铬铁强氧化焙烧过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无钙焙烧法是以铬铁矿为原料生产铬盐的技术发展方向,但目前在我国95%以上的铬盐产能采用落后的有钙焙烧工艺,极少数采用无钙焙烧法的工厂在实际生产过程中又遇到许多问题:铬氧化慢(~2h)、铬氧化率低(<76%)以及容易出现结圈现象等。为了强化铬铁矿无钙氧化焙烧过程,本文进一步完善了铬铁矿无钙焙烧体系的反应机理,并在理论指导下寻找出一种添加剂来促进氧化焙烧反应过程,同时,通过实验研究确定了最佳反应条件。
     本文以实验室合成的尖晶石型化合物为原料,较系统地研究了铬铁矿无钙焙烧体系中杂质铁、铝和硅对矿石中Cr(Ⅲ)氧化率的影响规律及其机理。结果表明:铬铁矿中杂质铁对Cr(Ⅲ)的氧化率无明显影响。焙烧过程中FeO被氧化后得到的Fe2O3先与Na2CO3反应生成中间产物NaFeO2,它在体系中仍起着碱的作用,使铬的氧化反应继续进行,整个Cr(Ⅲ)氧化过程的反应速率均较快;杂质铝能明显抑制Cr(Ⅲ)的氧化。其主要原因是:在焙烧过程中Al2O3与Cr2O3和MgO反应生成相对稳定、难溶的多元复杂氧化物MgO·(Cr203)0.5·(Al203)0.5。此外,A12O3与Na2CO3反应生成Na2O·Al2O3,但Na2O·Al203难以进一步与MgO·(Cr203)0.5·(Al203)0.5反应生成Na2CrO4;杂质硅可阻碍Cr(Ⅲ)的氧化过程,这主要是由于当温度高于1173K时,Na2SiO3和Cr2O3发生的氧化反应可逆向进行,使生成的Na2CrO4部分发生分解,从而导致铬的氧化率降低。
     基于铬铁矿无钙焙烧体系的氧化反应机理,本文开展了较系统的铬铁矿氧化焙烧实验研究。结果表明:焙烧反应的最佳条件是配碱量为理论量的110%-120%,焙烧温度为1323K,反应时间为30min-60min;向体系添加物质A可明显提高铬氧化率,其主要原因是:添加剂A的加入可使氧化焙烧体系的液相量明显降低;在1223K~1323K温度范围内,随着焙烧温度的升高,焙烧体系中的液相量基本保持不变,有利于氧气向焙烧体系的扩散,此时物质A对Cr(Ⅲ)的氧化反应有最大程度的促进作用,铬的氧化率可达98%以上
Calcium-free oxidative roasting process is the technological direction of the production of chromate salts extracted from the chromite ore home and abroad. However, more than 95% of industrial chromates in China was produced by the traditional soda-lime oxidative roasting process, and minor factories employing the calcium-free oxidative roasting process also encountered many problems in the actual production process, such as slow oxidation rate of Cr(Ⅲ) (-2h), low oxidation ratio (<76%) and prone to ring-forming phenomena. To intensify the oxidative roasting process, the oxidation mechanism was investigated in this paper, and a kind of additive was selected to promote the roasting process based on the oxidation mechanism. In addition, the optimal reaction conditions were determined by series of experiments.
