深海嗜热细菌热稳定木聚糖酶的性质及噬菌体GSVE1功能基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陆地资源开发已日趋饱和的今天,海洋资源的开发和利用日渐成为国际上关注的焦点。嗜热微生物作为其中重要的组成部分,不仅在生物系统进化中具有特殊地位,蕴涵生命进化历程中丰富的信息;其代谢过程中特殊的产物,尤其是嗜热酶在工业上有着广阔的应用前景,具有重要的研究意义。同时,对高温噬菌体的深入研究,将有助于了解其独特的生物化学和分子生物学特征,特别是相关结构基因及寻找强启动子方面的研究,将为嗜热菌表达系统的人工载体构建奠定基础。
     本研究从太平洋深海热液区筛选分离到一株高产木聚糖酶的嗜热菌MT-1,根据细菌16S rDNA序列分析,该嗜热菌属于Geobacillus sp.。从中克隆到一个编码331个氨基酸的木聚糖酶基因,并在Escherichia coli中高效表达。酶学性质测定结果表明,重组木聚糖酶的性质与粗酶类似,其最适温度和最适pH值分别为70℃和7.0,当温度高达90℃时,仍具有90%以上的酶活,且在pH 5.5-10范围内均可检测到较强的酶活。除了SDS对重组木聚糖酶酶活具有显著的抑制作用外,其他酶抑制剂PMSF、EDTA、2-ME、DTT(1mM)和去污剂Tween 20、Chaps、Triton X-100(0.1%)对酶活均无显著影响。金属离子对重组木聚糖酶酶活的影响研究表明,一价金属离子(Li~+、Na~+、K~+)对酶活略有促进作用,除Mg~(2+)、Ca~(2+)、Ba~(2+)以外的二价和三价金属离子普遍对酶活有强烈的抑制作用。目前,没有适合于嗜热细菌进行蛋白重组表达的载体,为了探索采用噬菌体构建嗜热菌表达系统,在本实验室已获得的深海嗜热细菌噬菌体GSVE1的基础上,研究了噬菌体尾部蛋白的功能。根据噬菌体GSVE1全基因组测序结果和开放阅读框的分析结果,对其中预测编码噬菌体结构蛋白的vp192基因开展研究,以噬菌体基因组为模板,克隆了vp192基因,并在E.coli中进行VP192蛋白的表达和纯化,制备抗体;Northern blot和Western blot结果显示,在噬菌体感染宿主菌后不同时期,vp192基因的转录和表达水平略有差异,大约在4h时达到最大值;免疫电镜结果显示,vp192基因如预测,编码噬菌体尾部的一个重要结构蛋白。进一步分析表明,该vp192基因处于一个尾部相关基因高度有序排列的功能基因簇的起始端,其下游的一段序列可能通过移码翻译的机制编码两个具有相同N末端的蛋白,随之对该移码翻译机制进行初步探索,将该段DNA序列克隆到带有GST标签的pGEX-4T-2表达载体中,并用GST单克隆抗体进行检测,发现同时存在两种蛋白,分子量大小与预期一致,分别为38 kDa和49 kDa,且两种蛋白在表达量上存在一定比例。
The resources in the ocean are the most abundant on the earth, and become more and more attractive to people, since the terrestrial resources have been fully developed these years. Thermophiles are adapted to survive at high temperature. They are of great importance in the study of biological systematic evolution. Moreover, they can produce unique biocatalysts that function under extreme conditions comparable to those prevailing in various industrial processes. The enzymes from thermophiles, therefore, are of great interest for industrial applications. Studies on thermophilic bacteriophages suggest that bacteriophages are not only helpful for understanding the life, but also of great potential use in industry to serve as an artifical expression vector.
     During the isolation of thermophiles, a xylanase-producing thermophilic strain MT-1, which was assigned to Geobacillus sp. MT-1 based on 16S rDNA sequence, was isolated from a deep-sea hydrothermal field in east Pacific. Subsequently, a xylanase gene encoding a 331 amino-acid peptide from this isolate was cloned and expressed in Escherichia coli. The recombinant xylanase exhibited maximum activity at 70°C and had an optimum pH of 7.0. It was active up to 90°C and showed activity over a wide pH ranging from 5.5 to 10.0. The crude xylanase presented similar properties in temperature and pH to those of the recombinant xylanase. The recombinant xylanase was stable in 1 mM of enzyme inhibitors (PMSF, EDTA, 2-ME or DTT) and in 0.1% detergents (Tween 20, Chaps or Triton X-100), whereas, it was strongly inhibited by sodium dodecyl sulfate (SDS) (1 mM). In addition, its catalytic function was stable in the presence of Li~+, Na~+ or K~+. However, it was strongly inhibited by Ni~(2+), Mn~(2+), Co~(2+), Cu~(2+), Zn~(2+), Cd~(2+), Hg~(2+) and Al~(3+) (1 or 0.1 mM).
