人HepG2肝细胞及由小鼠3T3-L1前脂肪细胞株诱导而成的成熟脂肪细胞的胰岛素抵抗模型,筛选委陵菜黄酮衍生物抗糖尿病活性,并对其作用机制进行进一步探讨。
     方法:
     1、胰岛素抵抗模型的建立:
     HepG2人肝细胞和3T3-L1脂肪细胞的胰岛素抵抗模型是研究胰岛素抵抗中最为常用的两类细胞模型,采用文献方法对胰岛素抵抗模型进行复制,以葡萄糖氧化酶—过氧化物酶法(GOD-POD法)检测细胞中葡萄糖的消耗量确立两种细胞胰岛素抵抗模型的建立。
     2、抗糖尿病活性筛选:
     委陵菜黄酮为中药委陵菜抗糖尿病活性的主要成分,为进一步提高其生物活性,发现先导化合物,课题组前期设计合成了一系列委陵菜黄酮衍生物,本文分别以胰岛素抵抗的HepG2细胞和3T3-L1脂肪细胞为筛选模型,通过葡萄糖氧化酶法检测各衍生物对模型细胞葡萄糖消耗量的影响,评价各衍生物的抗糖尿病活性。
     3、抗糖尿病作用机制研究:
     以筛选出的抗糖尿病活性最强委陵菜黄酮衍生物5f分别与HepG2细胞和3T3-L1成熟脂肪细胞共孵育,Western blot方法检测Comp.5f对5’-AMP激活蛋白激酶(AMPK),乙酰辅酶A羧化酶(Acetyl-CoA carboxylase, ACC),以及蛋白激酶B (protein kinase B, Akt)磷酸化水平的影响。检测Comp.5f对HepG2细胞中葡萄糖转运子2(GLUT2)及3T3-L1成熟脂肪细胞中葡萄糖转运子4(GLUT4)的影响。
     结果:
     1、本实验采用高浓度胰岛素(5×10-7mol/l)诱导HepG2细胞产生胰岛素抵抗,以1μmol/l的地塞米松作用4天诱导3T3-L1成熟脂肪细胞产生胰岛素抵抗,应用葡萄糖氧化酶—过氧化物酶法(GOD-POD法)检测各组细胞上清液中葡萄糖含量,与正常细胞相比,具有显著差异(p<0.05),确定胰岛素抵抗细胞模型的成功建立。
     2、抗糖尿病活性筛选结果显示除化合物7b外,各衍生物均具有提高胰岛素抵抗模型细胞葡萄糖消耗量的作用,化合物5b、5e、5g和10b的活性较强,与市售药物二甲双胍相当,化合物5f、7d、10C抗糖尿病活性最强,优于市售药物二甲双胍。
     委陵菜黄酮衍生物5a、5g、5f、5e、7d作用于胰岛素抵抗的HepG2及3T3-L1成熟脂肪细胞模型,以委陵菜黄酮衍生物5f抗糖尿病活性最强,委陵菜黄酮衍生物5f可在一定程度上提高3T3-L1脂肪细胞的2-脱氧-[3H]-葡萄糖摄取量。
     3、委陵菜黄酮衍生物5f可上调HepG2肝细胞及3T3-L1成熟脂肪细胞内AMPK, ACC的磷酸化水平(p<0.05),而不影响Akt的磷酸化水平。以AMPK的特异性抑制剂Compound C与Comp.5f共同作用于HepG2细胞,结果显示Compound C能够显著降低5f刺激的AMPK、ACC磷酸化水平的上调,在3T3-L1脂肪细胞中,Compound C仅能部分抑制黄酮衍生物5f刺激的AMPK、ACC磷酸化水平的上调作用。Comp.5f对HepG2人肝细胞内的GLUT2水平有一定的下调作用。Comp.5f对3T3-L1脂肪细胞内的GLUT4蛋白表达量没有发生明显影响。
     结论:
     本文建立了HepG2人肝细胞及3T3-L1脂肪细胞的胰岛素抵抗模型,观察委陵菜黄酮衍生物对胰岛素抵抗的影响,结果表明黄酮类化合物均具有较强的抗糖尿病活性,活性最强的Comp.5f可显著上调HepG2细胞及3T3-L1成熟脂肪细胞内AMPK,ACC的磷酸化水平,以上结果表明,黄酮衍生物5f抗糖尿病作用的机制之一是激活AMPK信号传导通路,而不是作用于胰岛素通路。
Objective:
     To establish the insulin resistant HepG2and3T3-L1adipocyte cells model. Screening of tiliroside derivantives with anti-diabetes activities. Objective to investigate the mechanism.