     The separate influence of the impurities of ferrous oxide and aluminum oxide on the oxidation rate of trivalent chromium and its mechanism were systematically studied using the spinal compounds synthesized in the laboratory as the starting materials in the calcium-free oxidative roasting process of chromite ore in this paper. The results show that the impurity of ferrous oxide has almost no effect on the oxidation rate of the trivalent chromium. Ferrous oxide is first oxidized to form ferric oxide, and NaFeO2 formed by the preferential reaction of ferric oxide and sodium carbonate, can further act as alkali and thus maintain a relatively rapid oxidation rate of trivalent chromium during the whole roasting process of chromite ore. The results show that the impurity of aluminum oxide obviously hinders the oxidation of trivalent chromium. This is mainly attributed to the formation of the complicated insoluble compound of MgO·(Cr203)0.5·(Al203)0.5. In addition, aluminum oxide readily reacts with sodium carbonate to form sodium aluminate which is difficult to further react with MgO·(Cr203)0.5·(Al2O3)0.5 to form Na2CrO4, resulting in the decrease in the oxidaton rate of trivalent chromium. And the results also show that the impurity of silicon oxide obviously hinders the oxidation of trivalent chromium. The main reason may be that the oxidation reaction of Na2SiO3 with Cr2O3 with the temperature higher than 1173K is reversible and thus Na2CrO4 generated would be decomposed, lowing the oxidation rate of Cr(III).
     Systematic oxidative roasting experiments were carried out based on the oxidation mechanism of calcium-free oxidative roasting process. The results show that, the optimized conditions are as following:the amount of alkali is 110%~120% of the theoretical value of alkali, the roasting temperature is around 1323K and the roasting time varies from 30~60min. Adding substance A to the furnace charge can greatly increase the chromium oxidation rate, the main reason is that additive A can obviously reduce the quantity of the liquid phase formed in the oxidative roasting process of chromite ore, promoting the mass-transfer process of oxygen. In the temperature range of 1223K to 1323K, with the increasing of temperature, the liquid quantity is almost unchanged facilitating the oxygen diffusion in the roasting system, and additive A has obvious positive effect on oxidation reaction of Cr(Ⅲ) with the oxidation rate of Ci(Ⅲ) of more than 98%.
引文
[1]郭承继,钟志成.铬铁矿及其化学分析法的研究[M].北京:地质出版社,1959:60-78.
    [2]顾翼东,谢高阳,宋沅,等.无机化学丛书:铬分族[M].第八卷.北京:科学出版社,1998:14-17.
    [3]史荣华.世界铬铁矿的现状[J].无机盐工业,1986,(6):39-40.
    [4]刘长乐,魏文正,常书明.铬铁矿中全铁的分析方法改进[J].广州化工2009,37(1):108-124.
    [5]丁翼.钾系亚熔盐法铬盐清洁工艺的分离工程应用基础研究与优化[J].化工进展,2004,23(4):345-348.
    [6]李建.铬铁矿粉球团烧结新工艺及同结机理研究[D].长沙:中南大学,2004:2-10.
    [7]胡德文.我国铬铁矿资源供应战略分析.地质技术经济管理,2004,26(4):22-25.
    [8]褚洪涛.我国铬铁矿资源供求分析与对策探讨[J].采矿技术,2008,8(2):87-88.
    [9]李兆业.中国铬盐生产现状与发展建议[J].无机盐工业,2005,37(2):1-3.
    [10]化工部天津化工研究院铬组.铬盐焙烧浸取新工艺简介[J].无机盐工业,1987,(2):8-11.
    [11]Mokbosoev M V, Aleikina S M. Reaction of chromium oxide with sodium and potassium carbonates[J]. Zhurnal Neorganicheskoi Khimi,1965,10(2): 363-365.
    [12]Mcketta J, Kubicek D L. odium chromate and sodium dichromate production capacities [J]. Encyclopedia of Chemical Process & Design,1979, (8):303-323.
    [13]成思危,丁翼,杨春荣.铬盐生产工艺[M].北京:化学工业出版社,1988:44-87.
    [14]Brown D H, Ferguson D A. Thermal analysis of chromium (III) and chromium (Ⅵ)systems with silica and sodium silicate [J]. Journal of Thermal Analysis, 1976,9(1):79-82.
    [15]Ryabm V A, Parlov V P. Preparation of sodium and potassium chromate from chromite, nepheline and lime [J]. Zhurnal Prikladnoi Khim,1965,38(7): 1514-1519.
    [16]干开宇.铬铁矿无钙氧化焙烧生产铬酸钠新工艺及反应机理和动力学研究[D].天津:天津大学,2002:3-9.
