高温作用下泥岩的损伤演化及破裂机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会与经济发展对能源需求的不断加大,与温度有关的岩土工程问题越来越受到广泛关注,如:地热资源开发、核废料处置及煤炭地下气化等工程。温度与地应力耦合作用下岩石力学性能的研究是解决温度有关的岩土工程问题的基础。本文以煤系岩层中泥岩为研究对象,借助于MTS810电液伺服材料试验系统及配套的高温环境炉、扫描电镜、X射线衍射分析仪等试验手段,应用损伤断裂理论、粘弹塑性理论等,从宏观和细观不同尺度上,对高温作用下泥岩的损伤演化与破裂机理进行了系统的研究。主要工作和研究成果如下:
     (1)系统测定了常温至800℃高温条件下泥岩试样的全应力-应变曲线,分析得到了泥岩的弹性模量、峰值强度、峰值应变、软化模量等随温度的变化规律,并给出了加载速率对泥岩力学性能的影响,揭示了泥岩随温度升高和加载速率增加的脆延转化特性。
     (2)基于泥岩试样断口的电镜扫描和X射线衍射分析试验,给出了高温作用下泥岩试样组分结构的变化特征、影响泥岩力学性能的组分因素、试样断口处裂纹的形态及发育变化特征。结果表明,高温作用下泥岩试样的组分与物相变化是导致岩样断口处裂隙的扩展、闭合、晶界破裂形式差异的重要原因,从而呈现了不同温度段泥岩宏观力学性能的变化特征。有效地揭示了高温作用下泥岩宏观破裂特征的微观机制。
     (3)依据岩石损伤力学与统计强度理论,结合高温作用下泥岩的力学性能,构建了考虑温度及应变率效应的泥岩损伤演化方程和本构模型,并针对所测泥岩岩样的力学特性,给出了相应的损伤本构方程具体参数,本构模型与试验结果具有很好的印证性。
     (4)通过对常温及高温(700℃)作用下泥岩的分级加载蠕变试验,得到了相应的蠕变曲线,给出了泥岩的蠕变经验方程,并初步建立了考虑温度效应的泥岩蠕变本构模型,包括:泥岩的蠕变方程、卸载方程和松弛方程。
     研究成果在一定程度上丰富了岩石力学的基本理论,也为高温与地应力耦合作用下岩土工程问题的研究提供重要依据。
With the social and economic development, the energy demand is increasing andgeotechnical engineering questions related to temperature attract more and more wideattentions, such as geothermal resource development, nuclear waste disposal and undergroundcoal gasification. Research on rock mechanical properties under the coupled action oftemperature and geostress is the basis to solve geotechnical engineering questions related totemperature. This paper mainly studies mudstone in coal strata by means of experimentalmethods and theoretical methods, including MTS810Electro-hydraulic Servo Material TestingSystem and matched High Temperature Furance, Scanning Electron Microscope, X-rayDiffraction Analyser, damage fracture theory and viscoelastic plastic theory. From the macroand mesoscopic scales, damage evolution laws and fracture mechanisms of mudstone underhigh temperature are studied systematically. The main works and research results are as follow:
     (1) Whole stress-strain curves of mudstone samples at the temperature from normal to800℃are tested systematically and the change laws of elastic modulus, peak strength, peakstress, peak strain and softening modules of mudstone with an increase in temperature areobtained. In addition, analyse the effect of loading speed on mudstone mechanical propertiesand reveal the features of brittle-to-ductility transformation in mudstone with increasingtemperature and strain speed.
     (2) According to SEM and X-ray diffraction analysis experiment of mudstone samplesfracture, the change features of component structural, component factor of effects on mudstonemechanical property and morphology and development features of crack in sample fracture areobtained. The results show that: component and phase transformation of mudstone sample athigh temperature are important reasons that cause cracks in sample fractures spread, close andform differences of fractures in grain boundary, and thus present change features ofmacroscopic mechanical property in different temperatures, which effectively revealsmicroscopic mechanisms of mudstone macroscopic fracture features in high temperature.
     (3) Based on rock damage mechanics and statistical strength theory, combiningmechanical properties of mudstone at high temperature, the damage evolution equation andconstitutive model of mudstone considering effects of temperature and loading speed areesTablelished. And aiming at mechanical properties of tested mudstone, the correspondingdetailed parameters of damage equation are given. Furthermore, constitutive model has a goodagreement with experiment results.
