碳纳米管/尼龙66复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对能源消耗问题的关注,对摩擦和磨损方面的研究越来越重视。高分子聚合物摩擦材料,因其具有强度/质量比高、制造工艺简单以及优异的化学稳定性和摩擦学特性,可以明显减轻材料重量,降低材料的磨损,被广泛应用于航空、航天、化工、纺织、机械、仪器仪表、汽车及医学等领域。尼龙66作为一种典型工程塑料,具有很高的机械强度,耐热性,磨擦系数低,耐磨损,自润滑性,吸震性,耐油,耐弱酸、弱碱,电绝缘性好;而且在较高温度也能保持较高的强度和刚度,特别是耐热性和耐油性好,适合制造汽车发动机周边部件和容易受热的部件。
     为了提高尼龙66作为齿轮、轴承等材料的耐磨性。本论文在多壁碳纳米管(MWCNTs)表面改性的基础上,采用熔融共混法制备了一系列MWCNTs/尼龙66复合材料,研究了MWCNTs的修饰改性和胺化碳纳米管(D-MWCNTs)含量对复合材料的加工流变性和产物分散性的影响,通过对复合材料结晶性能和力学性能的研究,得到MWCNTs的修饰方法和D-MWCNTs含量对复合材料摩擦性能的影响。具体研究结果如下:
     (1) MWCNTs的表面改性。通过对MWCNTs进行酸化和胺化处理,分别在MWCNTs表面接枝了羧基、羟基、羰基,以及胺基官能团。确定了最佳混酸处理和胺化修饰改性条件,制备了分散均匀、表面含有胺基官能团的MWCNTs。
     (2) MWCNTs/尼龙66复合材料的制备。通过转矩流变仪制备了一系列MWCNTs/尼龙66复合材料,研究显示,MWCNTs的胺化处理,改善了MWCNTs与尼龙66之间的相容性,提高了MWCNTs在尼龙66基体中的分散性。确定了最佳复合材料制备过程的工艺参数。
     (3MWCNTs/尼龙66复合材料的结晶性能和热性能。研究了MWCNTs修饰方法和D-MWCNTs含量对尼龙66非等温结晶熔融行为、结晶结构及热稳定性的影响。
     1)由于D-MWCNTs的诱导作用,添加D-MWCNTs复合材料的熔融焓增大。随着D-MWCNTs含量的增加,复合材料的熔融温度降低,结晶峰值温度增加,熔融焓呈现先增大后减小的趋势。
     2)MWCNTs/尼龙66复合材料非等温结晶动力学研究证明,D-MWCNTs的添加阻碍了尼龙66分子链运动,使尼龙66在较高温度下开始结晶,结晶增长变缓,复合材料的结晶速率减小,改变了尼龙66的成核和生长机理,改变了复合材料的结晶和增长过程。
     3) MWCNTs/尼龙66复合材料结晶结构研究表明,D-MWCNTs的添加,改善了MWCNTs与尼龙66的相容性,减弱了MWCNTs对复合材料结晶结构的影响;当D-MWCNTs含量为2.5wt%时,对复合材料结晶结构的影响最小。
     4) MWCNTs/尼龙66复合材料的热稳定性研究表明,在惰性气氛下,MWCNTs没有改变复合材料的降解趋势,随着D-MWCNTs含量的增加,复合材料的最终热分解温度增加,热稳定提高;最终失重率相应增加,且与预混质量相当,说明改性MWCNTs在尼龙66基体中分布均匀。
     (4) MWCNTs/尼龙66复合材料的力学和摩擦性能。重点研究了尼龙66和MWCNTs/尼龙66复合材料的力学性能及干态、非润滑、反共形接触摩擦磨损性能,分析了MWCNTs对复合材料摩擦磨损机理的影响,并利用纳米压痕仪分析了摩擦前后复合材料的微观性能的变化。
     1)当MWCNTs含量相同时,酸化碳纳米管(A-MWCNTs)和D-MWCNTs的添加,使复合材料的拉伸强度和弹性模量增加,同时,由于MWCNTs具有刚性,导致所有材料的断裂伸长率较纯尼龙66明显下降;随着D-MWCNTs含量的增加,复合材料的拉伸强度和弹性模量都呈现先增加后减小的趋势,当其含量为2.5wt%时,达到最大值。
     2)当MWCNTs含量相同时,在稳定摩擦阶段,MWCNTs的表面改性有效降低了复合材料的摩擦系数和磨损率;当D-MWCNTs含量为2.5wt%时,摩擦系数最小,磨损率最低。
     3)当MWCNTs含量相同时,由于D-MWCNTs与尼龙66基体之间存在良好的界面相容性,仅在D-MWCNTs/尼龙66复合材料的磨损表面形成了转移膜,其余材料表面都产生了微裂纹;当D-MWCNTs含量增加至5wt%时,复合材料表面的转移膜消失,微裂纹再次出现,说明当MWCNTs含量过多时,导致MWCNTs在尼龙66基体中团聚,使复合材料性能下降。
     4)当MWCNTs含量相同时,摩擦使尼龙66的硬度和模量明显增加,而D-MWCNTs/尼龙66复合材料的最大压痕深度、硬度和弹性模量在摩擦前后没有明显变化;在摩擦前后,D-MWCNTs含量不改变复合材料的性能。
More and more attentions have been paid to the studies of friction and wear, as the problems of energy consumption are causing ever increasing concern. Owing to the high strength/weight ratio of polymer materials, the application of these materials can significantly reduce the total weight of machinery components and effectively prevent the wear and tear of the mechanical parts. Other advantages, such as simple manufacturing process, excellent chemical stability and tribological properties, also make polymer materials the popular candidates in aviation, aerospace, chemical, textile, machinery, instrumentation, automotive, medicaland many other industries. PA66, as a popular engineering plastics, has high mechanical strength, heat resistance, excellent wear resistance and self-lubrication properties, good shock absorption, good resistance to oil, weak acid, weak alkali and outstanding electrical insulation property. It also is capable of maintaining strong strength and stiffness at high temperature. Furthermore, its fantastic resistance to heat and oil makes it particularly suitable to be used as the material in manufacturing automobile engine parts which often operate in high temperature environment.