    [17]肖学渊.铬铁矿加石灰制球团造粒制取铬酸钠[J].化学世界,1999,(5):199-201.
    [18]Sherman V S, Chemilovskii M A. Regulation of the degree of oxidation in a chromite charge. Ural Scientific-Research Chemical Institute [P]. USSR: 166143,1964:1-3.
    [19]Wernfried, Diener. Alkali chromate solution made by treating chromium ore[P]. DP:1189535,1965:2-7.
    [20]王志义,李玉锁.铬铁矿少钙焙烧的工业应用[J].铁合金,2000,(3):28-31.
    [21]丁翼.中国铬盐生产状况与展望[J].化工进展,2004,23(4): 345-348.
    [22]纪柱.关于铬矿有钙、少钙、低钙、无钙焙烧的区别[J].铬盐工业,2005,(2):28-31.
    [23]Farrow C J, Burkin A R. Alkali pressure leaching of the chromium(Ⅲ) oxide and chromate minerals [J]. Leaching Reduction Hydrometallurgy,1973,14(5): 20-27.
    [24]Bruen C P, Wamser C A. Recovering chromium values from the chrome ore [P]. US:3787555,1974:3-6.
    [25]Bruen C P, Wamser C A, Morgan T R. Extracting and recovering chromium values from chromite ores [P]. US:3790456,1972:1-4.
    [26]Cooper, Hughs, Rand, et al. The alkali metal chromates and dichromates made from Ferrochmmium in the molten mixture of sodium chromate and sodium carbonate [P]. US:3932598,1976:2-5.
    [27]柏濑弘之,纪柱.制造铬酸钠的方法[J].铬盐技术通讯,1993,(1):29-33.
    [28]Zhang Y, Zheng S L, Du H, et al. Effect of mechanical activation on alkali leaching of chromite ore [J]. Transactions of Nonferrous Metals Society of China,2010,20(5):888-891.
    [29]Zhang Y, Zheng S L, Xu H B, et al. Decomposition of chromite ore by oxygen in molten NaOH-NaNO3 [J]. International Journal of Mineral Processing,2010, 95(1-4):10-17.
    [30]张懿,李佐虎,王志宽,等.中国科学院化工冶金研究所.铬酸钠的清洁生产工艺[P].CN:1226512A,1999:2-5.
    [31]Sun Z, Zhang Y, Zheng S L, et al. Anew method of potassium chromate production from chromite and KOH-KNO3-H2O binary sub-molten salt system [J]. AIChE Journal,2009,55(10):2646-2656.
    [32]Bacheland H Y, Roland C G. Extraction of chromium from chromite by oxidation in melts Containing sodium carbonate and sodium chromate[P]. Ger: 2329925,1974:1-4.
    [33]韩明荣,任正德,温良英.铬铁氧化精炼的基础研究[J].中国稀土学报,2002,20(1):422-424.
    [34]梅海军,李霞,张大威,等.浅析铬盐清洁生产技术“无钙焙烧法”的优势[J].无机盐工业,2005,37(3):5-7.
    [35]Schafer H, Bayer A G. Alkali Treatment of chromium ores[P]. US:3510256, 1970:2-5.
    [36]Bockehnann W, Niederpreuem H. Decomposition of chromittm ore[P]. US: 4066734,1978:1-4.
    [37]Subbanna S N, Morgan T R, Frick Douglas. Alkali metal chromates manufactured by double roasting chrome ores without using alkaline earth salts to combine with Al2O3[P]. US:4162295,1979:1-7.
    [38]Subbanna S N, Morgan T R, Frick Douglas. Method for production of alkali metal chromates from chrome ores[P]. US:4244925,1979:2-4.
    [39]Popilskii M Y, Mazaletskii G D, Govorkova I L S. Through chemical and metallurgical method for the treatment of chromites[J]. Abstracts Journal,1976, (5):4049-4076.
    [40]Meussdoerffer J N, Niederpreum H, Nieder Vahrenholz H G. Disintegration of chromes[P]. US:4500350,1977:2-4.
