褐飞虱和稻纵卷叶螟为害后水稻的光谱特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农作物病虫害是农业生产上的重要制约因素之一。据联合国粮农组织(FAO)的调查,全世界病虫害每年造成的经济损失达1200亿美元。做好病虫害的准确监测与预测,才能指导病虫的有效防控,从而降低经济损失。遥感技术可以客观、准确、及时的获取地面作物生态环境和作物生长的重要信息,从而间接地对作物病虫害进行监测。地面高光谱遥感是一种无损害快速检测技术,利用它来进行病虫害的监测,可以在一定程度上弥补传统目测手查方法“费时、费力,且准确性受专业水平影响”等的不足。因此,利用遥感技术开展病虫害监测与预警是当今农业遥感的重要发展方向。
     本文以水稻上的两大重要害虫褐飞虱和稻纵卷叶螟为对象,采用便携式光谱仪,研究了不同生育期水稻、稻田其它绿色植物及非生物地物等的光谱特征;褐飞虱和稻纵卷叶螟不同为害水平下水稻的冠层和叶片光谱特征;同时组建了基于光谱特征的褐飞虱虫量及稻纵卷叶螟为害程度的诊断模型,获得了以下主要结果:
     (1)以水稻为重点,对不同地物的反射光谱测定结果表明,健康水稻的光谱曲线存在明显的“峰”和“谷”特征,可以显著区别于枯草、水泥地、水塘以及裸土等其它非绿色植物地物。健康水稻光谱曲线在绿光(520-600nm)区有弱反射,出现一个小的峰值;在680-750nm区域内,反射率急剧上升;在700-1000nm处,光谱反射率非常高。枯草的光谱曲线不存在明显的“峰”和“谷”的特征,从可见光到近红外波段反射率逐渐升高,近似于一条直线。水泥地光谱曲线在可见光波段高于其它地物,近红外波段明显低于水稻。水塘的光谱曲线近似于一条低矮直线。裸露土壤的反射率曲线与水稻的在形状上最为相似,但在可见光波段要高于水稻,在近红外波段明显低于水稻。光谱反射率一阶微分能够更清晰地展现地物光谱的变化特征。水稻的一阶微分光谱存在很明显的绿峰(510-560nm)和红边(680-760nm);而枯草、水泥地、水塘和裸土的微分光谱均表现为一条低矮曲线,没有绿峰和红边,或者绿峰和红边不明显。
     对孕穗期水稻、抽雄期玉米、结荚期大豆、浮萍和葎草的反射光谱测定分析表明,不同植物间光谱反射率的大小和峰谷位置存在明显差异。表现为,在近红外波段,大豆、玉米和葎草的反射率较高,水稻的次之,而浮萍的最低。在可见光波段,浮萍的反射率最高,玉米、葎草和大豆的次之,而水稻的最低。同一生育期,籼稻的光谱反射率略高于粳稻。
     对水稻不同生育期的光谱测定发现,在抽穗前,随发育期推进,冠层光谱反射率在可见光范围逐渐降低,近红外波段逐渐升高;但在抽穗以后,随生育期推进,光谱反射率在可见光范围内逐渐升高,而在近红外波段逐渐降低;并且随水稻生育期的推移,冠层光谱的红边呈现出了先“红移”后“蓝移”的规律。比值植被指数RVI和归一化植被指数NDVI也表现为,从移栽期到抽穗期不断增大,而从抽穗期到黄熟期则不断减小的趋势。冠层光谱反射率及植被指数不仅能将水稻与其它绿色植物区分开来,而且可以将不同类型及生育期的水稻区分开来。
     (2)在室内用水稻标准苗进行了褐飞虱为害后的光谱特性研究,结果表明,在可见光和近红外区,随褐飞虱虫量和虫龄的增加稻株光谱反射率呈下降趋势,近红外光区的光谱反射率可很好地表征褐飞虱不同龄期、不同虫量及成虫产卵对稻株的危害程度。各波长处的光谱反射率与褐飞虱虫量间存在明显的负相关,并且在520-570nm和700-1000nm波长范围内的相关性达到了极显著水平。褐飞虱为害后稻株光谱的红边幅值Dλr和红边面积Sλr也分别与虫量存在极显著相关。利用虫害后稻株在可见光波长550nm处的反射率(R550)和近红外光区波长760nm处的反射率(R760)、红边参数值与没受害稻株相应值的比值建立了褐飞虱虫量的预测模型,利用模型对19个随机虫量进行光谱反演预测,各模型的预测正确率为53%-79%,且R760因子对褐飞虱虫量有相对较好的预测效果,而以5个虫量梯度为一组的5组次实测值与预测值的卡方检测,符合率达80-100%。
     (3)在水稻孕穗期人工接种不同数量的褐飞虱,然后在灌浆期和黄熟期分别测定水稻的冠层光谱。结果表明,在接虫后20天的灌浆期,水稻冠层光谱在760-1000nm的近红外波段随接虫量的增加而显著降低。在可见光波段,也有下降趋势,但降幅较小。根据冠层光谱反射率与接虫量间的相关性分析得出,725-1000nm波段可做为水稻灌浆期监测褐飞虱的敏感波段。在水稻黄熟期,随接虫量的增加,光谱反射率在可见光区随虫量的升高而显著升高,尤其在620-720nm的红光区上升趋势和幅度非常明显。610-700nm的红光区可作为水稻黄熟期褐飞虱监测的敏感光谱波段。
     对分蘖期盆栽水稻受不同虫量褐飞虱为害后的冠层、茎部以及叶片光谱反射率的研究发现,冠层的光谱反射率随虫量的增加,在绿光区和近红外光区降低,红光区和蓝光区升高。726-1000nm波段可作为分蘖期水稻冠层褐飞虱监测的敏感波段。单叶和茎部的光谱反射率则表现为在整个波段内均随虫量的增加而降低。剑叶、倒二叶和茎部监测褐飞虱为害的敏感光波区域分别为471-589nm和660-1000nm、489-563nm和708-1000nm、527-569nm和699-1000nm。
     褐飞虱为害后的水稻光谱植被指数研究表明,冠层差值植被指数DVI、比值植被指数RVI和归一化植被指数NDVI随接虫量的增加而降低,均与接虫量有较好的相关性。叶片光谱和茎部光谱的DVI与接虫量的相关性显著,而RVI和NDVI与虫量之间相关性不显著。RVI和NDVI指数可用于冠层光谱层次上的褐飞虱监测,而不适宜于单叶和茎杆光谱层次上的监测。
     孕穗期褐飞虱的接虫量大小与水稻的产量关系密切,随着接虫量的增多,水稻穗重和千粒重呈显著的下降趋势。水稻黄熟期的光谱参数:R696、Dλy、λr、Dλr和Sλr与水稻产量间存在显著的相关性。建立了褐飞虱为害后基于水稻黄熟期光谱参数的水稻产量估算模型,估测千粒重(Y3)的两个模型Y3=0.143λr-99.272和Y3=383.121Dλr+1.931的估产效果较好,可用于监测不同虫量为害下水稻的产量。
     (4)测定了稻纵卷叶螟为害后水稻的冠层光谱,并在稻纵卷叶螟为害的小区内选取受害叶片与没受害叶片,在室内测定了单叶光谱,结果表明,稻纵卷叶螟为害后的水稻,在冠层水平上随着卷叶率的升高,反射率在近红外光区逐渐降低。冠层水平上的敏感波段为:738-1000nm。在已受害的卷叶水平,随小区内卷叶率的升高,反射率在红光波段逐渐升高,表征稻纵卷叶螟为害的敏感波段为582-688nm的红光波段。在没受害的展开叶水平上,随小区内卷叶率的升高,反射率在可见光区和近红外光区均降低,表征稻纵卷叶螟为害的敏感波段为512-606nm的绿光区和699-1000nm近红外光区。水稻冠层光谱反射率的一阶微分结果表明,红边位置λr随卷叶率的加重而“蓝移”,红边幅值Dλr和红边面积Sλr均随受害等级的加重而减小。Dλr和Sλr与水稻受害等级存在极显著的相关性,该光谱指数可用于监测水稻受稻纵卷叶螟为害的程度。建立了基于光谱特性的稻纵卷叶螟为害程度的预测模型,冠层光谱条件下,以Y=-1338.406Dλr+11.123模型的效果最好;没直接受害的展开叶光谱条件下,以Y=-90.280R550+11.902模型的效果最好;直接受害的卷叶光谱条件下的预测模型为Y=198.620R670-18.505,所建模型均通过了0.01水平的检验,基本可指导虫害监测。