     In order to improve the abrasive resistance performance of PA66as gears, bearings and other engineering materials, a series of MWCNTs/PA66composite materials were prepared using melt blending process on the basis of the practice of surface modification of PA66by MWCNT. The effected of the modification of MWCNTs and content of aminated MWCNTs (D-MWCNTs) on the rheological property of the composite and the additive dispersibility were investigated. Based on the study on crystallization properties and mechanical properties of the composites, the frictional performance of the composites with differently modified MWCNTs and different content of D-MWCNTs was discussed. The main conclusions are listed as follows:
     (1) The surface modification of MWCNTs. Through acidification and amination of MWCNTs, carboxyl, hydroxyl, carbonyl, and amino functional groups were attached onto the surface of MWCNTs. The optimum modification conditions were determined, uniform dispersion of MWCNTs modified with amino functional groups was achieved.
     (2) MWCNTs/PA66composite preparation. A series of MWCNTs/PA66composites were prepared using torque rheometer. D-MWCNTs greatly improved the compatibility between MWCNTs and PA66and therefore enhanced the dispersion of MWCNTs in PA66matrix. The optimum technology parameters for the composite preparation process were determined.
     (3) The crystal properties and thermal performance of MWCNTs/PA66composite. The effects of surface modification method of MWCNTs and the effects of D-MWCNTs content on the PA66non-isothermal melting crystallization behavior, crystalline structure and thermal stability were investigated.
     1) Owing to the entrainment effect of D-MWCNTs, the melting enthalpy of the composites was increased by the addition of MWCNTs. With the increase of D-MWCNTs content, the melting temperature of the composites reduced and the crystallization peak temperature increased; the melting enthalpy firstly increased to a maximum and then decreased with the increase of D-MWCNTs content.
     2) The non-isothermal crystallization kinetics of the MWCNTs/PA66 composites demonstrates that by adding D-MWCNTs chain motion of PA66was hindered, so that PA66started crystallization at higher temperature, and the crystallization growth became slow, the crystallization rate decreased. The nucleation and growth mechanism of PA66were changed, as well as the crystallization and the growth process of the composites.
     3) The research on the crystalline structure of MWCNTs/PA66composites shows that:surface modification of MWCNTs to D-MWCNTs improved the compatibility of the additive with PA66and weakened the influence of MWCNTs on the crystalline structure of composites. When D-MWCNTs content was2.5wt%, the influence on crystalline structure of the composite materials was the smallest.
     4) TG analysis of MWCNTs/PA66composites shows that under inert atmosphere MWCNTs did not change the degradation trend of composites. With the increase of D-MWCNTs content, the final decomposition temperature of composites increased, the thermal stability was improved; the final weightlessness of composites increased, while with the increase of D-MWCNTs amount, the final residue and matched well with the expected percentage, which suggests that modified MWCNTs mixed well with PA66matrix.
     (4) The mechanical properties and frictional performance of MWCNTs/PA66composites. Research was mainly focused on the mechanical properties of PA66and MWCNTs/PA66composites and friction and wear properties of the composites at dry, unlubricated and anti-conformal contact condition. The influence mechanism of MWCNTs on friction and wear mechanism of the composite materials was discussed. Nano indentation was employed to analyse the changes of micro mechanical properties of the composite in the friction tests.
     1) When the additives with the same content were employed, acidification-and amination-modified MWCNTs increased tensile strength and elastic modulus of the composites. At the same time, owing to the rigidness of MWCNTs, all the elongation at break of the composites was markedly reduced compared with pure PA66. With the increase of the addition content of D-MWCNTs, tensile strength and elastic modulus showed a trend of decrease after the initial increase. Tensile strength and elastic modulus reached the maximum at2.5wt%addition content.
     2) With the identical addition content of D-MWCNTs, reduction on the friction coefficient and wear rate of the composite at the stable friction stage was observed for the surface-modified MWCNTs. The lowest friction coefficient and wear rate were achieved when2.5wt%D-MWCNTs was added in the composite.
     3) When the MWCNTs content was constant, as a result of the good interfacial compatibility of D-MWCNTs with PA66matrix, the formation of a transfer film was only found on wear surfaces of the MWCNTs/PA66composite, micro cracks were observed on the surface of the rest of the materials; When D-MWCNTs content further increased to5wt%, transfer film on the surface of the composite disappeared and was replaced by the micro cracks. It suggests that when the MWCNTs content was too much, the agglomeration of MWCNTs in PA66occurred and the degradation of the material performances was resalted.
     4) When the MWCNTs content was constant, the hardness and modulus of PA66were significantly increased after friction test. While, no considerable change in maximum indentation depth, hardness and elastic modulus were found in the D-MWCNTs/PA66composite after the friction test. D-MWCNTs content did not change the performance of the composite either before or after the friction test.
引文
[1]段天慧,田贞先,孙永安等.高温轴承保持架自润滑材料[J].轴承,1996,8:29-36.
    [2]Michlin Y, Myunster V. Determination of power losses in gear transmissions with rolling and sliding friction incorporated [J]. Mechanism and Machine Theory,2002,37(2): 167-174.
    [3]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002.
    [4]陈岁元,邢蕊蕊,刘常升等.新型铜基自润滑材料的制备[J].东北大学学报(自然科学版),2007,28(9):1285-1288.