    [41]Meussdoerffer J N, Niederpreum H. Decomposition of various Chromium ores through alkaline roasting[P]. Brit:1552706,1978:1-4.
    [42]Low W, Wamser C A, Gancy A B. Conversion of chromite ore to sodium chromate by roasting the palletized chromite ore mixture[P]. South African journal of chemistry:7403606,1975:1-5.
    [43]Bruen C P, Frick D G, Gancy A B. Conversion of chromite ore to sodium chromate by roasting the pellets prepared from mixing chromile ore powder sodium carbonate and some refractory diluents[P]. South African journal of chemistry:7403604,1975:2-4.
    [44]张登亮,宋锋,石硕年,等.无钙造粒焙烧加工铬铁矿工艺方法[P].CN:1041078C.1998:2-5.
    [45]纪柱.铬铁矿无钙焙烧的反应动力学[J].铬盐工业,1997,(2):23-30.
    [46]Shen S B, Bergeron M, Richer-lafleche M. Effect of sodium chloride on the selective removal of iron from chromite by carbochlorination[J]. International Journal of Mineral Processing,2009,91(3-4):74-80.
    [47]Kanari N, Allain E, Joussemet R, et al. An overview study of chlorination reactions applied to the primary extraction and recycling of metals and to the synthesis of new reagents [J]. Thermo chimica Acta,2009,495(1-2):42-50.
    [48]Sungur S, Babaoglu S. Investigation of the effects of some parameters in the production of chromate from chromite ores in Iskenderun region [J]. Steel Research,2006,77(7):492-494.
    [49]Antony M P, Jha A, Tathavadkar V D. Alkali roasting of Indian chromite ores: thermodynamic and kinetic considerations [J]. Mineral Processing and Extractive Metallurgy,2006,115(2):71-80.
    [50]Sanchez-Ramos S, Domenech-Carbo A, Gimeno-Adelantado J V, et al. Analytical and mineralogical studies of ore and impurities from a chromite mineral using X-ray analysis, electrochemical and microscopy techniques [J]. Talanta,2008,74(5):1592-1597.
    [51]纪柱.铬铁矿无钙焙烧的反应机理[J].无机盐工业,1997,18(1):8-21.
    [52]Tathavadkar V D, Antony M P, Jha A. The effect of salt-phase composition on the rate of soda-ash roasting of chromite ores[J]. Metallurgical and Materials Transactions B,2003, (34B):555-563.
    [53]李小斌,齐天贵,彭志宏,等.铬铁矿氧化焙烧动力学研究[J].中南大学学报,2010,20(9):1822-1828.
    [54]Sun Z, Zheng S L, Xu H B, et al. Oxidation decomposition of chromite ore in molten potassium hydroxide [J]. International Journal of Mineral Processing, 2007,83(1-2):60-67.
    [55]Zheng S L, Zhang Y, Xu H B. Green metallurgical processing of chromite [J]. Hydrometallurgy,2006,82(1):157-163.
    [56]宋怀俊,韩绿霞.高品位铬铁矿焙烧条件研究[J].湖北化工,1993,(3):29-31.
    [57]John M, Kubicek D L. Sodium chromate and sodium dichromate production capacities [J]. Encyclopedia of Chemical Process and Design,1979, (8): 303-323.
    [58]Tathavadkar V D, Antony M P, Jha A. The physical chemistry of thermal decomposition of south African chromite minerals [J]. Metallurgical and Materials Transactions B,2005,36B(1):75-84.
    [59]Zofa S, Irena S. Complexomelric analysis of chromium ore, determination of ion, aluminium, chromium, calcium and magnesium[J]. Encyclopedia of Chemical Process and Design,1964,9(3):425-435.
    [60]姜涛,何国强,李晓芹,等.焙烧气氛对内配碳赤铁矿球团焙烧行为的影响[J].中南大学学报,2009,40(4):851-855.