     (4) Through step load creep experiment of mudstone at normal and high (700℃)temperature, we not only obtain the corresponding creep curves and creep empirical equation of mudstone, but also initially esTablelish creep constitutive model of mudstone consideringtemperature effect, including creep equation, unload equation and relaxation equation ofmudstone.
     To some extent the research results enrich basic theory of rock mechanics and provideimportant basis for research on geotechnical engineering problems under the coupled action oftemperature and geostress.
引文
[1]金耀,张天中,华正兴等.单轴压缩下多裂隙含水岩样电阻率变化与体积应变[J].地震学报,1983,5(1):99-106.
    [2]柳江琳,白武明,孔祥儒.高温高压下花岗岩、玄武岩和辉橄岩电导率的变化特征[J].地球物理学报,2001,44(4):528-533
    [3]柳江琳,白武明,孔祥儒.高温高压下岩石电性研究[J].地震学报,1999,21(1):89-97.
    [4]白武明,马麦宁,柳江琳.地壳岩石波速和电导率实验研究[J].岩石力学与工程学报,2000,19(增):899-904.
    [5]周文戈,谢洪森,赵志丹等.2.0Gpa、室温至1160℃条件下安山岩纵波速度与相变[J].地球科学—中国地质大学学报,1999,24(3):261-264.
    [6]谢鸿森,周文戈,刘永刚等.高压下岩石弹性波速度几种测量方法的比较实验研究[J].岩土工程学报,2002,32(2):121-126.
    [7]吴宗絮,郭才华.冀东陆壳岩石在高温高压下波速的实验研究[J].地球物理学进展,1993,8(4):207-213.
    [8]杜守继,刘华,陈浩华等.高温后花岗岩密度及波动特性的试验研究[J].上海交通大学学报,2003,37(12):1900-1904.
    [9]刘斌.不同温压下岩石弹性波速度、衰减及各向异性与组构的关系[J].地学前沿,2008,27(1):53-58.
    [10]刘巍.高温高压下几种岩石的弹性纵波速度及其动力学特征[D].中国地震局地质研究所,2002.
    [11]张友南,马瑾.深部地壳镁铁质岩石波速的研究[J].地球物理学进展,1997,40(2):221-229.
    [12]侯渭,周文戈,谢鸿森等.高温高压岩石粒间熔体(和流体)形态学及其研究进展[J].地震学报,2004,19(5):767-772.
    [13]苏承东,郭文兵,李小双.粗砂岩高温作用后力学效应的试验研究[J].岩石力学与工程学报,2008,27(6):1162-1170.
    [14]林祥,张振义.高温环境下石灰岩基本力学性质初步研究[J].金属矿山,2009,(4):29-31.
    [15]孙天泽.高围压条件下岩石的力学性质温度效应[J].地球物理学进展,1996,11(4):64-70.
    [16]郑慧慧,刘希亮,谌伦建.高温下岩石单向约束的热应力分析[J].路基工程,2008,(5):12-13.
    [17]张连英,茅献彪,孙景芳等.高温状态下大理岩力学性能实验研究[J].重庆建筑大学学报,2008,30(6):46-50.
    [18]康健,赵明鹏,梁冰.高温下岩石力学性质的数值试验研究[J].辽宁工程技术大学学报,2005,24(5):683-685.
    [19]张连英,茅献彪,杨逾等.高温状态下石灰岩力学性能实验研究[J].辽宁工程技术大学学报,2006,25(增):121-123.
    [20] Hettema M. H. H, Niepce D. V, Wolf K.–H. A. A. A microstructural analysis of the compaction ofclaystone aggregates at high temperatures[J]. Int. J. Rock Mech.&Min. Sci.,1999,36(1):57-68.
    [21] Shuke M, Ming L.W. An elastoplastic damage model for concrete subjected to sustained hightemperatures[J]. Int. J. of Damage Mech.,1997,6(4):195-214.
    [22] Wenbo Luo, Tingqing Yang, Zhida Li, et al. Experimental studies on the temperature fluctuations indeformed thermoplastics with defects[J]. International Journal of Solids and Structures.,2000,37(6):887-897.
