钢管及约束钢管混凝土短柱抗冲击性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土结-构由于具有一系列优越性能,目前在高层和超高层建筑中越来越多地被应用,然而对钢管混凝土抗冲击性能的研究还处于初步摸索阶段。近年来,建筑结构受冲击破坏的事件频繁发生。因此,对钢管混凝土结构的抗冲击性能研究变得十分必要。本文以钢管混凝土、约束钢管混凝土短柱为研究对象,对其在落锤冲击作用下的动力响应与破坏特征进行了试验和数值模拟两方面的研究,以全面了解构件在冲击荷载作用下的基本性能及影响因素。
     首先,本文对两种钢管壁厚、两种碳纤维层数的钢管混凝土及约束钢管混凝土短柱进行了一系列高度的轴向冲击试验,测得了冲击力时程曲线、试件轴向变形时程曲线、钢管表面各测点纵向、环向应变时程曲线及试件残余变形,并获得了试件最终变形形态,且用高速摄像仪全程记录了试件的破坏过程。在试验结果汇总的基础上,得出了平均轴向残余应变与冲击能量的关系。通过对比试件最终变形形态及核心混凝土的破坏形态,分析试件发生破坏的特征。讨论了钢管壁厚、冲击能量及碳纤维约束对试件最大冲击力、轴向变形及钢管应变的影响。基于试验结果,提出了计算最大冲击力及平均轴向残余应变的简化公式。
     其次,利用通用有限元分析软件ANSYS/LS-DYNA对试验进行数值模拟。将模拟得到的结果与试验结果相对比,发现两者能较好吻合,验证了模拟结果,也指出试验中存在的不足之处,并探讨了冲击过程中系统能量的变化规律及各种材料吸收能量的情况。
Concrete filled steel tube (CFT) are wide used in high-rise and super high-rise buildings because of a series of superior properties. However, research on its impact resistant behavior is still at the beginning stage. In recent years, building structures damaged by the impact occur frequently. Therefore, research on the impact resistance of CFT structures become very necessary. In this paper, the dynamic response and the failure characteristics of CFT and confined concrete filled tube (CCFT) were studied by means of experiments and numerical simulation to fully understand the basic performance and influencing factors.
     Firstly, CFT and CCFT short columns with two kinds of steel tube wall thickness and layers of carbon fiber were tested under series of height in the axial direction, impact force history, axial deformation history, axial and circumferential strain history of measuring points on steel tube surface and residual deformation of the specimen were measured and obtained final deformation patterns of specimens, a high speed camera was used to record the whole damage process of specimens as well. The relationship between the average axial residual strain and impact energy was obtained. The characteristics of damage occurred in the specimens was analyzed by comparing the final deformation patterns of specimens and failure patterns of core concrete. The effectiveness of steel tube wall thickness, impact energy and carbon fiber constraint to the maximum impact force, axial deformation and strain of steel was discussed. The maximum impact force and average axial residual strain can be caculated by a simplified formula.
     Secondly, numerical simulation was conducted on the test using finite element analysis software ANSYS/LS-DYNA. The simulated results with experimental results were compared and found good agreement between the two. It verified the simulation results and pointed out the deficiencies in the test, the system energy transfer rules and energy absorption situation of all kinds of materials in the impact process were also discussed in the end.
引文
[1]韩林海.钢管混凝土结构—理论与实践[M].北京:科学出版社,2004:2-5.
    [2]JCJ01-89.钢管混凝土结构设计与施工规程[S].上海:同济大学出版社,1989:
    [3]CECS28:90.钢管混凝土结构设计与施工规程[S].北京:中国计划出版社,1992:
    [4]DL.5085/T-1999.钢-混凝土组合结构设计规程[S].北京:中国电力出版社,1999:
    [5]GJB4142-2000.战时军港抢修早强型组合结构技术规程[S].北京:中国人民解放军总后勤部,2001:
    [6]DBJ13-51-2003.钢管混凝土结构技术规程[S].福州:技术出版社,2003:
    [7]肖岩,何文辉.约束钢管混凝土结构柱的开发研究[J].哈尔滨工业大学学报,2003,35(增刊):40-47.
    [8]肖岩,何文辉,毛小勇.约束钢管混凝土柱的开发研究[J].建筑结构学报,2004,25(6):59-66.
    [9]Xiao Y, He W H and Choi K G. Confined concrete filled tubular columns[J].Journal of Structural Engineering,2005,131(3):488-497.
    [10]何文辉.约束钢管混凝土结构的开发研究[D].长沙:湖南大学,2004:
    [11]毛小勇,肖岩.局部约束方钢管混凝土柱约束件设计方法[J].建筑技术开发,2005,32(3):45-47.
    [12]张望喜,单建华,陈荣等.冲击荷载下钢管混凝土柱模型力学性能试验研究[J].振动与冲击,2006,25(5):96-101.