    [5]曹同坤,邓建新,杨秋菊.陶瓷自润滑材料及其实现自润滑的方式[J].硅酸盐通报,2004,2:32-35.
    [6]陈志刚,陈晓虎,刘军.A12O3基陶瓷摩阻材料的摩擦磨损特性[J].摩擦学学报,1997,17(3):267-271.
    [7]陆大雄.摩擦学导论[M].北京:水利电力出版社,1990.
    [8]乔红斌,田雪梅,吴芳.高分子自润滑材料研究进展[J].材料导报,2007,21(10):24-26.
    [9]Mao K, Li W, Hooke C J, et al. Friction and wear behaviour of acetal and nylon gears [J]. Wear,2009,267(1-4):639-645.
    [10]王学浩.摩擦学概论[M].北京:北京出版社,1990.
    [11]浦玉萍,吕广庶,王强.高分子基自润滑材料的研究进展[J].航空学报,2004,25(2):180-186.
    [12]吴宏博,孙立娜.汽车用聚合物基复合材料的新进展[J].纤维复合材料,2012,1:7-12.
    [13]钱知勉.塑料性能应用手册(修订版)[M].上海:上海科学技术文献出版社,1988.
    [14]邓如生,魏运方,陈步宁.聚酰胺树脂及其应用[M].北京:化学工业出版社,2001.
    [15]Zhang X K, Xie T X, Yang G S. Isothermal crystallization and melting behaviors of nylon 11/nylon 66 alloys by in situ polymerization [J]. Polymer,2006,47(6):116-2126.
    [16]Yu S R, Hu H X, Yin J. Effect of rubber on tribological behaviors of polyamide 66 under dry and water lubricated sliding [J]. Wear,2008,265(3-4):361-366.
    [17]Chang L, Zhang Z, Zhang H, et al. On the sliding wear of nanoparticle filled polyamide 66 composites [J]. Composites Science Technology,2006,66(16):3188-3198.
    [18]温诗铸.纳米摩擦学[M].北京:清华大学出版社,1998.
    [19]胡海霞.环氧树脂及尼龙66基复合材料的摩擦磨损性能[D].沈阳:吉林大学,2008.
    [20]Kumar B N, Suresha B, Venkataramareddy M. Effect of particulate fillers on mechanical and abrasive wear behaviour of polyamide 66/polypropylene nanocomposites [J]. Materials & Design,2009,30(9):3852-3858.
    [21]Wang X, Bradford P D, Liu W, et al. Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching [J]. Composites Science and Technology,2011,71(14):1677-1683.
    [22]Hopmann C, Michaeli W, Puch F. Experimental investigation on the influence of the composition on the morphology and the mechanical properties of short glass fiber-reinforced polypropylene nanocomposites [J]. Polymer Composites,2012,33(12): 2228-2235.
    [23]Muhammad I S, Zulfiqar S, Ahmad Z. Preparation and properties of polyamide-titan ia nanocomposites [J]. Journal of Sol-Gel Science and Technology,2007,44 (1):41-46.
    [24]Yamashita A, Takahara A, Kajiyama T. Aggregation structure and fatigue characteristics of (nylon6/clay) hybrid [J]. Composite Interfaces,1999,6(3):247-258.
    [25]张坤,王林江,吴新明.聚丙烯/尼龙6/纳米蒙脱石复合材料的制备及热性能研究[J].化工新型材料,2008,36(3):32-41.
    [26]Fornes T D, Yoon P J, Hunter D L, et al. Effect of organoclay structure on nylon 6 nanocomposite morphology and properties [J]. Polymer,2002,43(22):5915-5933.
    [27]Kim G M, Lee D H, Hoffmann B, et al. Influence of nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites [J]. Polymer,2001,42(3): 1095-1100.
    [28]周志华,曾海林,高超等.原位缩聚法制备碳纳米管/尼龙11复合材料[J].高分子学报,2008,2:188-191.
    [29]贾志杰,王正元,徐才录等.原位法制取碳纳米管/尼龙6复合材料[J].清华大学学报(自然科学版),2000,40(4):14-16.
    [30]Saeed K, Park S Y. Preparation of multiwalled carbonna notube/nylon-6 nanocomposites by insitu Polymerization [J]. Joumal of Applied Polymer Seience,2007,106(6): 3729-3735.
    [31]徐丽华.碳纳米管/尼龙6(66)的溶液共混法制备及其性能[D].太原:太原理工大学,2012.
    [32]陈玉莹,赫秀娟.溶液共混法制备改性碳纳米管/尼龙12复合材料的性能研究[J].沈阳化工大学学报,2011,25(2):131-134.
    [33]Zhou S F, Zhang Q X, Wu C Q, et al. Effect of carbon fiber reinforcement on the mechanical and tribological properties of polyamide 6/polyphenylene sulfide composites [J]. Materials and Design,2013,44:493-499.
    [34]Qiu L, Yang Y Z, Xu L H, et al. Influence of surface modification of carbon nanotube on microstructures and properties of polyamide 66/multiwalled carbon nanotube composites [J]. Polymer Composites,2013,34:656-664.
    [35]徐翔民,张予东,李宾杰等.纳米Si02/尼龙66复合材料的力学性能和热性能[J].复合材料学报,2008,25(4):56-60.
    [36]Srinath G, Gnanamoorthy R. Sliding wear performance of polyamide 6-clay nanocomposites in water [J]. Composites Science and Technology,2007,67(3-4): 399-405.
    [37]李国禄,胡芸,刘金海等.玻璃微珠改性含油铸型尼龙力学性能研究[J].工程塑料应用,2008,32(9):13-15.