    [23] Murrell S A F, Chakravarty S. Some new reheological experiments on igneous rocks at temperaturesup to1120℃[J]. Geophys. J. R. Astron. Soc.,1970,19:309~334,499~512
    [24] Allen D. H. Thermomechanical coupling in inelastic solids[J]. Appl. Mech. Rev.,1991.
    [25] Booker J.R, Savvidou C. Consolidation around a point heat source[J]. Int. J. Numerical AnalyticalMeth Geomech,1985,9:173-184.
    [26] Wang H. F, Bonner B. Thermal stress cracking in granite[J]. Journal of Geophysical Research,1989,94(B2):1745-1758.
    [27] Huang C. X. The three dimensional modelling of thermal cracks in concrete structure[J].Materialsand Structures,1999,32:673-678.
    [28] Heard H C. Transition from brittle fracture to ductile flow in Solenhofen limestone as a function oftemperature, confining pressure, and intertitial fluid pressure. In: Rock Deformation. Griggs D,Handin J eds. Geol. Soc. Am. Menoir.,1960,79:193~226
    [29] Simpson C. Deformation of granitic rocks across the brittle-ductile transition[J]. J. Struct Geol,1985,7:503-511.
    [30] Griggs D T, Turner F J, Heard H C. Deformation of rocks at500℃to800℃. In: Rock Deformation.Giggs D T, Handin J (eds.). Geol. Soc. Am. Memoir.,1960,79:39~104
    [31] Paterson M S, Wong T F. Experimental Rock Deformation-The Brittle Field (Second edition)[M].Spinger-Verlag, Berlin, New York,2005
    [32] Huang C. X. The three dimensional modelling of thermal cracks in concrete structure[J].Materialsand Structures,1999,32:673-678.
    [33] Sangha C.M. Microfracturing of a sandstone in uniaxal compression[J].Int J.Rock Mech.Min.Sci.&Geomech.Abstr.,1974,11:107-l13.
    [34] Hallbaucr D.K. Some observations concerning the microscopic and mechanical behaviour ofquartzite specimen in stiff, triaxial compression tests[J].Int.J.Rock Mech.Min.Sci.,1973,10:713-726.
    [35] Bieniawski Z.T. Mechanism of brittle fracture of rock: Part Ⅱ-experimental studies[J]. Int. J. RockMech. Min. Sci.&Geomech. Abstr,1967,4(4):407-408.
    [36] Bieniawski Z.T. Mechanism of brittle fracture of rock: Part Ⅱ-experimental studies[J]. Int. J. RockMech. Min. Sci.&Geomech. Abstr,1967,4(4):407-408.
    [37] Lau J. S. O., Jackson R. The effects of temperature and water-saturational on mechanical propertiesof Lac du Bonnet pink granite[C].8th Int.Con. On Rock Mech., Tokyo, Japan,1995.
    [38] Alm O. The influence of micro crack density on the elastic and fracture mechanical properties ofstropa granite [J]. Physics of the Earth and Planetary Interiors,1985,40:61-179.
    [39]张静华,王靖涛,赵爱国.高温下花岗岩断裂特性的研究[J].岩土力学,1987,8(4):11-16.
    [40]王靖涛,赵爱国,黄明昌.花岗岩断裂韧度的高温效应[J].岩土工程学报,1989,11(6):113-118.
    [41] Al-Shayea N.A, Khan K, Abduljauward S.N. Effects of confining pressure and temperature onmixed-mode (I-II) fracture toughness of a limestone rock[J]. Int. J. Rock Mech.&Min. Sci.,2000,37(4):629-643.
    [42]寇绍全,Alm O.微裂隙和花岗岩的抗拉强度[J].力学学报,1987,19(4):366-373.
    [43] Brede M. Brittle-to-ductile transition in Silicon[J]. Acta Metallurgica,1993,41(1):211-228.
    [44] Brede M, Haasen P. The brittle-to-ductile transition in doped silicon as a model substance[J]. ActaMetallurgica,1988,36(8):2003-2018.
    [45] Oda M. Modern developments in rock structure characterization [J].In Comprehensive RockEngineering.,1993,1:185-200.
    [46]桑祖南,周永胜,何昌容,等.辉长岩脆-塑性转化及其影响因素的高温高压实验研究[J].地质力学学报,2001,7(2):130-137.