Insect and disease pests are one the factors to restrict the development of agricultural production. According to the survey of FAO, the worldwide economic losses caused by insect and disease pests reached to 120 billion dollars every year. Accurate monitoring and forecasting can guide the effective management and control of insect and disease pests, and reduce the economic losses. Remote sensing technology can objectively, accurately, and duly get the information of the ground crop's ecological environment and growth conditions, and indirectly monitor the number and damage degree of the insect and disease pests. Traditionally, assessment and monitoring of diseases and insect pests in plants is being done by visual approach, relying upon the human eye and brain, which is time-consuming, labour intensive, and the accuracy affected by the professional level of observer. Hyperspectral remote sensing is a fast and lossless technique, which can make up the shortcoming of the traditional techniques. Therefore, using remote sensing technology to monitor and forecast insect and disease pests is an important development direction of agricultural remote sensing.
     In this paper, we focus on the brown planthopper Nilaparvata lugens (Stal) (BPH) and rice leaf roller Cnaphalocrocis medinalis (Guenee) (RLR), and use the hyperspectral remote sensing, to study on the spectral characteristics of rice at different growth stages, the other plants in the rice field and non-biological ground objects. The spectrum of leaf and canopy of rice infested by BPH and RLR was also measured and the monitoring models to forecast the number of BPH and the damage level of RLR were established based on the spectral characteristics. The results are as follows:
     The results of reflectance features of different ground objects showed that there are obvious "peak" and "valley" features of the spectral curve of healthy rice, which is significantly different from the dead grass, concrete ground, pool, bare soil and other non-green plants. The spectral curve of healthy rice has a small reflection peaks in the green wave band (520-600nm). The reflectance increased sharply in the 680-750nm region, and it reached up to the maximum in 700-1000nm. There were no obvious "peak" and "valley" features in the dead grass spectral curve, and it gradually increased as a smooth straight line from visible band to near-infrared band. The spectral curve of concrete ground was the highest than that of the other objects in the visible band, but it was significantly lower than rice in the near-infrared band. The spectrum of the pool was approximated to a low level of linear. Reflectance curve of the bare soil was similar to rice in the shape, but the reflectances in the visible band were higher than these of rice, while significantly lower than rice in the near-infrared band. The first derivative of spectral reflectance could exhibit more clearly the changes in spectral characteristics of the different ground objects. There was a very obvious green peak at 510-560nm and a red edge at 680-760nm in the first derivative of spectral reflectance of rice, but the first derivative of spectra of all these ground objects, dead grass, concrete ground, pool and bare soil only showed a low curve, and no or not obvious green peak and red edge.