    [38]Monserrat G, Matthijn D R, Louis W. et al.Friction and wear studies on nylon-6/SiO2 Nanocomposites [J]. Journal of Applied Polymer Science,2004,92(3):1855-1862.
    [39]蒋元博,欧雪梅,耿德英等.偶联剂处理纳米Si02对尼龙1010力学与摩擦学性能的影响[J].现代塑料加工应用,2011,23(4):53-57.
    [40]王军祥,葛世荣,张晓云等.纤维增强聚合物复合材料的摩擦学研究进展[J].中国矿业大学学报,2000,20(1):76-80.
    [41]欧玉春.刚性粒子填充聚合物的增强增韧与界面相结构[J].高分子材科学与工程,1998,2:12-15.
    [42]Zhang C, Tjiu W W, Liu T X, et al. Dramatically enhanced mechanical performance of nylon-6 magnetic composites with nanostructured hybrid one-dimensional carbon nanotubei two-dimensional clay nanoplatelet hetero structures [J]. The Journal of Physical Chemistry B,2011,115(13),3392-3399.
    [43]Li Y, Yu J, Guo Z X. The influence of interphase on nylon 6/nano-SiO2 composite materials obtained from in situ polymerization [J]. Polymer International,2003,52 (6): 981-986.
    [44]李莹,于健.原位聚合制备尼龙6/纳米SiO2复合材料研究.工程塑料应用[J].2002.30(9):7-11.
    [45]Yoo Y, Spencer M W, Paul D R. Morphology and mechanical properties of glass fiber reinforced Nylon 6 nanocomposites [J]. Polymer,2011,52 (I):180-190.
    [46]王留阳,何素芹,郝留成等.尼龙1010/蒙脱士纳米复合材料的合成与表征[J].高分子材料科学与工程,2002,18(4):62-64.
    [47]Meszaros L, Deak T, Balogh G, et al. Preparation and mechanical properties of injection moulded polyamide 6 matrix hybrid nanocomposite [J]. Composites Science and Technology,2013,75:22-27.
    [48]朱金唐,付中玉.熔融共混制备尼龙6/纳米SiO2复合材料与性能研究[J].北京服装学院学报,2006,26(4):12-17.
    [49]Jiang C, Wang D, Zhang M J, et al. Effect of highly filled ferrites on non-isothermal crystallization behavior of polyamide 6 bonded ferrites [J]. European Polymer Journal, 2010,46 (11):2206-2215.
    [50]蔡力锋,林志勇.纳米SiO2/MC尼龙6原位复合材料等温结晶行为的研究[J].塑料科技,2010,38(4):61-64.
    [51]Liu Y, Yang G S. Non-isothermal crystallization kinetics of polyamide-6/graphite oxide nanocomposites [J]. Thermochimica Acta,2010,500 (1-2):13-20.
    [52]Ozdilek C, Kazimierczak K, Picken S J, et al. Preparation and properties of polyamide-6-boehmite nanocomposites [J]. Polymer,2004,45(15):5207-5214.
    [53]Qin S, Qin D, Ford W T, et al. Grafting of poly (4-vinylpyridine) to single-walled carbon nanotubes and assembly of multilayer films [J]. Macromolecules,2004.37(26):9963-9967.
    [54]Miltner H E, Grossiord N, Lu K B, et al. Isotactic polypropylene/carbon nanotube composites prepared by latex technology. Thermal analysis of carbon nanotube-induced nucleation [J]. Macromolecules,2008,41(15):5753-5762.
    [55]Jung Y C, Kim H H, Kim Y A, et al. Optically active multi-walled carbon nanotubes for transparent, conductive memory-shape polyurethane film [J]. Macromolecules,2010, 43(14):6106-6112.
    [56]Lu K B, Grossiord N, Koning C E, et al. Carbon nanotube/isotactic polypropylene composites prepared by latex technology:morphology analysis of CNT-induced nucleation [J]. Macromolecules,2008,41 (21):8081-8085.
    [57]Huang C L, Wang C. Rheological and conductive percolation laws for syndiotactic polystyrene composites filled with carbon nanocapsules and carbon nanotubes [J]. Carbon,2011,49(7):2334-2344.
    [58]O'Connor I, De S, Coleman I N, et al. Development of transparent, conducting composites by surface infiltration of nanotubes into commercial polymer films [J]. Carbon,2009,47(8):1983-1988.
    [59]Li M, Boggs M, Beebe T P, et al. Oxidation of single-walled carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound [J]. Carbon,2008,46(3):466-475.
    [60]Coleman J N, Khan U, Blau W J, et al. Small but strong:a review of the mechanical properties of carbon nanotube-polymer composites [J]. Carbon,2006,44(9):1624-1652.
    [61]Zhang Y Y, Sheehan C J, Zhai J Y, et al. Polymer-embedded carbon nanotube ribbons for stretchable conductors [J]. Advanced Materials,2010,22(28):3027-3301.
    [62]Kroto H W, Heath J R, Smalley R E, et al. C 60:buckminsterfullerene. Nature,1985, 318-1623.
    [63]lijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-58.
    [64]Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes [J]. Science,1996,273:483-487.
    [65]Tans S J, Devoret M H, Dai H, et al. A. Individual single-wall carbon nanotubes as quantum wires [J]. Nature,1997,386:474-477.
    [66]Xie X L, Mai Y W, Zhou X P, et al. Dispersion and alignment of carbon nanotubes in polymer matrix:A review [J]. Materials Science and Engineering:R,2005,49(4): 89-112.
    [67]齐景山.一维半导体纳米结构的物性研究及其器件设计[D].南京:南京航空航天大学,2011.
    [68]成会明.纳米碳管制备、结构、物性及应用[M].北京:化学工业出版社,2002.