    [47]许锡昌.温度作用下三峡花岗岩力学性质及损伤特性初步研究,硕士学位论文[D].武汉:中国科学院武汉岩土力学研究所,1998.
    [48]许锡昌,刘泉声.高温下花岗岩基本力学性质初步研究[J].岩土工程学报,2000,22(3):332-335.
    [49]杜守继,刘华,职洪涛等.高温后花岗岩力学性能的试验研究[J].岩石力学与工程学报,2004,23(14):2359-2364.
    [50]王颖轶,张宏君,黄醒春,等.高温作用下大理岩应力-应变全过程的试验研究[J].岩石力学与工程学报.2002,21(增2):2345-2349.
    [51]夏小和,王颖轶,黄醒春等.高温作用对大理岩强度及变形特性影响的试验研究[J].上海交通大学学报,2004,38(6):996-999.
    [52]朱合华,闫治国,邓涛,等.3种岩石高温后力学性质的试验研究[J].岩石力学与工程学报,2006,25(10):1945-1950.
    [53]吴忠,秦本东,谌论建,等.煤层顶板砂岩高温状态下力学特征试验研究[J].岩石力学与工程学报,2005,24(11):1863-1867.
    [54] ZHANG LianYing, MAO XianBiao&LU AiHong. Experimental Study on the MechanicalProperties of Rocks at High Temperature [J]. Sci China Ser E-Tech Sci,2009,52(3):641-646.
    [55] MAO XianBiao, ZHANG LianYing&LI TianZhen. Properties of failure mode and thermal damagefor limestone at high temperature [J]. Journal of China University of Mining&Technology,2009,19(3):290-294.
    [56]张连英,茅献彪,孙景芳,卢爱红.高温状态下大理岩力学性能实验研究[J].重庆建筑大学,2008,30(6):46-50.
    [57]张连英,卢文厅,茅献彪.高温作用下砂岩力学性能实验[J].采矿与安全工程学报,2007,24(3):293-297.
    [58]张连英,茅献彪,杨逾等.高温状态下石灰岩力学性能实验研究[J].辽宁工程技术大学学报,2006,25(suppl):121-123.
    [59]王广地.北山花岗岩温度效应试验研究及粘弹塑性分析[A].西安科技学院,2003.
    [60]王子潮,王绳祖.中下地壳温度压力条件下岩石半脆性蠕变的实验研究[J].地震地质,1990,12(4):335-342.
    [61]曹淑云.滇西点苍山高温糜棱岩显微构造和流动机制研究[A].中国地质大学,2007.
    [62]王志岩石高温剪切(含Ⅱ型和Ⅲ型)断裂特征的理论与实验研究[D].中南大学,2007.
    [63]尹土兵.高温后粉砂岩动态力学及破坏机理研究[A].中南大学,2008.
    [64]金淑燕,孙天泽,徐实昆等.辉绿岩脆一韧性变形转化的高温高压实验研究[J].中国地质大学学报,2000,25(6):265-271.
    [65]张宗贤,俞洁,蒋林根等.高温状态下岩石动态断裂的试验研究[J].有色金属,1999,51(1):1-3.
    [66]金淑燕,孙天泽,金振民等.辉绿岩脆一韧性变形转化的高温高压实验研究[J].地球物理学进展,1993,8(4):260-261.
    [67]方华,金济山.三轴压缩下大理岩剪切断裂能的测定[J].地球物理学进展,1992,35(6):748-752.
    [68]王绳祖.岩石的脆性一延性转变及塑性流动网络[J].地球物理学进展,1993,8(4):30-36.
    [69]秦本东,谌伦建,晁俊奇等.石灰岩各向异性膨胀的影响因素研究[J].西安科技大学学报,2009,29(1):64-67.
    [70]唐世斌,唐春安,朱万成等.热应力作用下的岩石破裂过程分析[J].岩石力学与工程学报,2006,25(10):2072-2078.
    [71]康健.随机介质固热耦合数学模型与岩石热破裂数值实验[D].辽宁工程技术大学,2004.
    [72]武晋文.花岗岩热破裂实验研究[A].太原理工大学,2005.
    [73]谭启,骆循,李仕雄.岩石热破裂研究进展评述[J].露天采矿技术,2006,(6):16-19.