     Based on the complete genome sequence and ORF analysis of deep-sea thermophilic bacteriophage GSVE1, the ORF (termed as vp192 gene) that probably encoded a structural protein was identified. The gene encoding a 192 amino-acid peptide was cloned and expressed in E. coli as a fusion protein with glutathione S-transferase (GST). Specific antibody was raised using the purified VP192 protein which was digested by thrombin. Temporal analysis showed that the vp192 gene was transcripted and expressed at various infection stages, and achieved the maximum amount at 4h. After incubation with anti-VP192 IgG followed by labelling with gold-labelled secondary antibody, the gold particles could be clearly found surrounding the tail of GSVE1 virions. This provided visual evidence that the vp192 gene encoded the phage tail protein. Further study was conducted to verify the translational frameshifting. The results revealed that the sequence downstream the vp192 gene encoded two proteins with the same N-terminal end. The ratio of the two proteins seemed to be a fixed number.
引文
[1] Rothschild L J, Mancinelli R L. Life in extreme environments [J]. Nature, 2001, 409: 1092–1101.
    [2] 和致中, 彭谦, 陈俊英等. 高温菌生物学[M]. 北京: 科学出版社, 2001.
    [3] Woese C R. Bacterial evolution [J]. Microbiol Rev, 1987, 51: 217–221.
    [4] Stackebrandt E, Goebel B M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species defenition in bacteriology [J]. Int J Syst Bacteriol, 1994, 44: 846–849.
    [5] Tamaoka J. Determination of DNA base composition. In: Chemical Methods in Prokaryotic Systematics (Goodfellow M and O’Donnell A G, Eds) [M]. Chichester: John Wiley and Sons, 1994.
    [6] Grimont P. Use of DNA reassociation in bacterial classification [J]. Can J Microbiol, 1998, 34: 541–546.
    [7] 周德庆. 微生物学教程[M]. 北京: 高等教育出版社, 1993.
    [8] Takai K, Horikoshi K. Genetic diversity of archeal diversity in deep-sea hydrothermal vent environments [J]. Genetics, 1999, 152: 1285–1297.
    [9] Vandamme P, Dewettinck D, Kersters K. Application of numerical analysis of electrophoretic Protein profiles for the identification of thermophilic campylobacvters [J]. Syst Appl Microbiol, 1992, 44(2): 338–347.
    [10] Moore L V H, Bourne D M, Moore W E C. Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic gram negative bacillic [J]. Int J Sys Bacteriol, 1994, 44(2): 338–347.
    [11] Nunes O C, Donato M M, Manaia C M. The polar lipid and fatty acid composition of rhodothermus strauns [J]. Sys Appl Microbiol, 1992, 15: 59–62.
    [12] 郭春雷, 彭谦. 高温菌研究进展 [J]. 生物学杂志, 2003, 20(4): 1–3.
    [13] Henne A, Bruggemann H, Raasch C, et al. The genome sequence of the extreme thermophile Thermus thermophilus [J]. Nature, 2004, 22(5): 547–553.
    [14] Kashefi K, and Lovley D R. Extending the upper temperature limit for life [J]. Science, 2003, 301(5635): 934.
    [15] Blochl E, Rachale R, Stette K O, et al. Pyrolobus fumarii, gen. and sp. nov. represents a novelgroup of Archaea, extending the upper temperature for life to 113oC [J]. Extemophiles, 1997, 1: 14–21.
    [16] Kurr M, Hubur R, Stetter K O. Methanopyrus kindleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 oC [J]. Arch Microbiol, 1991, 156: 239–247.
    [17] 王顺民. 嗜热酶的研究及其在食品等相关工业的应用 [J]. 山西食品工业, 2004, 3: 2-4.