     Methods:
     1. To set up insulin resistant cell model:
     Insulin resistant HepG2and3T3-L1adipocyte cells model are commonly used in the research on insulin resistance. Copy the insulin resistant cell model, whose formation was assessed by detecting the ability of uptaking glucose with GOD-POD assay
     2. Evaluation of the anti-diabetes activity of the derivatives:
     Tiliroside was the main anti-diabetic constituent isolated from Potentilla Chinese Ser. For the improvement of its bioactivity, we have synthesized a series of tiliroside-derivatives. All the derivatives were investgated for the glucose consumption of insulin resistance HepG2and3T3-L1adipocyte cells model to evaluate the anti-diabetes activities.
     3. Study on mechanism of anti-diabetes activity:
     To investigate the mechanism of Comp.5f, we detected the phosphorylation of5'-AMP-activated protein kinase (AMPK), Acetyl-CoA carboxylase (ACC), protein kinase B (Akt) by western blotting. We also detect the effect of glucose transporters2and glucose transporters4by western blotting.
     Results:
     1. The insulin resistant HepG2cell model was established successfully by high concentration of insulin (5×10-7mol/l) in vitro culture. The IR-3T3-L1adipocyte cell model was established successfully by dexamethasone (1μmol/1,4days). Detecting the ability of uptaking glucose with GOD-POD assay. There were significant differences (p<0.05) compared with the control group. The insulin resistant cell models were established successfully.
     2. All of the derivatives could improve the glucose consumption of the insulin resistance cell except7b. Compounds5b、5e、5g and10b revealed significant activities compared with that of market drug, Metformin. Compounds5f、7d、10c showed stronger activities than Metformin.
     Among tiliroside derivantives compounds5a、5g、5f、5e、7d, Compounds5f is the most active derivatives. Compounds5f strongly2-deoxidation-[3H]-glucose uptaking in3T3-L1adipocyte cell.
     Compounds5f strongly phosphorylated AMPK and its substrate, ACC in both HepG2and3T3-L1adipocyte cells (p<0.05). However, Akt phosphorylation was not affected in both cells. GLUT2can be down regulated by Compounds5f in HepG2cells. Compounds5f did not affect the expression of GLUT4and AMPKa in3T3-L1adipocyte cells.
     Conclusion:
     The insulin resistant HepG2and3T3-L1adipocyte cell models were established successfully. Tiliroside derivatives have relatively stronger anti-diabetes activities. Compounds5f strongly phosphorylated AMPK and its substrate, ACC in both HepG2and3T3-L1adipocyte cells (p<0.05). Its mechanism involving AMPK correlation signal pathways.
引文
[1]Wild S, Roglic G, Green A, et al. Global prevalence of diabetes:estimates for the year 2000 and projections for 2030 [J]. Diabetes Care,2004,27(5):1047-1053.
    [2]余升红.2型糖尿病的发病机制[J].中国优生与遗传杂志,2008,16(4):118-120.
    [3]Mojiminiyi OA, Abdella NA. Associations of resistin with inflammation and insulin resistance in patients with type 2 diabetes melltus[J]. Scand J Clin Lab Invest,2007,67(2):215-225.
    [4]Steven C, Elbein. The impact of genetic studies of type 2 diabetes on clinical practice[J]. Curret Diabetes Reports,2003,3(2):93-94.
    [5]刘智,周晓霞,苏佩清,等.黄芩茎叶总黄酮治疗2型糖尿病性高脂血症大鼠的实验研究[J].中药新药与临床药理,2009,2(1):5-7.
    [6]Exner M, Hermann M, Hofbauer R, et al. Genistein prevents the glucose autoxidation mediated atherognic modification of low density lipoprotein[J]. Free Radical Research,2001,34(1):101-102.
    [7]Germani E, Lesma E, Di Giulio AM, et al. Progressive and selective changes in neurotrophic factor expression and substance paxonal transpon induced by perinatal diabetes:protetive action of antioxidant treatment[J]. Journal of Neuroscience Research,1999,57(4):521-528.
    [8]程玉芳,陶静,马善峰,等.大豆异黄酮对糖尿病大鼠心肌钙调控蛋白基因表达的影响[J].蚌埠医学院学报,2010,35(6):548-551.
    [9]Estrada O, Hasegawa M, Gonzalez-Mujica F, et al. Evaluation of flavonoids from Bauhinia megalandra leaves as inhibitors of glucose-6-phosphatase system[J]. Phytother Res,2005,19(10):859-863.