    [74]刘建新.岩石破裂声发射实验研究[A].中国地震局地球物理研究所,2002.
    [75]寇绍全.热开裂损伤对花岗岩变形及破坏特性的影响[J].力学学报,1987,19(6):550-556.
    [76] Simpson C. Deformation of granitic rocks across the brittle-ductile transition[J]. J. Struct Geol,1985,7:503-511.
    [77] Booker J.R, Savvidou C. Consolidation around a point heat source[J]. Int. J. Numerical AnalyticalMeth Geomech,1985,9:173-184.
    [78] Ayotte E., Massicotte B., Houde J, et al. Modeling the thermal stresses at early ages in a concretemonolith[J].ACI Materials Journal,1994,94:577-587.
    [79] Huang C. X. The three dimensional modelling of thermal cracks in concrete structure[J].Materialsand Structures,1999,32:673-678.
    [80] Wang H. F, Bonner B. Thermal stress cracking in granite[J]. Journal of Geophysical Research,1989,94(B2):1745-1758.
    [81]陈颙,吴晓东,张福勤.岩石热开裂的实验研究[J].科学通报,1999,4(8):880-883.
    [82]吴晓东,刘均荣.岩石热开裂影响因素分析[J].石油钻探技术,2003,31(5):24-27.
    [83]周克群,楚泽涵,张元中,等.岩石热开裂与检测方法研究[J].岩石力学与工程学报,2000,19(4):412-416.
    [84]张渊,曲方,赵阳升.岩石热破裂的声发射现象[J].岩土工程学报,2006,28(1):73-75.
    [85]陈剑文,杨春和,冒海军.升温过程中盐岩动力特性试验研究[J].岩土力学,2007,28(2):231-236.
    [86]陈剑文,杨春和,高小平等.盐岩温度与应力耦合损伤研究[J].岩石力学与工程学报,2005,24(11):1986-1991.
    [87]高小平,杨春和,吴文等.温度效应对盐岩力学特性影响的试验研究[J].岩土力学,2005,26(11):1775-1778.
    [88]高小平,杨春和,吴文等.盐岩蠕变特性温度效应的试验研究[J].岩石力学与工程学报2005,24(12):2054-2059.
    [89]梁卫国,赵阳升,徐素国.204℃内盐岩物理力学特性的试验研究[J].岩石力学与工程学报,2004,23(14):2365-2369.
    [90]梁卫国,徐素国,赵阳升.损伤盐岩高温再结晶剪切特性的试验研究[J].岩石力学与工程学报,2004,23(20):3413-3417.
    [91]邱一平,林卓英.花岗岩样品高温后损伤的实验研究[J].岩土力学,2006,27(6):1005-1010.
    [92]梁冰,高红梅,兰永伟.岩石渗透率与温度关系的理论分析和实验研究[J].岩石力学与工程学报,2005,24(12):2009-2012.
    [93]席道瑛,程经毅,黄建华等.声发射在研究岩石古温度中的应用[J].中国科学技术大学学报.1996,26(1):97-100.
    [94]万贻平深部岩体损伤变形特性研究[A].西华大学,2008.
    [95]杨丽娟岩石细观统计损伤数值模型及在地下工程中的应用[A].河海大学,2007.
    [96]陈祖安.岩石蠕变扩容与损伤变量本构关系[J].地球物理学进展,1993,8(4):232-237.
    [97]周金枝,徐小荷.分形几何用于岩石损伤扩展过程的研究[J].岩土工程,1997,18(4):36-40.
    [98]张宗贤,喻勇,赵清.岩石断裂韧性的温度效应[J].中国有色金属学报,1994,4(2):7-11.
    [99]肖晓晖,王绳祖,张流.高温高压下石灰岩剪切网络的实验研究[J].地球物理学报,1993,8(4):61-69.
    [100]赵金昌,万志军,李义.高温高压条件下花岗岩切削破碎试验研究[J].岩石力学与工程学报,2009,28(7):1432-1438.
    [101]尹土兵,李夕兵,洪亮等.高温后粉砂岩冲击破碎特性研究[J].南华大学学报,2009,23(1):45-47.
    [102]宋小林,王启智,谢和平.高温后大理岩动态劈裂试样的破坏应变[J].四川大学学报,2008,40(14):38-43.