    [18] Tolan J S. Pulp and paper, In T. Godfrey and S. West (ed.), Industrial enzymology, 2nd ed. Stockton Press, New York, 1996.
    [19] 崔宗均, 路鹏, 于会泳等. 高温菌特性的应用 [J]. 微生物学杂志, 2003, 23(4): 28–31.
    [20] 齐春梅, 张小平, 姚 昕. 嗜热微生物酶的嗜热机制及应用研究进展 [J]. 微生物学杂志, 2004, 24(4): 39–41.
    [21] Joseleau J P, Combtat J, Ruel K. Chemical structure of xylans and their interactions in the plant cell wall. In:Visser J, Beldman G, van Someren M A K, et al, eds. Xylans and Xylanases [M]. Amsterdam: Elservier, 1992, 1–15.
    [22] Aepinall G O. Structural chemistry of the hemicelluloses [J]. Adv Cardohydr Chem, 1999, 14: 429–430.
    [23] Beg Q K, Kapoor M, Mahajan L, et al. Microbiol xylanases and their industrial application: a review [J]. Appl Microbiol Biotechnol, 2001, 56: 326–338.
    [24] Sunna A, Autranikian G. xylanolytic enzymes from fungi and bactera [J]. Crtical Revieas in Biotechnology, 1997, 17(1): 39–67.
    [25] Kulkarni N, Shendye A, Rao M. Molecular and biotechnological aspects of xylanase [J]. FEMS Microbiol Rev, 1999, 23: 411–456.
    [26] Subramaniyan S, Prema P. Biotechnology of microbial xylanases: enzymology, molecular biology and application [J]. Crit Rev Biotechnol, 2002, 22(1): 33–64.
    [27] Siedenberg D, Gerlach S R, Schugerl K. Production of xylanase by Aspergillus awamori on synthetic medium in shake flask culture [J]. Process Biochem, 1998, 33: 429–433.
    [28] Gupta S, Bhushan B, Hoondal G S. Improved xylanase production from a haloalkalopohilic Staphlococcus sp. SG-13 using inexpensive agricultural residues [J]. World J Microbol Biotechnol, 2001, 16.
    [29] Xu J, Nogawa M, Okakda H. Xylanase induction by L-sorbose in a fungus Trichoderma reesei PC-3-7 [J]. Biosci Biotechnol Biochem, 1998, 62: 1555–1559.
    [30] Ikura Y, Horikoshi K. Stimulatory effect of certain amino acids on xylanase production by alkalophilic Bacillus sp. [J]. Agric Biol Chem, 1987, 51: 3143–3145.
    [31] Gupta S, Bhushan B, Hoondal G S. Enhanced production of xylanase from Staphylacoccus sp.SG-13 using amino acids [J]. World J Microbol Biotechnol, 1999, 15: 511–512.
    [32] Beg Q K, Bhushan B, Kapoor M. Effect of amino acids on production of xylanase and pectinase from a Streptomyces sp.QG-11-3 [J]. World J Microbol Biotechnol, 2000, 16(2): 211–213.
    [33] Bataillon M, Cardinali A P N, Duchiron F. Production of xylanase from a newly isolated alkalophilic themophilic Bacillus sp. [J]. Biotechnol Lett, 1998, 20: 1067–1071.
    [34] Bastawde K B. Xylan structure, microbial xylanases, and their mode of action [J]. World J Microbiol Biotechnol, 1992, 8: 353–368.
    [35] Wong K K, Tan L U, Saddler J. Multiplicity of β-1,4-xylanase in microorganisms: function and application [J]. Microbiol Rev, 1988, 52: 305–317.
    [36] Haltrich P, Nidetzky B, Kulbe K D. Production of fungal xylanase [J]. Bioresour Technol, 1996, 58:137–161.
    [37] Kulkarni N, Rao M. Application of xylanase from alkaliphilic thermophilic Bacillus sp. NCIM 59 in biobleaching of bagasse pulp [J]. J Biotechnol, 1996, 51: 167–173.
    [38] Chen C C, Adolphson R, Dean J F D, et al. Release of lignin from kraft pulp by a hyperthermophilic xylanase from Themromga maritima [J]. Enzyme Microb Technol, 1997, 20: 39–45.
    [39] Henrissat B, Bairoch A. Classification of glycosyl hydrolases based on amino acid sequence similarities [J]. Biochem J. 1991, 280: 309–316.