     The spectral reflectance analysis of the rice on booting stage, heading stage corn, pod of soybean, duckweed and humulus scandens, indicated that the spectral reflectance and location of the peak and valley among the different plants were significantly different. The spectral reflectance of soybean, corn and humulus scandens were the highest at the near-infrared band, followed by rice, but duckweed was the lowest. In visible band, the spectral reflectance of duckweed was the highest, followed by corn and humulus scandens, while rice was the lowest. The spectral reflectance of the indica rice was slightly higher than that of the japonica rice at the same growth period.
     Spectral characteristics of rice at different growth stages showed that before the heading stage of rice, the spectral reflectance increased gradually at visible band with the advance of the growth stage, and decreased in the near infrared band. But after the heading stage, spectral reflectance decreased gradually at visible band, and increased at the near-infrared band with the advance of the growth stage. The red edge location of the rice canopy moved to the longer band called "Red transference", and then moved to the shorter band called "Blue transference" as the growth stages of rice developed. Ratio vegetation index RVI and normalized difference vegetation index NDVI of rice increased from transplanting stage to heading stage, and decreased from heading stage to yellow ripeness stage. Canopy spectral reflectance and vegetation index of rice could distinguish well not only the rice from the other plants, but also the different types and growth stages of rice.
     The spectrum of rice seedling infested by brown planthopper was measured in the laboratory. The results showed that the spectral reflectances at the range of visible light and near infrared regions decreased significantly with the increase of the number and instar of BPHs. The damage degrees of rice plants caused by the BPH nymphae with different numbers or stars, and by the oviposition behaviour of adult were expressed well by the spectral reflectance in the near-infrared wavelengths. The reflectance was negatively correlated with the number of BPHs, and the correlation coefficients were significant at the range of wavelengths of 520-570nm and 700-1000nm. The red edge slope (Dλr) and red edge area (Sλr) of the reflectance also significantly correlated with the number of nymphae. The linear models for forecasting the occurrence number of BPHs were built using the following relative indexes to the undamaged plants:the spectral reflectance in the wavelengths of 550nm (R550) and 760nm (R760), and the red edge indexes (Dλr and Sλr). The accuracy of the models was 53%-79% for the 19 times tests. The factor of R760 was efficient for forecasting the number of BPHs. The chi-square test demonstrated that the coincidence rate between the real values of the 5 series of number of BPH and the calculated numbers by models achieved 80%-100%.
     The canopy spectral characters of rice were measured and analyzed in the filling stage and yellow ripeness stage, respectively, after being inoculated different amounts of BPH at the booting stage. The results showed that in the filling stage, canopy spectral reflectance significantly decreased at 760-1000nm of near-infrared region with the increase of BPH, and there was also a decreased trend in the visible band. The correlation between canopy reflectance and the number of BPH showed that 725-1000nm was the sensitive wave brands for monitoring BPH in the filling stage. In the yellow ripeness stage, the canopy reflectance of rice increased in the visible region as the number of BPH increased, especially in the red band region (620-720nm). So the wave brands 610-700nm could be considered as the sensitive band to monitor the number of BPH at the yellow ripeness stage of rice.
     Spectral reflectances of the canopy, stem and single leaf of rice plant infested by various numbers of BPH were measured at the tillering stage. Results showed that canopy reflectance decreased at the green and near-infrared region, while it increased at blue and red bands with the increase of BPH. The sensitive wave band to BPH under the level of canopy was 729-1000nm. The spectral reflectances of the single leaf and stem in the whole bands were decreased with the increase of the number of BPH. According to the results of the correlative analysis between reflectance and the number of BPH, the sensitive wave bands to BPH under the level of flag leaf, next-to-last and stem were 471-589nm and 660-100nm,489-563nm and 708-100nm,527-569nm and 699-1000nm, respectively.
     The spectral vegetation index of the rice showed that canopy spectrum DVI, RVI, and NDVI decreased significantly with the increase of BPH. All of these indexes had a significant correlation with the number of BPH. The spectrum DVI index of leaves and stems was significantly correlated to the amount of BPH, but there was no significant correlation between the number of BPH and RVI or NDVI. Spectral vegetation index RVI and NDVI would be used to monitor the BPH on the canopy level, but they were unsuitable for the single leaf and stem level.
     The relationship between the rice yield and the number of BPH at the booting stage of rice was very significant. The weight of a spike and 1000-seed of rice significantly decreased with the increase of BPH. There was significantly correlation between rice yield and the spectral parameters (R696, Dλy,μr, Dμr and Sμr) in yellow ripeness stage. The models to assess the yield of rice were established based on the spectral parameters. The two modelsY3=0.143kr-99.272 and Y3=383.121Dμr+1.931 were efficient to monitor the 1000-seed weight (Y3) of rice under different amount of BPHs.