    [103] Wu F.T, Thomsen L. Microfracturing and deformation of Westerly granite under creep conditions[J].Int J.Rock Mech.Min.Sci.&Geomech.Abstr.,1975,12:167-l73.
    [104]安欧.岩石在不同温度下的形变蠕变和滞后[J].地震地质,1980,2(4):21-26.
    [105]章军峰.榴辉岩高温高压变形实验研究[D].中国地质大学,2003.
    [106]王泓华.岩石应变软硬化转化的统计损伤理论研究[A].湖南大学,2007.
    [107]齐珺.深部岩体非线性蠕变规律的研究[A].辽宁工程技术大学,2004.
    [108]高小平.盐岩力学特性时温效应实验研究及其本构方程[A].中国科学院武汉岩土力学研究所,2005.
    [109]陈剑文.盐岩的温度效应及细观机理研究[D].中国科学院研究生院,2008.
    [110]刘泉声,许锡昌,山口勉,等.三峡花岗岩与温度及时间相关的力学性质试验研究[J].岩石力学与工程学报,2001,20(5):715-719.
    [111]李长春,付文生,袁建新,等.考虑温度效应的岩石损伤内时本构关系[J],岩土力学,1991,12(3):1-10.
    [112]许锡昌.花岗岩热损伤特性研究[J].岩土力学,2003,24(增刊):188-191.
    [113]徐燕萍,刘泉声,许锡昌.温度作用下的岩石热弹塑性本构方程的研究[J].辽宁工程技术大学学报,2001,20(4):527-529.
    [114]谢卫红,高峰,李顺才,等.石灰岩热损伤破坏机制研究[J].岩土力学,2007,28(5):1021-1025.
    [115] Shuke M, Ming L.W. An elastoplastic damage model for concrete subjected to sustained hightemperatures[J]. Int. J. of Damage Mech.,1997,6(4):195-214.
    [116] Wenbo Luo, Tingqing Yang, Zhida Li, et al. Experimental studies on the temperature fluctuations indeformed thermoplastics with defects[J]. International Journal of Solids and Structures.,2000,37(6):887-897.
    [117] Allen D. H. Thermomechanical coupling in inelastic solids[J]. Appl. Mech. Rev.,1991,44(8):361-373.
    [118] Hettema M. H. H, Niepce D. V, Wolf K.–H. A. A. A microstructural analysis of the compaction ofclaystone aggregates at high temperatures[J]. Int. J. Rock Mech.&Min. Sci.,1999,36(1):57-68.
    [119] Bieniawski Z.T. Mechanism of brittle fracture of rock: Part Ⅱ-experimental studies[J]. Int. J. RockMech. Min. Sci.&Geomech. Abstr,1967,4(4):407-408.
    [120] Johnson B., Gangi A.F, Handin J. Thermal cracking of rock subject to slow, uniform temperaturechanges[C]. Proc19th US Symp. Rock Mech.,1978,259-267.
    [121] Homand-etienne F, Houpert. R. Thermally induced microcracking in granites: characterization andanalysis [J]. Int. J. Rock Mech.&Min. Sci.,1989,26(2):125-134.
    [122] Hallbaucr D.K. Some observations concerning the microscopic and mechanical behaviour ofquartzite specimen in stiff, triaxial compression tests[J].Int.J.Rock Mech.Min.Sci.,1973,10:713-726.
    [123] Wu F.T, Thomsen L. Microfracturing and deformation of Westerly granite under creep conditions[J].Int J.Rock Mech.Min.Sci.&Geomech.Abstr.,1975,12:167-l73.
    [124] Sangha C.M. Microfracturing of a sandstone in uniaxal compression[J].Int J.Rock Mech.Min.Sci.&Geomech.Abstr.,1974,11:107-l13.
    [125] ChenY, YaoX. X., Xie R. X. The study of fracture or gabbro[J].Int J. Rock Mech.Min.Sci.&Geomech.Abstr,1978,15:99-l12.
    [126] Sprunt E.S, Brace W. F. Direct observation of micro-cavities in crystalline rocks[J].Int J.RockMech.Min.Sci.&Geomech.Abstr,1974,11:139-l50.
    [127] Tapponnier P, Brace W.F. Development of stress-induced microcracks in Westerly granite[J].IntJ.Rock Mech.Min.Sci.&Geomech.Abstr.,1976,13:103-l12.