    [40] Gilkes N R, Henrissat B, Kilburn D G, Miller R C J, Warren R A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families [J]. Microbiol Mol Biol Rev, 1991, 55(2): 303–315.
    [41] Biely P, McKay D L, Farell R L. Catalytic properties of two major endo β-1, 4-mannanases of Penicillium kloeckeri [C]. Sixth International Conference on Biotechnology in the Pulp and Paper Industry, 1995, 11–15 Jun.
    [42] Zhu H, Paradis F W, P J Krell, et al. Enzymatic specificities and modes of action of the two catalytic domains of the XynC xylanase from Fibrobacter succinogenes S85 [J]. J Bacteriol, 1994, 176(13): 3885–3894.
    [43] Ferreira L M A, Hazlewood G P, Barker P J, et al. The cellodextrinase from Pseudomonas fluorescens subsp. cellulosa consists of multiple functional domains [J]. Biochem J, 1991, 279: 793–799.
    [44] Ferreira L M A, Durrant A J, Hall J, Hazlewood G P, Gilbert H J. Spatial separation of protein domains is not necessary for catalytic activity or substrate binding in a xylanase [J]. Biochem J, 1990, 269(1): 261–264.
    [45]邹永龙, 王国强. 木聚糖酶降解系统 [J]. 植物生理学通讯, 1999, 5: 404–410.
    [46] Irwin D, Jung E D and Wilson D B. Characterization and sequence of a Thermomonospora fusca xylanase [J]. Appl Environ Microbiol, 1994, 60(3): 763–770.
    [47] Black G W, Hazlewood G P, Millward-Sadler S J, et al. A modular xylanase containing a novel non-catalytic xylan-specific binding domain [J]. Biochem J, 1995, 307: 191–195.
    [48] Sunna A, Gibbs M D, Bergquist P L. The thermostabilizing domain, XynA, of Caldibacillus cellulovorans xylanase in a xylan binding domain [J]. Biochem J, 2000, 346: 583–586.
    [59] Lee Y E, Lewe S E,Henrissat B, et a1.Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobaeterium saccharolyticum B6A-RI [J]. J Bacteriol, 1993, 175(18): 5890–5898.
    [50] Winterhalter C, Hinrich P, Candussio A, et a1. Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilie bacterium Thermotoga maritime [J]. Mol Microbiol, l995, l5(3): 43l–444.
    [51] Gilbert H J, Hazlewood G P. Bacterial celluloses and xylanases [J]. J Gener Microbial. 1993, 139: 187–194.
    [52] Flint H J, Zhang J X. Molecular biology of xylanases from the rumen cellulolytic anaerobe Ruminococcus flavefaciens 17-multiple genes and bifunctional enzymes.In: Visser J,Beldman G, Kustersvan Someren et al(eds). Xylans and Xylanase [M]. Amsterdam: Elevier, 1992, 301–308.
    [53] 邵蔚蓝, 薛业敏. 以基因重组技术开发木聚糖类半纤维素资源 [J]. 食品与生物技术, 2002, 21(1): 88–93.
    [54]Viikari L, Ranva M, Kantelinen A. Bleaching with enzymes [C]. Third international Conference in biotechnology in Pulp and Paper Industry, 1986, 16.
    [55] Mohn W W, Stewart GR. Bacterial metabolism of chlorinated dehydroabietic acids occurring in pulp and paper mill effluents [J]. Appl Environ Microbiol, 1997, 63: 3014–3020.
    [56] Onysko K A. Biological bleaching of chemical pulps: a review [J]. Biotechnol Adv, 1993, 11: 179–198.
    [57] Viikari L, Kantelines A, Buchert J. Enzymatic accessibility of xylans in ligno cellulosic materials. Appl Microbiol Biotechnol, 1994b, 41: 124–129.
    [58] Srinivasan M C, Rele M V. Microbial xylanase for paper industry [J]. Cerr Sci, 1999, 77: 137–142.
    [59] Garg A P, Roberts J C, McCarthy A J. Bleach roosting effect of cellulase-free xylanase of streptomyces Thermoviolaceus and its comparison with two commercial enzyme preparations on birchwood kraft pulp [J]. Enzyme Microb Technol, 1998, 22: 594–598.
    [60] McCleary B V. Enzymatic modification of plant polysaccharides [J]. Int J Macromol, 1986, 8: 349–354.