     Canopy and single leaf reflectance of rice infested by RLR were measured. The results indicated that the spectral reflectance of rice canopy decreased in the near-infrared regions with the increase of the damage degree by RLR.738-1000nm was the sensitive wave-length band which could reflect the impaired level of rice canopy. The spectral reflectance of the roll leaf increased in the red band regions with the increase of the rate of roll leaf in the plot of rice, and 582-688nm was the sensitive band to reflect the impaired level of rice leaf-roll. The spectral reflectance of the developed blade leaf in the damaged plot by RLR decreased in the visible band and near-infrared regions with the increase of the rate of the roll leaf. The sensitive wave bands to RLR under the level of developed blade leaf were 512-606nm and 699-1000nm. First derivative of canopy spectral reflectance showed that location of the red edge (λr) moved to the short band side. Dλr and Sλr decreased with the increase of infestation level of leaves. The Dλr and Sλr were significantly correlative to the infestation level of rice. These two indexes could be used to detect the damage degree of rice by RLR. Prediction models based on the spectral characteristics of rice were established to forecast the damage levels by RLR. At the canopy level, Y=-1338.406DAλr+11.123 was the best model, whereas at the developed blade leaf level, Y=-90.280R550+11.902 was the best one, and the model was Y=198.620R670-18.505 at the damaged leaf-roll leaf level. All these models were tested through the 0.01 level, and they could be used to monitor the RLR.
引文
1. 安虎,王海光,刘荣英,等.小麦条锈病单片病叶特征光谱的初步研究.中国植保导刊,2005,25(11):8-10.
    2. 蔡成静,王海光,安虎,等.小麦条锈病高光谱遥感监测技术研究西北农林科技大学学报,2005,33(1):32-36.
    3. 曹学仁,周益林,段霞瑜,等.利用高光谱遥感估计白粉病对小麦产量及蛋白质含量的影响.植物保护学报,2009,36(1):32-36.
    4. 常庆瑞,蒋平安,周勇,等.遥感技术导论.北京:科学出版社,2004.
    5. 陈兵,王克如,李少昆,等.棉花黄萎病冠层高光谱遥感监测技术研究.新疆农业科学,2007,44(6):740-745.
    6. 陈鹏程,张建华,雷勇辉,等.高光谱遥感监测农作物病虫害研究进展.中国农学通报,2006,22(2):388-391.
    7. 陈鹏程,张建华,李眉眉.土耳其斯坦叶螨为害棉叶的生理变化及光谱特征分析.昆虫知识,2007,44(1):61-65.
    8. 陈述彭,童庆禧,郭东华.遥感信息机理研究.北京:科学出版社,1998.
    9. 陈述彭.遥感在农业科学技术中的应用.北京:科学出版社,1990.
    10.程登发.生物灾害监测预警技术.面向21世纪的植物保护发展战略.北京:中国科技出版社,2001.
    11.程遐年,吴进才,马飞.褐飞虱研究与防治.北京:中国农业出版社,2002.
    12.程新奇,周清明,严钦泉.水稻栽培分类研究的现状与展望.湖南文理学报,2004,16(3):73-75.
    13.程一松,胡春胜,王城,等.养分胁迫下的夏玉米生理反应与光谱特征.资源科学,2001,23(6):54-58.
    14.冯伟,朱艳,田永超,等.基于高光谱遥感的小麦籽粒产量预测模型研究.麦类作物学报,2007,27(6):1076-1084.
    15.冯伟,朱艳,田永超,等.基于高光谱遥感的小麦冠层叶片色素密度监测.生态学报,2008,28(10):4902-4910.
    16.傅强,黄世文.水稻病虫害诊断与防治原色图谱.北京:金盾出版社,2004,
    17.关丽,刘湘南,程承旗.土壤镉污染环境下水稻叶片叶绿素含量监测的高光谱遥感信息参数.光谱学与光谱分析,2009,29(10):2713-2716.
    18.郭洁滨,黄冲,王海光,等.基于高光谱遥感技术的不同小麦品种条锈病病情指数的反演.光 谱学与光谱分析,2009,29(10):3353-3357.
    19.郭铌.植被指数及其应用研究.干旱气象,2003,21(4):72-75.
    20.郭永旺,金晓华,杨建国,等.麦蚜灾害遥感监测技术应用研究.植保技术与推广,2001,21(3):3-5.
    21.江道辉,李章成,周清波.条锈病影响下冬小麦叶绿素含量的高光谱估计.农业信息科学,2007,23(10):376-380.
    22.江东,王乃斌,杨小唤,等.植被指数-地面温度特征空间的生态学内涵及其应用.地理科学进展,20(2):146-152.
    23.江苏省植保总站.农作物主要病虫害预测预报与防治.南京:江苏科学技术出版社,2006.
    24.蒋金豹,陈云浩,黄文江,等.冬小麦条锈病严重度高光谱遥感反演模型研究.南京农业大学学报,2007,30(3):63-67.
    25.蒋选利.小麦条锈病相互作用的超微结构、细胞化学和分子细胞学研究:(博士学位论文)北京:中国农业大学,1999.
    26.金瑞华,王家圣,秦玉川,等.不同螨口密度下被害苹果树冠的光谱反射率研究.农业遥感论文集,1991,127-130.
    27.竞霞,黄文江,王纪华,等.棉花单叶黄萎病病情严重度高光谱反演模型研究.光谱学与光谱分析,2009,29(2):3348-3352.
    28.何国金,胡德永,金小华.北京麦蚜虫害的光谱测量与分析.遥感技术与应用,2002,17(3):120-123.
    29.黄木易,王纪华,黄文江,等.冬小麦条锈病的光谱特征及遥感监测.农业工程学报,2003,19(2):154-158.
    30.黄木易,黄义德,黄文江,等.冬小麦条锈病生理变化及其遥感机理.安徽农业科学,2004,32(1):132-134.
    31.寇有观,萧秫.农业遥感.北京:农业出版社,1988.