    [69]解思深,潘正伟,王恩哥.超长定向碳纳米管列阵的制备[J].物理,1999,28(1):1-9.
    [70]Choi S, Zhang Z G, Yu W, et al. Anomalous thermal conductivity enhancement in nanotube suspensions [J]. Applied Physics Letters,2001,79(14):2252-2254.
    [71]张继红,魏秉庆,梁吉等.激光熔覆巴基管/球墨铸铁的研究[J].金属学报,1996,32(9):980-984.
    [72]陈卫祥,甘海洋,涂江平等.Ni-P-纳米碳管化学复合镀层的摩擦摩损特性[J].摩擦学学报,2002,22(4):241-244.
    [73]Yang Z, Dong B, Huang Y, et al. Enhanced wear resistance and micro-hardness of polystyrene nanocomposites by carbon nanotubes [J]. Materials Chemistry and Physics, 2005,94(1):109-113.
    [74]Yang D Q, Sacher E. Strongly enhanced interaction between evaporated Pt nanoparticles and functionalized multiwalled carbon nanotubes via plasma surface modifications: effects of physical and chemical defects [J]. The Journal of Physical Chemistry C,2008, 112(11):4075-4082.
    [75]Ning J, Zhang J, Pan Y, et al. Surfactants assisted processing of carbon nanotube reinforced SiO2 matrix composites [J]. Ceramics International,2004,30(1):63-67.
    [76]Meng L, Fu C, Lu Q. Advanced technology for functionalization of carbon nanotubes [J]. Progress in Natural Science,2009,19(7):801-810.
    [77]Liu F, Zhnag X B, Cheng J P, et al. Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior [J]. Carbon,2003,41(13): 2527-2532.
    [78]Konya Z, Vesselenyi I, Niesz K, et al. Large scale production of short functionalized carbon nanotubes [J]. Chemical Physics Letters,2002,360:429-435.
    [79]Zhang M, Yudasaka M, Iijima S. Diameter enlargement of single-wall carbon nanotubes by oxidation [J]. Journal of Physical Chemistry B,2004,108:149-153.
    [80]Saito T, Matsushige K, Tanaka K. Chemical treatment and modification of multi-walled carbon nanotubes [J]. Physica Status Solidi B-Basic Research,2002,323:280-283
    [81]Hu H, Bhowmilk P, Zhao B, et al. Determination of the acidic sites of purified single walled carbon nanotubes by acid-base titration [J]. Chemical Physics Letters,2001,345: 25-28.
    [82]Wang Y, Wu J, Wei F. A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio [J]. Carbon, 2003,41:2939-2948.
    [83]Christopher A D, James M. Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization [J]. Chemistry-A European Journal,2004, 10(4):812-817.
    [84]Hunag W J, Fernando S, Allard L F, et al. Solubilization of single-walled carbon nanotubes with diamine-terminated oligomeric poly(ethylene glycol) in different functionalization reactions [J]. Nano Letters,2003,3(4):565-568.
    [85]Sennett M, Welsh E, Wright J B, et al. Dispersion and alignment of carbon nanotubes in polycarbonate [J]. Applied Physics A-Materials Science & Processing,2003,76(1): 111-113.
    [86]Lago R M, Tsang S C, Green M L. Filling carbon nanotubes with small palladium metal crystallites:the effect of surface acid groups [J]. Journal of the Chemical Society, Chemical Communications,1995,13:1355-1356
    [87]Tsang S C, Chen Y K, Green M L, et al. A simple chemical method of opening and filling carbon nanotubes [J]. Nature,1994,372:159-162.
    [88]Liu J, Andrew G R, Hongjie D, et al. Fullerene pipes [J]. Science,1998,280(5367): 1253-1256.
    [89]Shaffer M S P, Fan X, Windle A H. Dispersion and packing of carnbon nanotubes. Carbon,1998,36(11):1603-1612.
    [90]江琳沁,高濂.化学处理对碳纳米管分散性能的影响[J].无机材料学报,2003,18(5):1135-1138.
    [91]Chen Y, Haddon R C, Smally R E, et al. Chemical attachment of organic functional groups to single-walled carbon nanotube materials [J]. Journal of Materials Research, 1998,13(9):2423-2431.
    [92]Liu Z F, Shen Z Y, Zhu T, et al. Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique [J]. Langmuir,2000,16(8):3569-3573.
    [93]赵海玉,李金美,徐军等.共沉淀法制备尼龙6/碳纳米管复合材料及其性能研究[J].2006,35(5):1-5.
    [94]Li L Y, Li C Y, Ni C, et al. Structure and crystallization behavior of nylon 66/ multi-walled carbon nanotube nanocomposites at low carbon nanotube contents [J]. Polymer,2007,48(12):3452-3460.
    [95]李宏伟,高绪珊,童俨等.原位聚合制备尼龙-6/多壁碳纳米管复合材料及其结晶行为[J].现代化工,2006,26:105-108.
    [96]周志华,曾海林,高超.原位缩聚法制备碳纳米管/尼龙11复合材料[J].高分子学报.2008,2:188-191.
    [97]李娟.碳纳米管/尼龙6复合材料的结构与性能研究[D].杭州:浙江大学,2006.
    [98]王国建,鲍磊,程思,等.尼龙66/碳纳米管复合材料分散性与结晶性能的研究[J].工程塑料应用,2007,35(10):26-30.
    [99]Zeng H L, Chao G, Wang Y P, et al. In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites:Mechanical properties and crystallization behavior [J]. Polymer,2006,47:113-122.
    [100]Meng H, Sui G X, Fang P F, et al. Effects of acid- and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6 [J]. Polymer, 2008,49:610-620.