    [10]薛培凤,乔梁,梁鸿,等.多裂委陵菜化学成分的研究[J].北京大学学报(医学版),2004,36(1):21-23.
    [11]刘普,段宏泉,潘勤,等.委陵菜三萜成分研究[J].中国中药杂志,2006,31(22):1875-1879.
    [12]赵川,乔卫,张彦文,等.委陵菜抗糖尿病有效部位及有效成分的研究[J].中国中药杂志,2008,33(6):680-682.
    [13]李成,杨长青,朱彩凤.中药治疗糖尿病的研究进展[J].时珍国医国药,2006,17(5):857-858.
    [14]雷磊,王兴,王萍.治疗糖尿病中药及其活性成分的研究[J].贵阳中医学院学报,2008,30(1):70-73.
    [15]Mu J, Brozinick JT Jr, Valladares O, et al. A role for AMP-activated protein kinase in contraction and hypoxia-regulated glucose transport in skeletal muscle [J]. Mol. Cell,2001,7(5):1085-1094.
    [16]Ryder JW, Chibalin AV, Zierath JR. Intracellular mechanisms underlying increases in glucose uptake in response to insulin or exercise in skeletal muscle [J]. Acta Physiol Scand,2001,171(3):249-257.
    [17]Bouzakri K, Koistinen HA, Zierath JR. Molecular mechanisms of skeletal muscle insulin resistance in type2 diabetes [J]. Curr Diabetes Rev,2005,1(2): 167-174.
    [18]张幸.胰岛素抵抗与2型糖尿病[J].中国医药研究,2005,3(1):45-48.
    [19]李长贵,宁光,陈家伦.胰岛素抵抗HepG2细胞模型的建立及鉴定[J].中国糖尿病杂志,1999,7(4):190-220.
    [20]Weidong Xie, Wei Wang, Hui Su, et al. Effect of ethanolic extracts of Ananas comosus L. leaves on insulin sensitivity in rats and HepG2 Comparative [J]. Biochemistry and Physiology, Part C,2006,143:429-435.
    [21]Qin N, Li CB, Jin MN, et al. Synthesis and biological activity of novel tiliroside derivants [J]. Eur J Med Chem,2011,46(10):5189-5195.
    [22]Gurnell M, Savage DB, Chatterjee VK, et al. The metabolic syndrome: Peroxisome proliferators-activated receptor gamma and its therapeutic modulation[J]. J Clin Endocrinol Metab,2003,811(6):2412-2421.
    [23]Han J, Jol, Chakarabarti R, et al. Demonstration of insulin-insensitive storage pool of glucose transporters in rat hepatocytes and HepG2 cells[J]. J cell physiol, 1992,152:56.
    [24]Ciaraldi TP, Goldberg M, Odom R, et al. In vitro effects of amylin on carbohydrate metabolism in liver cells[J]. Diabetes,1992,41(8):975-981.
    [25]Frittitta L, Sbraccia P, Costanzo BV, et al. High insulin levels do not influence PC-1 gene expression and protein content in human muscle tissue and hepatoma cells[J]. Diabetes Metab Res Rev,2000,16(1):26-32.
    [26]Kosaki A, Webster NJ. Effect of dexamethasone on the alternative splicing of the insulin receptor mRNA and insulin action in HepG2 hepatoma cells[J]. J Biol Chem,1993,268(29):21990-21996.
    [27]Barroso I, Gumell M, Crowley V E, et al. Dominant negative mutation in human PPAR gamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature.1999,402:880-882.
    [28]司维柯,李鹏,姚婕.苦参碱对HepG2细胞代谢水平和基因水平的影响[J].第三军医大学学报,2002,24(11):1346-1349.
    [29]陈家伦,李果,叶娟.高浓度胰岛素、葡萄糖对HepG2细胞蛋白激酶C活性的影响[J].中华内分泌代谢杂志,1999,15(5):294-297.
    [30]Aimin Xu, Lai Ching Wong, Yu Wang, et al. Chronic treatment with growth hormone stimulates adiponectin gene expression in 3T3-L1 adipocytes. FEBS Letters,2004,572(1-3):129-134.
    [31]Robert M., Patricia A. Bain, Bonita G Southorn. Comparative pharmacology: dexamethasone-induced catabolism and insulin resistance in L6 myoblasts are reversed by the removal of serum. Comparative Biochemistry and Physiology Part C:Comparative Pharmacology,1990,97(2):369-72.
    [32]杨红霞,巫冠中.新型磺酰脲类化合物G004对胰岛素抵抗HepG2细胞模型糖代谢的影响.中国现代医学杂志[J],2009,19(6):820-823.