    32.李光博.小麦病虫草鼠害综合治理.北京:中国农业科技出版社,1990.
    33.李民赞,韩海东,王秀.光谱分析技术及其应用.北京:科学出版社,2006.
    34.李云梅,倪绍祥,黄敬峰.高光谱数据探讨水稻叶片叶绿素含量对叶片及冠层光谱反射率特性的影响.遥感技术与应用,2003,18(1):1-5.
    35.李云梅.植被辐射传输理论与应用.南京:南京师范大学出版社,2005.
    36.刘亮,姜小光,李显彬,等.利用高光谱遥感数据进行农作物分类方法研究.中国科学院研究生院学报,2006,23(4):484488.
    37.刘良云,张兵,郑兰芬,等.利用温度和植被指数进行地物分类和土壤水分反演.红外与毫米波学报,2002,21(4):269-274.
    38.刘良云,黄木易,黄文江,等.利用多时相的高光谱航空图像监测冬小麦条锈病.遥感学报,2004,8(3):275-281.
    39.刘良云,宋晓宇,李存军,等.冬小麦病害与产量损失的多时相遥感监测.农业工程学报,2009,25(1):137-143.
    40.刘万才.水稻两迁害虫研讨会在河南鹤壁成功召开.中国植保导刊,2006,26(5):55.
    41.刘伟东,项月琴,郑兰芬,等.高光谱数据与水稻叶面积指数及叶绿素密度的相关性分析.遥感学报,2004,4(4):279-283.
    42.刘文敏,苏祥瑶,陈彤.小麦白粉病对小麦产量影响初报.河北农业大学学报,1989,12(4):17-20.
    43.刘占宇,孙华生,黄敬峰.基于学习矢量量化神经网络的水稻白穗和正常穗的高光谱识别.中国水稻科学,2007,21(6):664-668.
    44.卢艳丽,王纪华,李少昆等.冬小麦不同群体冠层结构的高光谱响应研究.中国农业科学,2005,38(5):911-915.
    45.陆德峰.农业遥感论文集.北京:测绘出版社,1989.
    46.吕建海,陈曦,王小平.大面积棉花长势的MODIS监测分析方法与实践.干旱区地理,2004,27(1):118-123.
    47.毛文华,王月青,王一鸣等.苗期作物和杂草的光谱分析和识别.光谱学与光谱分析,2005,25(6):984-987.
    48.南京农学院.昆虫生态与预测预报,北京:农业出版社,1982.
    49.牛铮,陈永华,隋洪智,等.叶片化学组分成像光谱遥感探测机理分析.遥感学报,2000,4(2):125-130.
    50. 《农作物病虫的群众性测报》编绘组.农作物病虫的群众性测报.上海:上海人民出版社,1973.
    51.农业部农作物病虫测报总站.农作物主要病虫测报方法.北京:农业出版社,1980.
    52.浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000.
    53.乔红波,蒋金炜,程登发.烟蚜为害特征的高光谱比较.昆虫知识,2007,44(1):57-61.
    54.乔洪波,程登发,孙京瑞.麦蚜对小麦冠层光谱特性的影响研究,植物保护,2005,31(2):21-25.
    55.乔红波,周益林,白由路,等.地面高光谱和低空遥感监测小麦白粉病初探.植物保护学报,2006,33(4):341-344.
    56.乔红波,蒋金炜,程登发,等.烟蚜为害特征的高光谱比较.昆虫知识,2007,44(1):57-61.
    57.邱白晶,陈国平,程麒文.水稻白背飞虱虫害的冠层光谱特征与虫量反演.农业机械学报,2008,39(9):92-95.
    58.石宇虹,朴瀛,张菁.应用NOAA/AVJRR资料监测水稻长势的研究.应用气象学报,1999,10(2):243-248.
    59.苏祖芳,周纪平,丁红海.稻作诊断.上海:上海科学技术出版社,2007.
    60.孙雪梅,周启发,何秋霞.利用高光谱参数预测水稻叶片叶绿素和籽粒蛋白质含量.作物学报,2005,31(7):844-850.
    61.谭昌伟,王纪华,郭文善,等.利用红边参数估算夏玉米农学参数的可行性分析.福建农林大学学报(自然科学版),2006,35(2):122-128.
    62.谭昌伟,周清波,齐腊,等.水稻氮素营养高光谱遥感诊断模型.应用生态学报,2008,19(6):1261-1268.
    63.唐延林,黄敬峰.农业高光谱遥感研究的现状与发展趋势.遥感技术与应用,2001,16(4):248-251.
    64.唐延林,王人潮,王秀珍.对水稻微分光谱和植被指数的研究.上海交通大学学报(农业科学版),2003,21(3):199-204.
    65.唐延林,黄敬峰,王人潮.水稻不同发育时期高光谱与叶绿素和类胡萝卜素的变化规律.中国水稻科学,2004,18(1):59-66.
    66.唐延林,王纪华,黄敬峰,等.利用水稻成熟期冠层高光谱数据进行水稻估产研究.作物学报,2004,30(8):739-744.
    67.唐延林,王人潮,黄敬峰,等.不同供氮水平下水稻高光谱及其红边特征研究.遥感学报,2004,8(2):185-191.
    68.田国良,包佩丽,李建军,等.土壤中镉、铜伤害对水稻光谱特性的影响.环境遥感,1990,5(2):140-149.
    69.童庆禧.中国典型地物波谱及其特征分析.北京:科学出版社,1990.