    [101]Haggenmueller R, Du F M, Fischer J E, et al. Interfacial in situ polymer ization of single wall carbon nanotube/nylon 6,6 nanocomposites [J]. Polymer,2006,47:2381-2388.
    [102]Moncy V J, Brian W S, Vinoy T, et al. Morphology and mechanical properties of nylon 6/MWNT nanofibers [J]. Polymer,2007,48:1096-1104.
    [103]Shen Z Q, Bateman S, Wu D Y, et al. The effects of carbon nanotubes on mechanical and thermal properties of woven glass fibre reinforced polyamide-6 nanocomposites [J]. Composites Science and Technology,2009,69:239-244.
    [104]Baji A, Mai Y W, Wong S C, et al. Mechanical behavior of self-assembled carbon nanotube reinforced nylon 6,6 fibers [J]. Composites Science and Technology,2010,70: 1401-1409.
    [105]Chiu F C, Kao G F. Polyamide 46/multi-walled carbon nanotube nanocomposites with enhanced thermal, electrical, and mechanical properties [J]. Composites:Part A,2012, 43:208-218.
    [106]Liu X Q, Yang W, Xie B H, et al. Influence of multiwall carbon nanotubes on the morphology, melting, crystallization and mechanical properties of polyamide 6/acrylonitrile-butadiene-styrene blends [J]. Materials and Design,2012,34:355-362.
    [1]Helene D, Stephanie L, Giorgia P, et al. Functionalized carbon nanotubes are nor-cytotoxic and preserve the functionality of primary immune cells [J]. Nano Letters,2006, 6(7):1522-1528.
    [2]Wang S, Bao H M, Yang P Y, et al. Immobilization of trypsin in polyaniline-coated nano-Fe3O4/carbon nanotube composite for protein digestion [J]. Analytica Chimica Acta, 2008,612:182-189.
    [3]Zhou H Y, Mu Q X, Gao N N, et al. A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immunere sponse [J]. Nano Letters,2008,8(3):859-865.
    [4]Yogeswaran U, Thiagarajan S, Chen S M. Nanocomposite of functionalized multiwall carbon nanotubes with nafion, nano platinum, and nano gold biosensing film for simultaneous determination of ascorbic acid, epinephrine, and uric acid [J]. Analytical Biochemistry,2007,365:122-131.
    [5]Joshi A, Punyani S, Bale S S, et al. Nanotube-assisted protein deactivation [J]. Nature Nanotechnology,2008,3:41-45.
    [6]Boehm H P. Surface oxides oncarbonandtheir analysis:a critical assessment [J]. Carbon, 2002,40(2):145-149.
    [7]周小平,余腊妹,郭乔辉等.多壁碳纳米管的表面修饰及其在溶剂中的分散性[J].化工新型材料,2009,37(6):61-62.
    [8]Yong L, Goh S H, Lee S Y. Miscility and interactions in blends and complexes of poly(N-acryloyl-N-methyliperazine) with poly(p-vinylphenol) [J]. Macromolecules,1999, 32:1967-1971.
    [1]Zhang X K, Xie T X, Yang G S. Isothermal crystallization and melting behaviors of nylon 11/nylon 66 alloys by in situ polymerization [J]. Polymer,2006,47(6):2116-2126.
    [2]Chang L, Zhang Z, Zhang H, et al. On the sliding wear of nanoparticle filled polyamide 66 composites [J]. Composites Science and Technology,2006,66:3188-3198.
    [3]Yu S, Hu H X, Yin J. Effect of rubber on tribological behaviors of polyamide 66 under dry and water lubricated sliding [J]. Wear,2008,265(3):361-366.
    [4]Jin S H, Yoon K H, Park Y B, et al. Properties of surface-modified multiwalled carbon nanotube filled poly(ethylene terephthalate) composite films [J]. Applied Polymer Science, 2008,107(2):1163-1168.
    [5]Yang Z, Huang S, Liu T. Crystallization behavior of polyamide 11/multiwalled carbon nanotube composites [J]. Applied Polymer Science,2011,122(1):551-560.
    [6]Kumar R B, Suresha B, Venkataramareddy M. Effect of particulate fillers on mechanical and abrasive wear behaviour of polyamide 66/polypropylene nanocomposites [J]. Material and Design,2009,30(9):3852-3858.
    [7]Hopmann C, Michaeli W, Puch F, et al. Experimental investigation on the influence of the composition on the morphology and the mechanical properties of glass fiber-reinforced polypropylene nanocomposites [J]. Polymer Composites,2012,33(12):2228-2235.
    [8]Wang X, Bradford P D, Liu W, et al. Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching [J]. Composites Science and Technology,2011,71(14):1677-1683.
    [9]孙向南,原晓城,张宪清等.碳纳米管/尼龙1212复合材料牵引条件下的结晶性能[J].青岛科技大学学报(自然科学版),2006,27(5):423-426.
    [10]周志华,曾海林,高超等.原位缩聚法制备碳纳米管/尼龙11复合材料[J].高分子学报,2008,2:188-191.
    [1]Liu T, Chow S Y, Zhang W D, et al. Morphology and mechanical properties of multi-walled carbon namotubes reinforced nylon-6 composites [J]. Macromolecules,2004, 37(19):7214-7222.
    [2]Augustine J M, Maiti S N, Gupta A K. Mechanical properties and crystallization behavior of toughened polyamide-6/carbon nanotube composites [J]. Journal of Applied Polymer Science,2012,125(S1):E478-E485.
    [3]Chiu F C, Kao, G F. Polyamide 46/multi-walled carbon nanotube nanocomposites with enhanced thermal, electrical, and mechanical properties [J]. Composites Part A:Applied Science and Manufacturing,2012,43(1):208-218.