    [128] B.Menendez, C.DaeidandM.Darot, A study of the Crack Network inThermally and MechanicallyCraeked Granite Samples using Confoeal Seanning Laser MieroscoPy, Phys.Chem.Earth,1999,24(7),627一632.
    [129] E.GAMBOA, A.ATRENS, Stress corrosion cracking fraeture mechanisms in rock bolts, Journal ofMaterials Seienee,2003,38,3813-3829.
    [130] Moustafa E.O, Tang C.A, Zhang Z. Scanning of essential minerals in granite electron microscopestudy on the microfracture behavior[J].Geology and Resources,2004,13(3):129-136.
    [131]张宗贤,喻勇,赵清.岩石断裂韧度的温度效应[J].中国有色金属学报,1994,4(2):7-11.
    [132]赵永红,受压岩石中裂纹发育过程及分维变化特征,科学通报,1995,40(7),621-623.
    [133]刘小明,李焯芬.岩石断口微观断裂机理分析与实验研究[J].岩石力学与工程学报,1997,16(6):509-513.
    [134]黄明利,唐春安,朱万成.岩石单轴压缩破坏失稳过程SEM即时研究[J].东北大学学报(自然科学版),1999,20(4):426-429.
    [135]孙均,凌建明,三峡船闸高边坡岩体的细观损伤及长期稳定性研究,岩石力学与工程学报1997,16(1):1-7.
    [136]姜崇喜,谢强.大理岩细观破坏行为的实时观察与分析,西南交通大学学报,1999,34(l),87-92.
    [137]尚嘉兰,孔常静,李廷芥等.岩石细观损伤破坏的观测研究,实验力学,1999,14(3),373-383.
    [138]谢卫红,高峰,谢和平.细观尺度下岩石热变形破坏的实验研究[J].实验力学,2005,20(4):628-634.
    [139]李树春,许江,李克钢等.基于Weibull分布的岩石损伤本构模型研究[J].湖南科技大学学报,2007,22(4):65-68.
    [140]谌伦建,吴忠,秦本东.煤层顶板砂岩在高温下的力学特性及破坏机理[J].重庆大学学报,2005,28(5):123-126.
    [141]左建平,谢和平,周宏伟等,不同温度作用下砂岩热开裂的实验研究,地球物理学报,2007,50(4):1150-1155.
    [142]左建平,谢和平,周宏伟等,温度影响下煤层顶板砂岩的破坏机制及塑性特性,中国科学E辑:技术科学,2007,30(1),1394-1402.
    [143]左建平,周宏伟,谢和平,不同温度影响下砂岩的断裂特性研究,工程力学,2008,25(5),124-130.
    [144]左建平,周宏伟,谢和平等,温度和应力耦合作用下砂岩破坏的细观试验研究,岩土力学,2008,29(6),1477-1482.
    [145]张渊,张贤,赵阳升,砂岩的热破裂过程,地球物理学报,2005,48(3),656-659.
    [146]张渊,万志军,赵阳升,细砂岩热破裂规律的细观实验研究,辽宁工程技术大学学报,2007,26(4),529一531.
    [147]林为人,铃木舜一,高桥学等.稻田花岗岩中的流体包裹体及由其导致高温条件下微小裂纹的形成,岩石力学与工程学报,2003,22(6),899-904.
    [148]王泽云,刘立,刘保县.岩石微结构与微裂纹的损伤演化特征,岩石力学与工程学报,2004,23(10),1599-1603.
    [149]刘兴华、郑颖人,岩石损伤的CT实验观测,贵州工业大学学报,1997,26(增l),120-122.
    [150]葛修润,任建喜,蒲毅彬等.岩石细观损伤扩展规律的CT实时试验,中国科学E辑,2000,30(2):104-111.
    [151]赵阳升,孟巧荣,康天合等,显微CT试验技术与花岗岩热破裂特征的细观研究,岩石力学与工程学报,2008,27(I),28-34.
    [152]张宁,赵阳升,万志军等.高温三维应力下鲁灰花岗岩蠕变本构关系的研究[J].岩土工程学报,2009,31(11):1757-1762.
    [153]张宁,赵阳升,万志军.高温作用下花岗岩三轴蠕变特征的实验研究[J].岩土工程学报,1999,51(1):1-3.