    70.童庆禧,郑芬兰,王晋年,等.湿地植被成像光谱遥感研究.遥感学报,1997,1(1):50-57.
    71.万余庆,谭克龙,周日平.高光谱遥感应用研究.北京:科学出版社,2006.
    72.王纪华,赵春江,黄文江,等.农业定量遥感基础与应用.北京:科学出版社,2008.
    73.王人潮,陈铭臻,蒋亨显.不同供氨水平的水稻光谱特征及其敏感波段的选择.1993,19(增刊):7-14.
    74.王秀珍,黄敬峰,李云梅等.水稻生物化学参数与高光谱遥感特征参数的相关分析.农业工程学报,2003,19(2):144-148.
    75.王秀珍,王人潮,黄敬峰.微分光谱遥感及其在水稻农学参数测定上的应用研究.农业工程学报,2002,18(1):9-13.
    76.王圆圆,陈云浩,李京,等.指示冬小麦条锈病严重度的两个新的红边参数.遥感学报,2007,11(6):875-881.
    77.王延颐,高庆芳.稻田光谱与水稻长势及产量结构要素关系的研究.国土资源遥感,1996,(27):51-55.
    78.吴炳方.中国农清遥感速报系统.遥感学报,2004,8(6):481-497.
    79.吴炳方,张峰,刘成林,等.农作物长势综合遥感监测方法.遥感学报,2004,8(6):499-512.
    80.吴达科,马承伟,杜尚丰.斑潜蝇虫害叶片受害程度对其近红外反射光谱的影响.农业工程学报,2007,23(2):157-158.
    81.吴昊,邱白晶,陈国平,等.水稻白背飞虱虫害的单叶高光谱特征分析.农机化研究,2009,(4):117-119.
    82.吴继友,倪建.松毛虫为害的光谱特征与虫害早期探测模式.遥感学报,1995,10(4):250-258.
    83.吴曙雯,王人潮,陈晓斌等.稻叶瘟对水稻光谱特性的影响研究.上海交通大学学报,2002,20(1):73-74.
    84.吴彤,倪绍祥,李云梅,等.基于地面高光谱数据的东亚飞蝗危害程度监测.遥感学报,2007,11(1):103-108.
    85.谢佰承,陆魁东,帅细强,等.遥感技术在水稻病虫害监测中的应用.安徽农学通报,2006,12(13):81-82.
    86.熊勤学,吴涛.2006年荆州市稻飞虱危害的遥感分析及评估.遥感信息,2008,5:41-44.
    87.薛利红,罗卫红,曹卫星,等.作物水分和氮素光谱诊断研究进展.遥感学报,2003,7(1):73-79.
    88.薛利红,曹卫星,罗卫红.小麦叶片氮素状况与光谱特性的相关性研究.植物生态学报,2004a,28(2):172-177.
    89.薛利红,杨林章.采用不同红边位置提取技术估测蔬菜叶绿素含量的比较研究.农业工程学报,2008,24(9):165-169.
    90.袁迎辉,林子瑜.高光谱遥感技术综述.中国水运,2007,7(8):156-157.
    91.杨长明,杨林章,韦朝领等.不同品种水稻群体冠层光谱特征比较研究.应用生态学报,2002,13(6):689-692.
    92.杨吉龙,李家存,杨德明.高光谱分辨率遥感在植被监测中的应用综述.世界地质,2001,20(3):307-311.
    93.张浩,毛雪琴,张震,等.水稻穗颈瘟严重度的高光谱反演模型研究.农业现代化研究,2009,30(3):369-372.
    94.赵英时.遥感应用分析原理与方法.北京:科学出版社,2002.
    95.张晓东,毛罕平.油菜氮素光谱定量分析中水分胁迫与光照影响及修正.农业机械学报,2009,40(1):164-169.
    96.张孝羲,程遐年,耿济国.害虫测报原理和方法.北京:农业出版社,1979.
    97.张孝羲,陆自强,耿济国,等.稻纵卷叶螟迁飞途径的研究.昆虫学报,1980,23(2):130-139.
    98.张孝羲,张跃进.农作物有害生物预测学.北京:中国农业出版社,2006.
    99.张永强,文丽萍,石洁,等.亚洲玉米螟为害后玉米冠层光谱变化和产量损失研究.植物保护,2007,33(5):54-57.
    100.张永强,文丽萍,石洁,等.玉米感染弯孢菌叶斑病后叶片的光谱特征及产量损失.科技创新与绿色植保(研究简报及摘要)北京:中国农业科学出版社,2006.
    101.中国科学院动物研究所.中国主要害虫综合防治.北京:科学出版社,1979.
    102.周成虎.洪涝灾害遥感监测研究.地理研究,1993,12(3):63-68.
    103. Apan A, Datt B, Kelly R. Detection of pests and diseases in vegetable crops using hyperspectral sensing:A comparison of reflectance data for differernt sets of symptoms. Proceedings of SSC, Spatial Intelligence, Innovation and Praxis:The national biennial Conference of the Spatial Sciences Institute,2005.
    104. Baret F, Champion I and Guyot. Monitoring wheat canopies with a high spectral resolution radiometer radiometer. Remote Sensing of Environment,1987,22:367-378.
    105. Carter GA. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing,1994,15 (6):697-703.
    106. Carter GA. Responses of leaf spectral reflectance to plant stress. American Journa of Botany,1993, 80 (2):239-243.
    107. Crosta AP, Souza CR de F. Evaluating AVIRIS hyperspectral remote sensing data for geological mapping in Laterized Terraces, Central Brazil. Proceeding Of the Twelfth International Conference and Workshops on Applied Geologic Remote Sensing, Denver, Colorado.1997,Ⅱ:430-437.