    [13]郑秋,霍静思,陈柏生等.高温下钢管混凝土抗冲击承载力试验研究[J].哈尔滨工业大学学报,2007,39(增刊2):519-522.
    [14]钟善桐.钢管混凝土统一理论:研究与应用[M].北京:清华大学出版社,2006:11-30.
    [15]蔡绍怀.现代钢管混凝土结构(修订版)[M].北京:人民交通出版社,2007:9-22.
    [16]吴胜兴,周继凯.混凝土动态特性及其机理研究[J].徐州工程学院学报,2005,20(1):15-28.
    [17]Schrader E K. Impact resistance and test procedure for concrete[J], ACI Journal, 1981,78(2):141-146.
    [18]姜风春,沙桂英,张晓欣等.Hopkinson压杆实验技术的应用研究[J].尔滨工业大学学报,1999,20(4):56-60.
    [19]胡时胜.霍普金森压杆技术[J].兵器材料科学与工程,1991,122(11):40-47.
    [20]胡时胜.Hopkinson压杆实验技术的应用进展[J].实验力学,2005,20(4):589-594.
    [21]张廷杰,张德尧,丁旭.金属材料动态性能的平面冲击波测量[J].稀有金属材料与工程,1994,4(8):1-6.
    [22]曹增延,祁建华.混凝土动力特性的初步研究[J].水电站设计.1994,10(4):8185.
    [23]Watstein D. Effect of straining rate on the compressive strength and elastic properties of concrete[J]. ACI Journal,1953,49(8):729-744.
    [24]Bischoff P H and Perry S H. Compressive behaviour of concrete at high strain rates[J]. Materials and Structures/Materiaux et Constructions,1991,24(144):425-450.
    [25]Gong J C. Confined and unconfined compressive strength and deformation of concrete at high strain rates[D]. Florida:University of Florida,1988:
    [26]Grote D L, Park S W and Zhou M. Dynamic behavior of concrete at high strain rates and pressures:Experimental characterization[J]. International Journal of Impact Engineering,2001,25(3):869-886.
    [27]Li Q M and Meng H. About the dynamic strength enhancement of concrete-like materials in a split hopkinson pressure bar test[J]. International Journal of Solids and Structures,2003,40(2):343-360.
    [28]胡时胜,王道荣.冲击载荷下混凝土材料的动态本构关系[J].爆炸与冲击,2002,22(3):242-246.
    [29]王道荣,胡时胜.冲击载荷下混凝土材料损伤演化规律的研究[J].岩石力力学与土程学报,2003,22(2):223-226.
    [30]胡时胜.研究混凝土材料动态力学性能的实验技术[J].中国科学技术大学学报,2007,37(10):1312-1319.
    [31]张志刚,孔大庆,宫光明等.高应变率下混凝土动态力学性能SHPB实验[J].解放军理工大学学报,2007,8(6):611-618.
    [32]刘海峰,刘海燕,宋卫东.混凝土材料冲击破坏特性[J].中国科学(G辑:物理学力学天文学),2009,39(9):1231-1240.
    [33]Rinehart E J, Welch C R. Material properties testing using high explosive[J]. International Journal of Impact Engineering,1995,17(1-3):673-675.
    [34]Grady D E. Structures under Shock and Impact[M]. Southampton Boston: Computational Mechanics Publications,1996:405-414.
    [35]严少华,钱七虎,周早生等.高强混凝土及钢纤维高强混凝土高压状态方程的实验研究[J].解放军理工大学学报,2000,1(6):49-53.
    [36]商霖,宁建国.强冲击载荷下混凝土动态本构关系[J].工程力学,2005,22(2):78,116-119.
    [37]Jacob I Rome. Experimental characterization and Micromechanical Modeling of the Dynamic Response and Failure Modes of Concrete[D]. San Diego: University of California,2002:
    [38]闫东明,林皋,徐平.三向应力状态下混凝土动态强度和变形特性研究[J].工程力学,2007,24(3):58-64.
    [39]吴胜兴,周继凯.混凝土动态特性及其机理研究[J].徐州工程学院学报,2005,20(1):15-28.
    [40]王政,倪玉山,曹菊珍等.冲击载荷下混凝土本构模型构建研究[J].高压物理学报,2006,20(4):337-344.
    [41]齐振伟,蔡清裕,杨涛.应变率相关的混凝土连续损伤本构模型[J].弹道学报,2007,19(4):55-62.
    [42]孟益平.冲击载荷作用下混凝土的率型本构关系[J].安徽理工大学学报,2007,27(4):15-18.
    [43]刘海峰,宁建国.冲击荷载作用下混凝土动态本构模型的研究[J].工程力学,2008,25(12):135-140.
    [44]Forrestal M J, Luk V K, Watts H A. Penetration of reinforced concrete with ogive-nose penetrators[J]. International Journal of Solids and Structures,1988* 24(1):77-87.