    [33]Golay A, Ybarra J. Link between obesity and type 2 diabetes[J]. Clin Endocrinol Metab,2005,19:649-663.
    [34]吴勉云,王西明,陈培楠,等.花生四烯酸显著预防软脂酸诱导HepG2细胞胰岛素抵抗[J].中国现代医学杂志,2007,17(17):2054-2056.
    [35]Triplit t C, McGill JB, Porte DJ, et al. The changing landscape of type 2 diabetes: the role of incretin-based therapies in managed care outcomes[J]. J Manag Care Pharm,2007,13 (9 Suppl C):S2.
    [36]Williams JF, Olefsky JM. Defective insulin receptor function in down-regulated HepG2 cells[J]. Endocrinology,1990,127:1706-1717.
    [37]Yun Li, Pengcheng Wang, Yuan Zhuang, et al. Activation of AMPK by berberine promotes adiponectin multimerization in 3T3-L1 adipocytes. FEBS Letters,2011,585:1735-1740.
    [38]Akihiro Kudoh, Hiroaki Satoh, Hiroyuki Hirai, et al. Pioglitazone upregulates adiponectin receptor 2 in 3T3-L1 adipocytes. Life Sciences,2011, 88:1155-1162.
    [39]Rao YK, Madamanchi G, Fang SH, et al. Antioxidant and cytotoxic activities of naturally occurring phenolic and related compounds:A comparative study[J]. Food and Chemical Toxicology,2007,68(45):1770-1776.
    [40]Dongzhe S, Emi A, Denise M. Galipeau, et al. Chronic estrogen treatment modifies insulin-induced insulin resistance and hypertension in ovariectomized rats. Journal of Hypertension,2005,18(9):1189-1194.
    [41]Eddie L, Bryce A,Katherine A, et al. [alpha]-Lipoic acid prevents the development of glucose-induced insulin resistance in 3T3-L1 adipocytes and accelerates the decline in immunoreactive insulin during cell incubation. Metabolism,2001,50(9):1063-69.
    [42]Guoli Chen, Ping Liu, Debbie C Thurmond, et al. Glucosamine-induced insulin resistance is coupled to o-linked glycosylation of Muncl8c. FEBS Letters,2005, 534 (1-3):54-60.
    [43]Yuchuan Huang, Wenliang Chang, Sufen Huang, et al. Pachymic acid stimulates glucose uptake through ehhanced GLUT4 expression and translation[J]. European Journal of Pharmacology,2010,684:39-49.
    [44]郭竹君.委陵菜黄酮药代动力学初步研究[D].天津:天津医科大学,2009.
    [45]Biscetti F, Straface G, Pitocco D, et al. Peroxisome proliferator-activated receptors and angiogenesis [J]. Nutr Metab Cardiovasc Dis,2009,19(11): 751-759.
    [46]Somwar R, Niu W, Kim DY, et al. Differential effects of phosphatidylinositol-3 kinase inhibition on intracellular signals regulating GLUT4 translocation and glucose transport [J]. J Biol Chem,2001,276(49):46079-46087.
    [47]Wojtaszewski JF, Nielsen P, Hansen BF, et al. Isoform-specific and exercise intensity-dependent activation of 5'-AMP-activated protein kinase in human skeletal muscle [J]. J Physiol,2000,528(1):221-226.
    [48]Latruffe N, Vamecq J. Peroxisome proliferators and peroxisome proliferator activated receptors (PPARs) as regulators of lipid metabolism [J]. Biochimie, 1997,79(2-3):81-94.
    [49]Olson AL, Pessin JE. Structure, function and regulation of the mammalian facilitative glucose transporter gene family. Ann Rev Nutr,1996,16:235-256.
    [50]Kanzaki M, Watson RT, Khan AH, et al. Insulin stimulates actin comet tails on intracellular GLUT4-containing compartments in differentiated 3T3-L1 adipocytes. J Biol Chem,2001,276:49331-49336.
    [51]Coster AC, Govern R, James DE. Insulin stimulates the expression of GLUT4 into the endosomal recycling pathway by a quantal mechanism. Mol Cell Biol, 2004,5:763-771.
    [52]Imamura T, Huang J, Usui I, et al. Insulin-induced GLUT4 translocation involves protein kinase C-lambda-mediated functional coupling between Rab4 and the motor protein kinesin [J]. Mol Cell Biol,2003,23(14):4892-4900.
    [1]周芳,王魁亮.糖尿病的中医药研究概况[J].新疆中医药,2008,26(2):75-77.