    108. Curran PJ, Windham W R, Gholz H L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine leaves. Tree Physiology,1995,15:203-206.
    109. Curran PJ, Dungan JL, Gholz HL. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiology,1990,7:33-48.
    110. Danson FM. Red edge response of leaf area index. Remote Sensing,1995,36 (1):45-53.
    111. Dawson TP, Curran PJ and North PR. The propagtion of Foliar Biochemical absorption feaure in forest canopy reflectance:a theoretical analysis. Remote Sensing of Environment,1999,67(2): 147-159.
    112. Demetriades-Shah TH, Steven MD and Clark JA. High resolution derivative spectra in remote sensing. Remote Sensing of Environment,1990,33 (1):55-64.
    113. Filella I, Penuelas J. The red position and shape as indicators of plant chlorophyll content, biomass and hydric satus. Remote Sensing,1994,15 (7):1459-1470.
    114. Filella I, Serrano L and Serra J, et al. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Grop Science,1995,35:1400-1405.
    115. Gao BC and Goetz AFH. Column atmospheric water vapor and vegetation liquid water retrievals from airbourne imaging spectrometer data. Journal of Geophysical Research-Atmospheres,1990, 95 (D4):3549-3564.
    116. Genc H, Genc L, Turhan H, et al. Vegetation indices as indicators of damage by the sunnpest (Hemiptera:Scutelleridae) to field grown wheat. African Journal of Biotechnology,2008,7 (2): 173-180.
    117. Guan J, Nutter FW. Relationship between defiliation, leaf area, canopy reflectance, and forage yield in thealfalfa-leaf spot pathosystem. Computers and Electronics in Agriculture,2002,37:97-112.
    118. Hartmut K, Lichtenthaler, Fatbardha Babani. Detection of photosynthetic activity and water stress by imaging the red chlorophyll fluorescence. Plant Physiol.Biochem,2000,38:889-895.
    119. Horler DNH, Dockray M, Barber J. The red edge of Plant leaf reflectance. Internal Journal of Remote Sensing,1983,4 (3):273-285.
    120. Huang JF and APan A. Detection of Sclerotinia rot disease on celery using hyperspectral data and partial least squares regression. Journal of Spatial Science,2006,52 (1):131-144.
    121. Huete AR. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment,1988,25: 295-309.
    122. Huter T, Coker RR, Royle DJ. The teleomorph stage, Mycosphaerella graminicola, in epidemics of spetoria tritici blotch on winter wheat in the UK. Plant Pathology,1999,48 (1):94-101.
    123. Inoue Y, Morinaga S, Shibayama M. Nondestructive estimation of water status of intact crop leaves based on spectral reflectance measurements. Japanese Journal of Crop Science,1993,62:462-469.
    124. Jacob T, Mundta NF and Glenna KT, et al. Discrimination of hoary cress and determination of its detection limits via hyperspectral image processing and accuracy assessment techniques. Remote Sensing of Environment,2005, (96):509-517.
    125. Jiang D, Wang NB and Yang XH. Study on crop yield forecasting with satellite information in China. Nature Magazine,1999,21 (6):351-355.
    126. Xing J, Guyer D. Comparison of transmittance and reflectance to detect insect infestation in Montmorency tart cherry. Computers and Electronics in Agriculture,2008,64:194-201.
    127. Kimes DS, Markham BL. Temporal relationship between spectral response and agronomic variable of corn canopy. Remote Sensing of Environment,1981,11 (5):402-411.
    128. Knipling EB. Physical and physiological basis for the reflectance of visible and near-infrared radioation from vegetation. Remote Sensing of Environment,1970,1:155-159.
    129. Kokaly RF. Investigating a physical bias for spectroscopic estimates of leaf nitrogen concentration. Remote Sensing of Environment,2001,75:153-161.
    130. Large EC, Doling DA. Effect of mildew on yield of winter wheat. Plant Pathology,1983,12 (3): 128-130.
    131. Lipps PE, Madden LV. Assenssment of methods of determining powdery mildew in relation to grain yield of winter wheat cultivars in Ohio. Phytopathology,1989,79 (4):462-470.
    132. Malthus TJ, Madeira AC. High resolution spectroradiometry:Spectral reflectance of field bean leaves infected by Botrytis fabae. Remote Sensing of Environment,1993,45 (1):107-116.
    133. Miller JR. Season patterns in leaf reflectance red edge characteristics. Remote Sensing,1991,12 (7): 1509-1523.
    134. Miller JR, Hare EW, Wu J. Quantitative characterization of the vegetation red edge reflectance model. Remote Sensing,1990,11 (10):1755-1773.
    135. Zhang MH, Qin ZH, Liu X, et al. Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. International Journal of Applied Earth Observation and Geoinformation,2003,4:295-310.
    136. Mirik M, Michels Jr GJ, Kassymzhanova-Mirik S, et al. Reflectance characteristics of Russian wheat aphid (Hemiptera:Aphididae) stress and abundance in winter wheat. Computers and Electronics in Agriculture,2007,57 (1):123-134.
    137. Nagarajan S, Seibold G, Kranz J, et al. Monitoring wheat rust epidemics with the Landsat-satellite. Phytopathology,1984,74 (5):585-587.