    [61] Ogasawara H, Takahashi K, Iitsuka K, et a1.Contribution of Hemiccllulase in Shochu koji to the Resolution of Barley in the Shochu Mash [J].J Brew Soc Japan, 1991, 86(4): 304–307.
    [62] Wong K K Y, Saddler J N. Applications of hemicellulases in the food, feed, pulp and paper industries; in coughlen P P, hazlewood G P(eds). Hemicellulases and hemicellulases [M]. London: Portland Press, 1992, 127–143.
    [63] Christophersen C, Anderson E, Jokobsen T S. Xylanases in wheat separation [J]. Starch Staerke, 1997, 49: 5–12.
    [64] Wong K K Y, Saddler J N. Trichoderma xylanase: Their properties and application: Xylan and Xylanase [M]. Amsterdam:Elsevier, 1992, 171–186.
    [65] Bradley DE. Ultrastructure of bacteriophages and bacteriocins [J]. Bacteriol Rev, 1967, 31: 230–314.
    [66] Ackermann H W, DuBow M S. Viruses of prokaryotes, vol I, general properties of bacteriophages [J]. CRC Press, Boca Raton, 1987, 13–47.
    [67] Van Regenmortel M H V, Fauquet C M, Bishop D H L, Carstens E, Estes M K, Lemon S, Maniloff J, Mayo M A, McGeoch D J, Pringle C R, Wickner R. Virus Taxonomy Classification and Nomenclature of Viruses. Seventh Report of the International Committee on Taxonomy of Viruses. Academic Press, San Diego. 2000.
    [68] Ackermann H W. Frequency of morphological phage descriptions [J]. Arch Virol, 1992, 124: 201–209.
    [69] Ackermann H W. Frequency of morphological phage descriptions in 1995 [J]. Arch Virol, 1996, 141: 209–218.
    [70] Ackermann H W. Tailed bacteriophages: the order Caudovirales [J]. Adv Virus Res,1999, 51: 135–201.
    [71] Xiang X Y, Chen L M, Huang X X, Luo YM, She Q X, Huang L. Sulfobus tendchongensis spindle-shaped virus STSV1: virus-host interactions and genomic features [J]. J Virol, 2005, 79: 8677–8686.
    [72] Geslin C, Romancer M L, Erauso G, Gaillard M, Perrot G, Prieur D. PAV1, the first virus-like particle isolated from a hyperthermophilic euryarchaeote, “Pyrococcus abyssi” [J]. J Bacteriol, 2003, 185: 3888–3894.
    [73] Ha¨ring M, Rachel R, peng X, Garrett R A, Prangishvili D. Viral diversity in hot springs of Pozzuli, Italy, and characterization of a unique archaeal virus, Acidianus bottle-shaped virus, from a new family, the Ampullaviridae [J]. J Virol, 2005, 79: 9904–9911.
    [74] Rice G, Liang T, Kenneth S, Francisco R, Josh S, Eric G, John E J, Trevor D, Mark Y. The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life [J]. Proc Natl Acad Sic, 2004, 101: 7716–7720.
    [75] Sakaki Y, Oshima T. Isolation and characterization of a bacteriophage infectious to an extreme thermophile, thermus thermophilus HB8 [J]. J Virol, 1974, 15: 1449–1453.
    [76] Zillig W, Kletzin A, Schleper C, Holz I, Janekovic D, Hain H, Lanzendorfer M, Kristjanson J K. Screening for Sulfolobales, their plasmids and their viruses in Icelandic solfataras [J]. Syst Appl Microbiol, 1994, 16: 609–628.
    [77] Fuhrman J A. Marine viruses and their biogeochemical and ecological effects [J]. Nature, 1999, 399: 541–548.
    [78] Bin L, Suijie Wu, Qing S, Xiaobo Z, Lianhui Xie. Two novel bacteriophages of thermophilic bacteria isolated from deep-sea hydrothermal fields [J]. Curr Microbiol, 2006, (53): 163–166.
    [79] Farabaugh P J. Programmed translational frameshifting [J]. Annu Rev Genet, 1996, 30: 507 –528.
    [80] Gesteland R F, Atkins J F. Recoding: dynamic reprogramming of translation [J]. Annu Rev Biochem, 1996, 65: 741–768.