    [2]余升红.2型糖尿病的发病机制[J].中国优生与遗传杂志,2008,16(4):118-120.
    [3]Mojiminiyi OA, Abdella NA, Associations of resistin with inflammation and insulin resistance in patients with type 2 diabetes melltus [J].Scand J Clin Lab Invest,2007,67(2):215-225.
    [4]Steven C, Elbein. The impact of genetic studies of type 2 diabetes on clinical practice [J]. Curret Diabetes Reports,2003,3(2):93-94.
    [5]彭红侠.格列美脲联合中效胰岛素治疗2型糖尿病的疗效观察[J].中国现代药物应用,2007,1(12):16-18.
    [6]Guiherme A, Virbasius JV, Puri V, et al. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes [J]. Nat Rev Mol Cell Bio,2008, 9(5):367-377.
    [7]Mojiminiyi OA, Abdella NA. Associations of resistin with inflammation and insulin resistance in patients with 2 diaetes melltus [J]. Scand J Clin Lablnvest, 2007,67(2):215-225.
    [8]Doherty R, Stein D, Foley J. Insulin resistance. Diabetologia,1997,40: B10-15.
    [9]胡楠,张轶.抗糖尿病药物应用情况分析与使用中应注意的问题[J].中国临床医生杂志,2007,35(11):651-654.
    [10]黎红梅.2型糖尿病的临床药物治疗进展[J],中国医学研究与临床,2004,2(16):611-613.
    [11]Todd JA. From genome to aetiology in a multifactorial disease, type 1 diaetes [J]. Bioessays,1999,21:164-174.
    [12]Doherty R, Stein D. American Diabetes Association. Diagnosis and classification of diabetes mellitus [J]. Diabetes Care,2006,29 (Suppl 1): S43-S48.
    [13]Adamo E., S. Caprio. Type 2 Diabetes in Youth:Epidemiology and Pathophysiology [J]. Diabetes Care,2011,34(3):161-165.
    [14]Bonnefont Rousselot D, Bastard JP, Jaudon MC, et al. Consequences of the diabetic status on the oxidant/antioxidant balance [J]. Diabetes Metab,2000, 26(3):163-176.
    [15]Robertson RP, Harmon J, Tran PO, et al. Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes [J]. Diabetes,2004, 53(Suppl):119-124.
    [16]Tsubouchi H, Inoguchi T, Inuo M, et al. Sulfonylurea as well as elevated glucose levels stimulate reactive oxygen species production in the pancreatic beta-cell line, MIN6-a role of NAD (P) H oxidase in beta-cells [J]. BiochemBiophys Res Commun,2005,326(1):60-65.
    [17]Niedowicz DM, Daleke DL. The role of oxidative stress in diabetic complications [J]. Cell Biochem Biophys,2005,43(2):289-330.
    [18]Young IS, Woodside JV. Antioxidants in heslth and disease. J Clin Pathol, 2001,54:176-186.
    [19]Oyama T, Miyasita Y, Watanabe H, et al. The role of polyol path-way in high glucose-induced endothelial cell damages [J]. Diabetes Res Clin Pract,2006, 73(3):227-234.
    [20]R. Rao, C.M. Hao, R. Redha, et al. Glycogen synthase kinase 3 inhibition improves insulin-stimulated glucose metabolism but not hypertension in high-fat-fed C57BL/6J mice [J]. Diabetologia,2007,50:452-460.
    [21]A.M. Valverde, M. Benito, M. Lorenzo. The brown adipose cell:a model for understanding the molecular mechanisms of insulin resistance. Acta Physiol Scand 2005,183:59-73.
    [22]Koistinen H A, Galuska D, Chibalin A V, et al. 5-amino-4-imid-ago-lecarboxamide ribonucleotide (AICAR) increases glucose transport and cell surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes [J]. Diabetes,2003, s2(5):1066-72.
    [23]Burcehn R, Criveili V, Perrin C, et al. GLUT4, AMP kinase, but not the insulin receptor are required for hepatoportal glucose sensor stimulated muscle glucese utilization [J]. J Clin Invest,2003,111(10):1555-62.
    [24]Mcgee SL, Hargreaves M. Exefcisc and skeletal muscle glucose transporter 4 expression:Molecular mechanisms. Clin Exp Pharmacol Physiol,2006,33: 395-399.
    [25]赵珉,吴永贵,林辉,等.灯盏花素对糖尿病大鼠肝、肾组织氧化应激的影响[J].中国病理生理杂志,2005,21(4):802-807.