    [4]Meng H, Sui G X, Xie G Y, et al. Friction and wear behavior of carbon nanotubes reinforced polyamide 6 composites under dry sliding and water lubricated condition [J]. Composites Science and Technology,2009,69:606-611.
    [5]Quintanilla L, Pastor J M. Structural analysis of polyamide-6,6 reinforced with glass fibre by the use of Fourier transform infrared spectroscopy with photoacoustic detection and differential scanning calorimetry [J]. Polymer,1994,35(24):5241-5246
    [6]Sahoo N G, Cheng H K F, Cai J W, et al. Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods [J]. Materials Chemistry and Physics.2009,117:313-320.
    [7]Li J, Fang Z P, Tong L F, et al. Eeffet of multi-walled carbon nanotubes on no-isothermal crystallization kinetics of polymaide 6 [J]. European Polymer Journal,2006,42(12): 3230-3235.
    [8]Deng H, Bilotti E, Zhang, R. Improving tensile strength and toughness of melt processed polyamide 6/multiwalled carbon nanotube composites by in situ polymerization and filler surface functionalization [J]. Journal of Applied Polymer Science,2011,120(1):133-140.
    [9]Liu X Q, Yang W, Xie B H. Influence of multiwall carbon nanotubes on the morphology, melting, crystallization and mechanical properties of polyamide 6/acrylontrile-butadiene-styrene blends [J]. Materials and Design,2012,34(1):355-362.
    [10]Srinath G, Gnanamoorthy R. Sliding wear performance of polyamide 6-clay nano-composites in water [J]. Composites Science and Technology,2007,67:399-405.
    [11]Baji A, Mai Y W, Wong S C, et al. Mechanical behavior of self-assembled carbon nanotube reinforced nylon 6,6 fibers [J]. Composites Science and Technology,2010,70: 1401-1409.
    [12]Krause B, Potschke P, Hauβler L. Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites [J]. Journal of Applied Polymer Science,2009,69:1505-1515.
    [13]Caamano C, Grady B, Resasco, D E. Influence of nanotube characteristics on electrical and thermal properties of MWCNT/polyamide 6,6 composites prepared by melt mixing [J]. Carbon,2012,50(10):3694-3707.
    [14]Gupta A K, Pupwar S N. Crystallization of PP in PP/SEBS blends and its correlation with tensile Properties [J]. Journal of Applied Polymer Science,1984,29(5):1595-1609.
    [15]Ozawa T. Kinetics nonisothermal crystallization [J]. Polymer,1971,12(3):150-156.
    [16]Ziabicki A. Theoretical analysis of oriented and nonisothermal crystallization:extension of the Kolmogoroff Avrami Evans theory onto processes with variable rates and mechanisms [J]. Journal of Colloid and Polymer Science,1974,252(6):433-438.
    [17]Jeziomy A. Parameters characterizing the kinetics of the nonisothermal crystallizeation of poly(ethylene terphthalate) determined by DSC [J]. Polymer,1978,19(10):1142-1149.
    [18]Augis J A, Bennett J E. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method [J]. Journal of Thermal Analysis and Calorimetry,1978,13(2):283-292.
    [19]Shi J S, Yang X J, Wang X, et al. Non-isothermal crystal lization kinetics of nylon 6/attapulgite nanocomposites [J]. Polymer Testing,2009,29:596-602.
    [20]Liu M Y, Zhao Q X, Wang Y D, et al. Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212 [J]. Polymer,2003,44:2537-2545.
    [21]Hedicke K, Mehler C, Gruber F, et al. Crystallisation behaviour of Polyamide-6 and Polyamide-66 nanocomposites [J]. Composites Science and Technology,2006,66(3-4): 571-575.
    [22]Sengupta R, Ganguly A, Sabharwal S, et al. MWCNT reinforced polyamide-6,6 films:preparation, characterization and properties [J]. Journal of Materials Science,2007, 42:923-934.
    [1]Zhang X K, Xie T X, Yang G S. Isothermal crystallization and melting behaviors of nylon 11/nylon 66 alloys by in situ polymerization [J]. Polymer,2006,47(6):2116-2126.
    [2]Chang L, Zhang Z, Zhang H, et al. On the sliding wear of nanoparticle filled polyamide 66 composites [J]. Composites Science and Technology,2006,66(16):3188-3198.
    [3]Yu S R, Hu H X, Yin J. Effect of rubber on tribological behaviors of polyamide 66 under dry and water lubricated sliding [J]. Wear,2008,265(3-4):361-366.
    [4]Sahoo N G, Cheng H K, Cai J W, et al. Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods [J]. Materials Chemistry and Physics,2009,117(1):313-320.
    [5]Jose M V, Steinert B W, Thomas V, et al. Morphology and mechanical properties of Nylon 6/MWNT nanofibers [J]. Polymer,2007,48(4):1096-1104.
    [6]Kim J Y, Han S, Kim D K, et al. Mechanical reinforcement and crystallization behavior of poly(ethylene 2,6-naphthalate) nanocomposites induced by modified carbon nanotube [J]. Composites Part A:Applied Science and Manufacturing,2009,40(1):45-53.
    [7]Socher R, Krause R, Hermasch S. Electrical and thermal properties of polyamide 12 composites with hybrid fillers systems of multiwalled carbon nanotubes and carbon black [J]. Composites Science and Technology,2011,71(8):1053-1059.
    [8]Satapathy S K, Nag A, Nando G B. Effect of electron beam irradiation on the mechanical, thermal, and dynamic mechanical properties of flyash and nanostructured fly ash waste polyethylene hybrid composites [J]. Polymer Composites,2012,33(1):109-119.
    [9]Kumar B N, Suresha B, Venkataramareddy M. Effect of particulate fillers on mechanical and abrasive wear behaviour of polyamide 66/polypropylene nanocomposites [J]. Materials & Design,2009,30(9):3852-3858.