    [81] Matsufuji S, Matsufuji T, Miyazaki Y, Murakami Y, Atkins J F, Gesteland R F, Hayashi S.Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme [J]. Cell, 1995, 80: 51–60.
    [82] Craigen W J, Caskey C T. Expression of peptide chain release factor 2 requires high- efficiency frameshift [J]. Nature, 1986, 322: 273–275.
    [83] Giedroc D P, Theimer C A, Nixon P L. Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting [J]. J Mol Biol, 2000, 298: 167–185.
    [84] Bergquist P L, Gibbs M D, Morris D D, Teó V S J, Saul D J, Morgan H W. Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria [J]. FEMS Microbiol Ecol, 1999, 28: 99–110.
    [85] Fontes C M, Hazlewood G P, Morag E, Hall J, Hirst B H, Gilbert H J. Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria [J]. Biochem J, 1995, 307: 151–158.
    [86] Connerton I, Cumming N, Harris G W, Debeire P, Breton C. A single domain thermophilic xylanase can bind insoluble xylan: evidence for surface aromatic clusters [J]. Biochim Biophys Acta, 1999, 1433: 110–121.
    [87] Gibbs M D, Reeves R A, Bergquist P L. Cloning sequencing and expression of a xylanase Gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1 and activity of the enzyme on fiber-bound substrate [J]. Appl Environ Microbiol, 1995, 61: 4403–440.
    [88] Khanna S, Gauri P. Regulation, purification and properties of xylanase from Cellulomonas fimi [J]. Enzyme Microb Technol, 1993, 15: 990–995.
    [89] Clarke J H, Davidson K, Gilbert H J, Fontes C, Hazlewood G P. A modular xylanase from mesophilic Cellulomonas fimi contains the same cellulose-binding and thermostabilizing domains as xylanases from thermophilic bacteria [J]. FEMS Microbiol Lett, 1996, 139: 27–35.
    [90] Blanco A, Díaz P, Zueco J, Parascandola P, Pastor F I J. A multidomain xylanase from a Bacillus sp. with a region homologous to thermostabilizing domains of thermophilic enzymes [J]. Microbiology, 1999, 145: 2163–2170.
    [91] Sunna A, Gibbs M D, Bergquist P L. A novel thermostable multidomain 1,4-β-xylanase from ‘Caldibacillus cellulovorans’and effect of its xylan-binding domain on enzyme activity [J]. Microbiology, 2000, 146: 2947–2955.
    [92] Shibuya H, Kaneko S, Hayashi K. Enhancement of the thermostability and hydrolytic activity of xylanase by random gene shuffling [J]. Biochem J, 2000, 349: 651–656.
    [93] Xiaoyan W, Jianyi S. Construction, expression and characterization of a thermostable xylanase [J]. Curr Microbiol, 2005, 51: 188–192.
    [94] Cacciapuoti G, Fusco S, Caiazzo N, et al. Heterologous expression of 5’-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus: characterization of the recombinant protein and involvement of disulfide bonds in thermophilicity and thermostability [J]. Protein Expression Purif , 1999, 16 (1): 125–135.
    [95] Olsen O,Thomsen KK.Improvement of bacterial β-glucanase thermostability by glycosylation [J]. J Gen Microbiol, 1991, 137 (3): 579–585.
    [96] Brussow H, Hendrix RW. Phage genomics: small is beautiful [J]. Cell, 2002, 108: 13–16.
    [97] Casjens S R, Hatfull G F, Hendrix R W. Evolution of dsDNA tailed-bacteriophage genomes [J]. Semin Virol, 1992, 3: 383–397.
    [98] Xu J, Roger W H, Robert L D. Conserved translational frameshift in dsDNA bacteriophage tail assembly genes [J]. Mol Cell, 2004, 16: 11–21.
    [99] Levin M E, Hendrix R W, Casjens S R. A programmed translational frameshift is required for the synthesis of a bacteriophage lambda tail assembly protein [J]. J Mol Biol, 1993, 234: 124–139.
    [100] Sampson L L, Hendrix R W, Huang W M, Casjens S R. Translation initiation controls the relative rates of expression of the bacteriophage lambda late genes [J]. Proc Natl Acad Sci, 1988, 85: 5439–5443.
    [101] Xu, J. A conserved frameshift strategy in dsDNA long tailed bacteriophages. PhD thesis, University of Pittsburgh, Pittsburgh, Pennsylvania, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700