    [26]郝玉美,刘洪琪.苦瓜、黄芪、黄芩苷对2型糖尿病模型大鼠胰岛素抵抗的影响[J].中药药理与临床,2007,23(5):145-147.
    [27]Feng CG, Zhang LX, Liu X, et al. Progress in research of aldose reductase inhibitors in t raditional medicinal herbs [J]. Zhongguo Zhong Yao Za Zhi, 2005,30(19):1496-1500.
    [28]李娟娟,毕会民.葛根素对胰岛素抵抗大鼠脂肪细胞葡萄糖转运蛋白4的影响[J].中国临床药理与治疗学,2004,9(8):885-888.
    [29]张再超,叶希韵,徐敏华,等.葛根黄酮降血糖防治糖尿病并发症的实验研究[J].华东师范大学学报,2010,12(2):77-81.
    [30]Liu IM, Liou SS, Lan TW, et al. Myricetin as the active principle of Abelmoschus moschatus to lower plasma glucose in streptozotocin-induced diabetic rats [J]. Planta Med,2005,71:617-621.
    [31]刘淑霞,陈志强,何宁,等.葛根素对糖尿病大鼠肾功能及肾组织MMP-10与TIMP-1表达的影响[J].中草药,2004,35(2):170-174.
    [32]Bailey CJ. Metformin:effect s on micro and macrovascular complications in type 2 diabetes [J]. Cardiovasc Drugs Ther,2008,22(3):2151-2155.
    [33]方世英,徐茂红,顾红霞.大别山区葛根黄酮对四氧嘧啶糖尿病模型小鼠糖脂代谢的影响[J].皖西学院学报,2012,28(2):7-9.
    [34]Palanisamy N, Viswanathan P, Anuradha CV. Effect of genistein, a soy isoflavone, on whole body insulin sensitivity and renal damage induced by a high-fructose diet [J]. Ren Fail,2008,30(6):645-654.
    [35]Kamalakkannan N, Stanely MA, Nzen PP. Rutin improves the antioxidant status in strep to zotocin-indused diabetic rat tissues [J]. Mol Cell Biochem, 2006,293 (1-2):211-219.
    [36]Kamalakkannan N, Prnce PS. Antihyperglycemic and antioxidant effect of rutin, a polyphenolic flavonoid in streptozotocin diabetic rats [J]. Basic Clin Pharmacol Toxicol,2006,98 (1):97-103.
    [37]Li JM, Wang C, Hu QH, et al. Fructose induced leptin dysfunction and improvement by quercetin and rutin in rats [J]. Chin J Nat Med,2008,6(6): 466-473.
    [38]毛晓明,张家庆.槲皮素对糖尿病大鼠坐骨神经Na+-K+-ATP酶活力的影响[J].中国糖尿病杂志,1995,3(2):73.
    [39]Liu IM, Tzeng TF, Liou SS, et al. Myricetin, a naturally occurring flavonol, ameliorates insulin resistance induced by a highfructose diet in rats [J]. Life sci, 2007,81(21-22):1479-1488.
    [40]Bose M, Lambert JD, Ju J, et al. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice [J]. J Nutr,2008,138 (9):1677-1683.
    [41]Lin CL, Lin JK. Epigallocatechin gallate (EGCG) attenuates high glucose-induced insulin signaling blockade in human hepG2 bepatoma cells [J]. Mol Nutr Food Res,2008,52(8):930-939.
    [42]Ueda M, Nishiumi S, Nagayasu H, et al. Epigallocatechin gallate promotes GLUT4 translcaton in skeletal muscle [J]. Biochem Biophys Res Commun, 2008,377(1):286-290.
    [43]朱玉霞,邹德平,刘学鹏,等.桑叶黄酮对2型糖尿病大鼠胰岛素抵抗影响的研究[J].四川医学,2008,29(9):1114-1115.
    [44]曹辉,郝齐志,余晓慧.银杏叶制剂治疗糖尿病周围神经病变的疗效观察[J].中国糖尿病杂志,2000,8(2):113.
    [45]Chakravarthy BK, Gupta S, Gode KD, Functional beta cell regeneration in the islets of pancreas in alloxan induced diabetic rats by (-)-epicatechin [J]. Life Sci,1982,31(24):2693-2697.
    [46]Vessal M, Hemmati M, Vasei M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats [J]. Comp BiochemPhysiol C Toxical Pharmacal,2003,135C(3):357-364.
    [47]杨新波,黄正明,曹文斌,等.水芹黄酮的抗糖尿病作用[J].中国药理学报,2000,21(3):239-240.