    [10]Hopmann C, Michaeli W, Puch F. Experimental investigation on the influence of the composition on the morphology and the mechanical properties of short glass fiber-reinforced polypropylene nanocomposites [J]. Polymer Composites,2012,33(12): 2228-2235.
    [11]Wang X, Bradford P D, Liu W, et al. Mechanical and electrical property improvement in CNT/nylon composites through drawing and stretching [J]. Composites Science and Technology,2011,71(14):1677-1683.
    [12]Enomoto K, Yasuhara T, Ohtake N, et al. Injection molding of polystyrene matrix composites filled with vapor grown carbon fiber [J]. International Journal Series A: Solid Mechanics and Material Engineering,2003,46(3):353-358.
    [13]Johnson B B, Santare M H, Novotny J E, et al. Wear behavior of carbon nanotube/high density polyethylene composites [J]. Mechanics of Materials,2009,41(10):1108-1115.
    [14]Li X F, Guan W C, Yan H B, et al. Fabrication and atomic force microscopy/friction force microscopy (AFM/FFM) studies of polyacrylamide-carbon nanotubes (PAM-CNTs) copolymer thin film [J]. Materials chemistry and physics,2004,88(1):53-58.
    [15]Chiu F C, Kao G F. Polyamide 46/multi-walled carbon nanotube nanocomposites with enhanced thermal, electrical, and mechanical properties [J]. Composites Part A:Applied Science and Manufacturing,2012,43(1):208-218.
    [16]Meng H, Sui G X, Xie GY, et al. Friction and wear behavior of carbon nanotubes reinforced polyamide 6 composites under dry sliding and water lubricated condition [J]. Composites Science and Technology,2009,69(5):606-611.
    [17]Han B, Ji G D, Wu S S, et al. Preparation and characterization of nylon 66/ montmorillonite nanocomposites with CO2 treated montmorillonites [J]. European Polymer Journal,2003,39(8):1641-1646.
    [18]Hu Y C, Shen L, Yang H, et al. Nanoindentation studies on Nylon 11/clay nanocomposites [J]. Polymer Testing,2006,25(4):492-497.
    [19]Shen L, Phang I Y, Liu T X, et al. Nanoindentation studies on polymorphism of nylon 6 [J]. Polymer,2004,45(10):3341-3349.
    [20]Shen L, Liu T X, Peng F L. Polishing effect on nanoindentation behavior of nylon 66 and its nanocomposites [J].Polymer Testing,2004,24(6):746-749.
    [21]Shen L, Tjiu W W C, Liu T X. Nanoindentation and morphological studies on injection-molded nylon-6 nanocomposites [J]. Polymer,2005, (46):11969-11977.
    [22]Kukureka S N, Hooke C J, Rao M, et al. The effect of fibre reinforcement on the friction and wear of polyamide 66 under dry rolling-sliding contact [J]. Tribology International, 1999,32(2):107-116.
    [23]Chen Y K, Kukureka S N, Hooke C J. The wear and friction of short glass-fibre reinforced polymer composites in unlubricated rolling-sliding contact [J]. Journal of Materials Science,1996,31:5643-5649.
    [24]Chen Y K, Kukureka S N, Hooke C J, et al. Surface topography and wear mechanisms of polyamide 66 and its composites [J]. Journal of Materials Science,2000,35:1269-1281.
    [25]Zhang C, Tjiu W W, Liu T X, et al. Dramatically enhanced mechanical performance of nylon-6 magnetic composites with nanostructured hybrid one-dimensional carbon nanotube-two-dimensional clay nanoplatelet heterostructures [J]. The Journal Physical chemistry B,2011,115(13):3392-3399.
    [26]Meszaros L, Deak T, Balogh G, et al. Preparation and mechanical properties of injection moulded polyamide 6 matrix hybrid nanocomposite [J]. Composites Science and Technology,2013,75(11):22-27.
    [27]Yoo Y, Spencer M W, Paul D R. Morphology and mechanical properties of glass fiber reinforced Nylon 6 nanocomposites [J]. Polymer,2011,52(1):180-190.
    [28]Sun M M, Zhang B, Zhang X G, et al. Study on PU prepolymer modified epoxy resin adhesives for optical instrument [J]. Chemistry and Adhesion,2005,27(2):78-81.
    [29]Wood W J, Maguire W J, Zhong W H. Improved wear and mechanical properties of UHMWPE-carbon nanofiber composites through an optimized paraffin-assisted melt-mixing process [J]. Composites Part B:Engineering,2011,42(3):584-591.
    [30]Falvo M R, Taylor R M, Helser A, et al. Nanometre scale rolling and sliding of carbon nanotubes [J]. Narure,1999,397(6716):236-238.
    [31]Kis A, Jensen k, Aloni S, et al. Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes [J]. Physical Review Letters,2006,97(2):25501-25506.
    [32]Cumings J, Zettl A. Low-Friction Nanoscale linear bearing realized from multiwall carbon nanotubes [J]. Science,2000,289(5479):602-604.
    [33]Tangney P, Louie S G, Cohen M L. Dynamic sliding friction between concentric carbon nanotubes [J]. Physical Review Letters.2004,93(6):65503-65507.
    [34]Shokrieh M M; Hosseinkhani M R; Naimi-Jamal M R, et al. Nanoindentation and nanoscratch investigations on graphene-based nanocomposites [J]. Polymer Testing,2013, 32(1):45-51.
    [35]Jarrar R, Mohsin M A, Haik Y. Alteration of the mechanical and thermal properties of nylon 6/nylon 6,6 blends by nanoclay [J]. Journal Applied Polymer Science,2012, 124(3):1880-1890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700