    [61]周秋生,齐天贵,彭志宏,等.熟料烧结过程中氧化铁反应行为的热力学分析[J].中国有色金属学报,2007,17(6):973-978.
    [62]李中军,庞锡涛,刘长让.淅川钒矿钠化焙烧工艺条件研究[J].河南化工1992,(1):20-22.
    [63]郑诗礼,张懿.铬铁矿熔盐液相氧化新反应系统的热力学分析[J].中国有色金属学报,1999,9(4):19-24.
    [64]纪柱.铬铁矿无钙焙烧简介[J].铬盐工业,1996,(2):12-19.
    [65]温元凯,邵俊,陈德炜.含氧酸盐矿物生成自由能的计算[J].地质科学,1978,(4):348~356.
    [66]李小斌,李永芳,刘祥民,等.复杂硅酸盐矿物Gibbs自由能和焓的一种近似算法[J].硅酸盐学报,2001,29(3):232-237.
    [67]叶大伦,胡建华.实用无机物热力学数据手册(第2版)[M].北京:冶金工业出版社,2002:55-90.
    [68]Barin. Thermodynamic Data of Pure Substances [M]. Weinheim:VCH Verlags Gesellschaft,1993:32-46.
    [69]梁英教,车荫昌.无机物热力学数据手册沈阳[M].沈阳:东北大学出版社,1993:11-49.
    [70]Knacke O, Kubaschewski O, Hesselmann K. Thermochemical Properties of Inorganic Substance [D]. Berlin:Springer Verlag,1991:4-11.
    [71]Brown D H, Ferguson D A. Thermal analysis of chromium(Ⅲ) and chromium(Ⅵ) systems with silica and sodium silicate[J]. Journal of Thermal Analysis,1976, (9):79-82.
    [72]廖元双,杨大锦,彭建蓉.铬精矿的焙烧工艺研究[J].云南冶金,2000,29(6):15-18.
    [73]纪柱.铬铁矿无钙焙烧工艺试验的经验[J].铬盐技术通讯,1999,(2):40-68.
    [74]吴慎初.用铬铁生产铬盐新工艺研究[J].无机盐工业,1995,(6):11-13.
    [75]朱华山,谢刚,张皓东,等.铬精矿在焙烧过程中的行为研究[J].矿业工程,2006,(5):57-60.
    [76]丁翼,纪柱.铬化合物生产与应用[M].北京:化学工业出版社,2003:44-51.
    [77]朱华山.铬冶炼新工艺及其理论研究[D].昆明:昆明理工大学,2004:11-13.
    [78]傅菊英.添加剂强化烧结焙烧过程及其机理[J].中南工业大学学报,2000,31(1):21-23.
    [79]范晓慧,王祎,甘敏,等.提高有机粘结剂氧化球团矿强度的措施[J].钢铁研究学报,2008,20(5):5-19.
    [80]王晶,康健.板状a-A1203制备过程中的影响因素[J].大连交通大学学报,2008,29(4):60-63.
    [81]陈耀强.高性能稀土储氧材料在机动车尾气净化和催化燃烧中的应用[J].四川稀土,2005,(3):12-16.
    [82]付文丽,程博闻,康卫民,等.汽车尾气净化催化剂研究现状及发展前景[J].杭州化工,2008,38(3):5-9.
    [83]蒋柏泉,白立晓,彭健.稀土在废气和废水处理中应用的研究状况[J].稀土,2006,27(1):76-79.
    [84]薛群山.稀土储氧材料在汽车尾气净化催化剂中的应用[J].精细与专用化学品,2000,(12):13-14.
    [85]Dept, Biomol, Daejeon, et al. Facile route synthesize large-mesoporous y-alumina by room tempe-rature ionic liquids[J]. Chemistry of Materials,2007, 19(3):535-542.
    [86]冯惠敏,王勇华.膨润土在铁矿球团中作用机理[J].中国非金属矿工业导刊,2009,(6):15-18.
    [87]刘新兵.冶金球团用膨润土性能指标的探讨[J].烧结球团,2010,35(4):12-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700