    [48]Waltner L M, Wang X L, Law B K, et al. Epigallocatechingallate, a constituent of green tea, represses hepatic glucose production [J]. J Biol Chem, 2002,277(38):34933-34940.
    [49]Hnatyszyn O, Mino J, Ferraro G, et al. The hypoglycemic effect of phyllanthus sellowianus feactionss in streptozotocin-induced diabetic mice [J]. Phytomedicine,2002,9(6):556-559.
    [50]刘楠梅,袁伟杰,张小瑛,等.金雀异黄素对糖尿病大鼠糖脂代谢及肾脏的影响[J].中国糖尿病杂志,2006,14(1):64-66.
    [51]Bhatia S, Shukla R, Madhu SV, et al. Antioxidant status, lipid peroxidation and nitric oxide end products in patients of type 2 diabetes mellitus with nephropathy [J]. Chin Biochem,2003,36(7):557-562.
    [52]Anwar MM, Meki ARMA. Oxidative stress in Streptozotoein-induced diabetes rats:effects of garlic oil and melatonin [J]. Comp Biochem Physi,2003, 135(4):539-547.
    [53]Fang XK, Gao Y, Yang HY, et al. Alleviating effects of active fraction of Euonymus alatus abundant in flavonoids on diabetic mice [J]. Amer J Chin Med,2007,36(1):125-140.
    [54]Rao YK, Madamanchi G, Fang SH, et al. Antioxidant and cytotoxic activities of naturally occurring phenolic and related compounds:A comparative study [J]. Food and Chemical Toxicology,2007,68(45):1770-1776.
    [55]梁忆非,赵洪涛,冯芹喜,等.葡萄籽原青花素对2型糖尿病大鼠氧化应激的影响.牡丹江医学院学报,2007,3(28):7.
    [56]梁佳琦,朱翠风,李艳飞,等.大豆异黄酮与葡萄籽原青花素对2型糖尿病大鼠抗氧化功能的影响.中国全科医学,2008,11(6A):948.
    [57]王晓敏.翻白草黄酮对糖尿病小鼠血清胰岛素和胰岛素抗体的作用.时珍国医国药,2008,19(2):338.
    [58]Sala A, Recio MC, Schinella GR, et al. Assessment of the anti-inflammatory activity and free radical scavenger activity of tiliroside[J]. Euro J Pharm, 2003(461):53-61.
    [59]Kamalakkannan N, Prince PSM. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic Wistar rats. Basic Clin Pharm Toxi,2006,98(1):97-103.
    [60]高永峰,高允生,张永丽.柿叶黄酮对糖尿病小鼠肝脏的保护作用[J].中国 实用医药,2009,4(27):12-13.
    [61]王晓玉,魏文,何计国.金花葵黄酮对糖尿病模型小鼠脂代谢的影响[J].中国农学通报,2011,27(29):102-106.
    [62]Yun S. Lee, Woo S. Kim, Kang H. Kim, et al. Berberine, a Natural Plant Product, Activates AMP-Activated Protein Kinase With Beneficial Metabolic Effects in Diabetic and Insulin-Resistant States[J]. Diabetes,2006,8(55): 2256-2264.
    [63]Lai HH, Yen GC. Inhibitory effect of isoflavones on peroxynitrite-mediated low-density lipoprotein oxidation[J]. Biosci Biotechnol Biochem,2002,66(1): 22-25.
    [64]Aoki F, Honda S, Kishida H, et al. Suppression by licorice flavonoids of abdominal fat accumulation and body weight gain in high-fat diet-induced obese C57BL/6J mic[J]. Biosci Biotechnol Biochem,2007,71(1):206-241.
    [65]Stuible M. Cellular inhibition of protein tyrosine phosphatase IB by uncharged thioxothiazolidinone derivatives. Chembiochem,2007,8(2):179-186.
    [66]陶胜宇,徐峰,闫泉香.苦荞麦黄酮对糖尿病大鼠神经功能的影响.实用药物与临床,2006,9(4):219-221.
    [67]Carol Huang, Romel Somwar, Nish Patel, et al. Sustained exposure of L6 mytubes to high glucose and insulin decreases insulin-stimulated GLUT4 translocation but upregulates GLUT4 activity[J]. Diabetes,2002,51(7): 2090-2098.
    [68]Chen WC, Hagakawa S, Yamamoto T, et al. Mediation of beta-endor phin by the isoflavone puerarin to lower plasma glucose in strep tozotocin induced diabetic rats [J]. Planta Med,2004,70 (2):113-116.