    [45]Holmquist T J, Johnson G R and Cook W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[A]. In:Proc of 14th International Symposium on Ballistics. Quebec:,1993:591 600
    [46]李耀,李和平,巫绪涛.混凝土HJC动态本构模型的研究[J].合肥工业大学学报(自然科学版),2009,32(8):1244-1248.
    [47]巫绪涛,孙善飞,李和平.用HJC本构模型模拟混凝土SHPB实验[J].爆炸与冲击,2009,29(2):137-142.
    [48]Malvar L J, Crawford J E, Wesevich J W, et al. A plasticity concrete material model for DYNA3D[J]. International Journal of Impact Engineering,1997, 19(9):847-873.
    [49]Riedel W. Beton unter dynamischen Lasten Meso-und makromechanische Modelle und ihre Parameter[D]. Freiburg:ErmstMach-Institut,2000:
    [50]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003,375-376.
    [51]Johnson G R, Holmquist T J and Cook W H. A constitutive model for concrete subjected to large strains, high strain rates, and high temperature [A]. In: Proceeding of the Seventh International Symposium on Ballistics. The Hague:,1983:541-547.
    [52]胡昌明,贺红亮,胡时胜.45号钢的动态力学性能研究[J].爆炸与冲击,2003,23(2):188-199.
    [53]陈刚,陈忠富,陶俊林等.45钢动态塑性本构参量与验证[J].爆炸与冲击,2005,25(5):451-456.
    [54]杨有福,韩林海,范喜哲.钢管混凝土动力性能研究现状[J].哈尔滨建筑大学学报,2000,33(5):40-46.
    [55]陈肇元,罗家谦,潘雪雯.钢管混凝土短柱作为防护结构构件的性能[A].见:清华大学抗震抗爆工程研究室科学研究报告集第4集.[C]北京:清华大学出版社,1986:45-52.
    [56]Prichard S J, Perry S H. The impact behaviour of sleeved concrete cylinders[J]. The structural Engineer,2000,78(17):23-27.
    [57]张望喜,单建华,陈荣等.冲击荷载下钢管混凝土柱模型力学性能试验研究[J].振动与冲击,2006,25(5):96-101.
    [58]Yan Xiao, Jianhua Shan, Qiu Zheng et al. Experimental Studies on Concrete Filled Steel Tubes under High Strain Rate Loading[J].Journal of Materials in Civil Engineering,2009,21(10):569-577.
    [59]李珠,李宝成,李永刚等.钢管混凝土短柱轴向冲击动力特性的探讨[J].太原理工大学学报,2006,37(4):383-385.
    [60]涂劲松,穆启华,李珠等.钢管混凝土侧向冲击荷载下的变形分析及简化计算[J].太原理工大学学报,2007,38(2):156-159.
    [61]郑红勇.钢管混凝土在侧向冲击作用下的耐撞性研究[J].太原大学学报,2009,10(3):127-131.
    [62]李珠,王兆,王蕊.侧向冲击荷载作用下两端固定钢管混凝土构件的试验研究[J].工程力学,2009,26(增刊Ⅰ):167-170.
    [63]陶忠,庄金平,于清.FRP约束钢管混凝土轴压构件力学性能研究[J].工业建筑,2005,35(9):20-23.
    [64]钟善桐.钢管混凝土结构[M].北京:清华大学出版社,2003:1-83.
    [65]白金译.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005:30-59.
    [66]LS-DYNA USER'S MANUAL[M].2003:
    [67]贾电波.钢管混凝土构件在侧向冲击载荷作用下的初步研究[D].太原:太原理工大学,2005:
    [68]杨华,汽车碰撞试验缓冲吸能装置的计算机仿真与试验研究[D].长沙:湖南大 学,2002:
    [69]Symonds P S. Survey of methods of analysis for plastic deformation of structures under dynamic loading[R]. Providence:Brown University,1967:
    [70]LS-DYNA Keyword User's Manual Version 971[M],2006:
    [71]Shugar T A, Holland T J, Malvar L J. Applications of Finite Element Technology to Reinforced Concrete Explosive Containment Structures [A], In:Proceedings of the25th DoD Explosive Safety Seminar, Anaheim:CA,1992:114-152.
    [72]Tai Y S, Tang C C. Numerical simulation:The dynamic behavior of reinforced concrete plates under normal impact[J]. Theoretical and Applied Fracture Mechanics,2006,45(2):117-127.
    [73]欧碧峰,王君杰.碰撞条件下常用混凝土模型比较[J].计算机辅助工程,2008,17(1):1-5.
    [74]Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[A]. In: The 14th International Symposium on Ballistics. Quebec:,1993:591-600
    [75]张凤国,李恩征.大应变、高应变率及高压强条件下混凝土的计算模型[J].爆炸与冲击,2002,22(3):199-202.
    [76]崔伟峰.动能弹丸侵彻混凝土的数值模拟研究[D].长沙:国防科学技术大学,2003:
    [77]张凤国,李恩征.混凝土撞击损伤模型参数的确定方法[J].弹道学报,2001,13(4):12-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700