    [154] DAVID C, MENENDEZ B, DAROT M. Influence of stress-induced and thermal cracking onphysical properties and microstructure of La Peyratte granite[J]. Int J Rock Mech and Min Sci,1999,36(4):433–448.
    [155] Handy M R. Flow laws for rocks containing two nonlinear viscousphases:a phenomenologicalapproach. Journal of St ructural Geology,1994,16(3):287~301
    [156] Homand-Etienne F, Honpert R. Thermally induced micro cracking in granites: characterization andanalysis[J].Int J Rock Mech Min Sci&Geomech Abstr,1989,26(2):124-134.
    [157] MARTIN R J Iii, BOYD P J. Creep in topopah spring member welded tuff. yucca mountain sitecharacterization project[R].1995.
    [158] WEBSTER G A, COX A P D, DORN J E. A relationship between transient and steady state creep atelevated temperature[J]. Met Sci J,1969(3):221–225.
    [159] Johnson B., Gangi A.F, Handin J. Thermal cracking of rock subject to slow, uniform temperaturechanges[C]. Proc19th US Symp. Rock Mech.,1978,259-267
    [160]郤保平,赵阳升,万志军等.高温静水应力状态花岗岩中钻孔围岩的流变实验研究[J].岩石力学与工程学报,2008,27(8):1559-1666.
    [161] MIURA K, KUI Y, ORII H. Micromechanics-based prediction of creep failure of hard rock forlong-term safety of high-level radioactive waste disposal system[J]. Mechanics of Materials,2003,35(3-6):587–601.
    [162] MARTINR J III, BOYD P J. Creep in topopah spring member welded tuff[R]. Yucca Mountain SiteCharacterization Project,1995.
    [163]黄炳香,邓广哲,王广地.温度影响下北山花岗岩蠕变断裂特性研究[J].岩土力学,2003,24(增):203-206.
    [164]刘泉声,许锡昌,山口勉,等.三峡花岗岩与温度及时间相关的力学性质试验研究[J].岩石
    [165]力学与工程学报,2001,20(5):715-719.
    [166]吴绵拔,刘远惠.中等应变速率对岩石力学特性的影响[J].岩土力学,1980,(1):51-58.
    [167]李永盛.加载速率对红砂岩力学效应的试验研究[J].同济大学学报,1995,23(3):265–269.
    [168]杨仕教,曾晟,王和龙.加载速率对石灰岩力学效应的试验研究[J].岩土工程学报,2005,27(7):786-788.
    [169] Olsson.W A. The compressive strength of Tuff as a function of strain rate from10-6to103sec[J]. Int.J Rock Mech Min Sci,1991,28(1):115-118.
    [170] Zhao J, Li H B, Wu M B, et al. Dynamic uniaxial1999, compression tests on granite[J]. Int J RockMech Min Sci,36(2):273-277.
    [171] Bieniawski Z T. Time-dependent behaviour of fractured rock. Rock Mechanics,1970,2(3):123-137.
    [172] Peng S S. Time-dependent aspects of rock behaviour as measured by a servocontrolled hydraulictesting mechine.Int J Rock Mech Min Sci﹠Geomech Abstr,1973,10(4):235-246.
    [173] Chong K P, Borest A P. Strain rate dependent mechanical Properties of New Albany referenceShale.Int J Rock Mech Min Sci﹠Geomech Abstr,1990,27(3):199-205.
    [174] Okubo S, Nishimatsu Y, He c. Loading rate dependence of class II rock behaviour in uniaxial andtri-axial compression tests. Int J Rock Mech Min Sci﹠Geomech Abstr,1990,27(6):559-562.
    [175]孟召平,彭苏萍.煤系泥岩组分特征及其对岩石力学性质的影响[J].煤田地质与勘探,2004,32(2):14-16.
    [176] STAVROGIN A N, TARASOV B G. Experimental physics and rock mechanics: results of laboratorystudy[M].Tokyo:A.A.Balkema,2001.
    [177] QI Cheng-zhi, WANG Min-gang QIAN QIHU. Strain-rate effects on the strength and fragmentationsize of rocks[J].International Journal of Impact Engineering,2009,36:1355-1364.
    [178]殷其明.试析几种矿物的热效应对制砖的影响[J].砖瓦,2003,5:26-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700