    [69]Muthusamy V S. Tannins glucose uptake and inhibit adipogenesis inhibition present in Cichorium intybus enhance in 3T3-L1 adipocytes through PTP1B. Chemico-Biological Interactions,2008,174(1):69-78.
    [70]Vander Spuy, W.J, Pretorius E. Is the use of resveratrol in the treatment and prevention of obesity premature? Nutr Res Rev,2009,22:111-117.
    [71]B. Mlinar, J. Marc, A. Janez, et al. Molecular mechanisms of insulin resistance and associated diseases. Clin Chim Acta,2007,375:20-35.
    [72]刘志民,孙亮亮.氧化应激在糖尿病发病机制中作用的认识[J].内科理论与实践,2007,2(3):153-155.
    [73]Van den Enden MK, Nyengaard JR, Ostrow E, et al. Elevated glucose levels increaseretinal glycolysis and sorbitol pathway metabolism implications for diabetic retinopathy. Invest Ophthalmol Vis Sci.2004,53(11):2931-2938.
    [74]Atten M.J, Godoy-Romero E, Attar B.M, et al. Resveratrol regulates cellular PKC alpha and delta to inhibit growth and induce apoptosis in gastric cancer cells. Invest New Drugs,2005,23:111-119.
    [75]Oyama T, Miyasita Y, Watanabe H, et al. The role of polyol path-way in high glucose-induced endothelial cell damages [J]. Diabetes Res Clin Pract,2006, 73(3):227-234.
    [76]Elalfy AT, Ahmed AA, Fatian AJ. Protective effect of red grape seeds proanthocyandins against induction of diabetes by alloxan in rats[J]. Pharmacol Res,2005,52(3):264-270.
    [77]赵红,张玉嫒,马儒林.大豆异黄酮对高脂血症大鼠体内SOD、GSH-Px、活力及MDA含量的影响[J].实用全科医学,2005,3(3):191-192.
    [78]傅静奕,田浩明,梁荩忠.槲皮素对糖尿病大鼠肾脏的保护作用及机制[J].中华内分泌代谢杂志,2000,16(1):47-48.
    [79]Cho I JH, Chai YM, Joo GJ, et al. Effects of green tea catechin on polymorphonuclear leukocyte 5'-lipoxygenase activity, leukotriene B4 synthesis, and renal damage in diabetic rats[J]. Ann NutrMetab,2004,48(3): 151-155.
    [80]林辉,吴永贵,齐向明等.灯盏花素对糖尿病大鼠肾组织巨噬细胞浸润的影响[J].中国药理学通报,2005,21(6):734-738.
    [81]任平,胡惠君,张瑞.葛根素治疗糖尿病视网膜病变的疗效观察[J].中国中西医结合杂志,2000,20(8):574-578.
    [82]段有金,王韶颖,三轮一智,等.五种中药对蛋白质非酶糖基化的抑制作用[J].中国糖尿病杂志,1998,6(4):227-229.
    [83]曹辉,郝齐志,余晓慧.银杏叶制剂治疗糖尿病周围神经病变的疗效观察[J].中国糖尿病杂志,2000,8(2):113-115.
    [84]Stanelymainzen PP, Kannan NK. Protective effect of rutin on lipids, lipoproteins, lipid metabolizing enzymes and glycoprotein in streptozotocin-induced diabetic rats[J]. J Pharm Pharmacol,2006,58(10): 1373-1383.
    [85]韩淑英,张宝忠,朱丽莎,等.荞麦花总黄酮对实验性大鼠Ⅱ型糖尿病高脂血症的防治作用[J].中国药理学通报,2003,19(4):477-478.
    [86]Zang M, Xu S, Maitland-Toolan KA, et al. Polyphcnols stimulate AMP-activated protein kinase lower lipids and inhibit accelerated atherosclerosis in diabetic LDL-receptor deficient mice[J]. Diabetes,2006,55(8):2180-2191.
    [87]Anjaneyulu M, Chopra K. Antidepressant activity of quercetin, a bioflavonoid, in strep to zotocin-induced diabetic mice[J]. J Med Food,2003,6(4):391-395.
    [88]Anjaneyulu M, Chopra K. Quercetin attenuates thermal hyperalgesia and cold allodynia in STZ-induced diabetic rats[J]. Indian J Exp Biol,2004,42 (8): 766-769.
    [89]艾明,杨芳,孙明,等.葛花总黄酮对糖尿病小鼠视网膜MDA. SOD的影响.临床眼科杂志,2012,20(4):374-376.
    [90]王泓,许迅.氧化应激反应与糖尿病视网膜病变.临床眼科杂志,2009,17:474-477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700