    138. Pearson RL, Miller LD. Remote mapping of standing crop biomass for estimation of productivity of the shortgrass prairie, Pawnee National Grasslands, Colorado. Preceedings of 8th International Symposium on Remote Sensing of the Environment,1972,1355-1379.
    139. Peterson DL, Aber JD, Matson P A, et al. Remote sensing of forest canopy and leaf biochemical contents. Remote Sensing of Environment,1988 24:85-108.
    140. Pinar A. Grass chlorophyll and reflectance red edge. Remote Sensing,1996,17(2):351-357.
    141. Philpot WD.The derivative ratio algorithm:avoiding atmospheric effects in remote sensing, coniferous forests. Remote Sensing of Environment,1987,22:323-341.
    142. Raikes C and Burpee LL. Use of multispectral radiometry for assessment of Rhizoctonia blight in creeping bentgrass. Phytopathology,1998,88 (5):446-449.
    143. Raymond FK, Roger NC. Spectroscopic determination of leaf biochemistry using Band-depth analysis of absorptio features and stepwise multiple linear regression. Remote Sensing of Environment,1999,67:267-287.
    144. Rence AN, Nemeth J. Defection of mountain pine beetle infection using land sat MSS and simulated thematic map-per data. Canadian Journal of Remote Sensing,1985,11 (1):50-58.
    145. Richardon AJ, Wiegand CL. Distinguishing vegetation from soil background information. Phtogrammetric Engineering and Remote Sensing,1977,43 (12):1541-1552.
    146. Riedell WE and Kieckhefer RW. Nitrogen fertilizer management and grain yield loss to Russian wheat aphids. Cereal Research Communications,1993,21:57-61.
    147. Riedell WE, Blackmer TM. Leaf reflectance spectra of cereal aphid-damaged wheat. Crop Science, 1999,39:1835-1840.
    148. Riedell WE and Kieckhefer RW. Feeding damage effects of three aphids species on wheat root growth. Plant Nutrition,1995,18:1881-1891.
    149. Rock BN, Hoshizaki T and Miller JR. Comparison of in situ and airborne spectral measurement of the blue shift associated with forest decline. Remote Sensing of Environment,1988,24 (1):109-127.
    150. Rouse JW, Haas RH, Schell JA, et al. Monitoring vegetation systems in the Great Plains with ERTS. In Third ERTS symposium, NASA SP-351, NASA, Washington, DC,1973,1:309-317.
    151. Schmidt KS, Skidmore AK. Spectral discrimination of vegetation types in a Coastal Wetland. Remote Sensing of Environment,2003,85:92-108.
    152. Singh D, Sao R, Singh KP. A remote sensing assessment of pest infestation on sorghum. Advanced in Space Research,2007,39:155-163.
    153. Steddom K, Bredehoeft MW and Rush CM. Comparison of visual and multispectral radiometric disease evaluations of cercospora leaf spot of sugar beet. Plant Disease,2005,89 (2):153-158.
    154. Svetlana M, Kochubey, Kazantsev TA. Change in the first derivatives of leaf reflectance spectral of various plants induced by variations of chlorophyll content. Journal of Plant Physiology,2007,164: 1648-1655.
    155. Takebe M, Yoneyama T, Inada K. Spectral reflectance ratio of rice canopy for estimating crop nitrogen status. Plant Soil,1990,122:295-297.
    156. Vaiphasa C, Skidmore AK, Boer WF, et al. A Hyperspectral Band Selector for plant species discrimination. Journal of Photogrammetiy and Remote Sensing,2007,62:225-235.
    157. Vigier B J, Pattey E, Straehan Ian B. Narrow band vegetation indexes and detection of disease damage in soybeans. IEEE Geoscience and Remote Sensing Letters,2004,1 (4):255-259.
    158. Wang N, Zhang N, Floyd ED, et al. Design of an optical weed sensor using plant spectral characteristics. Proceedings of 99 International Conference on Agricultural Engineering,1999, Beijing, China.
    159. Walter E, Riedell, Tracy M, et al. Leaf reflectance spectra of cereal aphid-damaged wheat. Crop Science,1999,39:1835-1840.
    160. Xing J, Guyer D. Comparison of transmittance and reflectance to detect insect infestation in Montmorency tart cherry. Computers and electronics in agriculture,2008,64:194-201.
    161. Xu HR, Ying YB, Fu XP, et al. Near-infrared spectroscopy in detecring leaf miner damage on tomato leaf. Biosystems Engineering,2007,96 (4):447-454.
    162. Yang CM, Cheng CH. Spectral characteristics of rice plants infested by brown planthoppers. Proc Natl Sci Counc ROC (B).2001,25(3):180-186.
    163. Yang Z, Rao MN, Elliott NC, et al. Using ground-based multispectral radiometry to detect stress in wheat caused by greenbug (Homoptera:Aphididae) infestation. Computers and Electronics in Agriculture,2005,47:121-135.
    164. Yang CM, Cheng CH, Chen RK. Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder. Crop Science,2007,47:329-335.
    165. Zhang M, Liu X and O'Neill M. Spectral discrimination of Phytophthora infestans infection on tomatoes based on principal component and cluster analysis. International Journal of Remote Sensing,2002,53 (6):1095-1107.
    166. Zhang MH, Qin ZH, Liu X, et al. Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. International Journal of Applied Earth Observation and Geoinformation,2003,4(3):295-310.
    167. Zhang MH and Qin ZH. Spectra lanalysis of tomato late blight infection for remote sensing of tomato disease stress in California. IEEE Geoscience and Remote Sensing Symposim,2004,6 (7): 4091-4094.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700