基于中高空间分辨率遥感影像的油菜种植面积信息提取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是我国五大油料作物之首,是重要的食用油源和蛋白质饲料,也是重要的工业原料,其种植面积占全国油料作物总面积的40%以上,产量占全国油料总产量的30%以上,居世界首位。及时了解油菜种植面积,对于加强油菜生产管理,调整农业结构,辅助有关部门制定科学合理的指导政策具有重要意义。利用遥感技术可以获取到不同时间分辨率和不同空间分辨率条件下大范围的地表覆盖信息,信息提取结果可排除人为干扰,具有科学性和客观性。油菜种植面积遥感提取的国内外研究相对匮乏,不能满足实际应用的需要。油菜主要种植区域地块破碎度高,作物插花种植现象严重等都为油菜种植面积信息提取带来了一定难度。
     本论文对研究的选题、国内外的研究进展、拟采用的研究方法进行了介绍。总结了前人在相关研究中已经取得的研究成果和仍然存在的问题,提出了研究的必要性和可行性。以中高空间分辨率遥感影像数据为主要数据源,针对安徽省研究区进行了油菜种植面积遥感信息提取研究。研究详细的介绍了具体研究内容,研究方法和得出的研究成果。其中,在安徽油菜种植区划中,研究以安徽油菜为对象,结合多年油菜种植面积、油菜生育期、地形因素等主要影响因素进行区域划分,区划结果为安徽省油菜种植面积遥感信息提取中空间抽样样方选取提供参考。
     在油菜种植面积遥感提取最佳时相研究中,研究以2009年多时相Landsat5-TM数据为例,对油菜各生育期内遥感影像中地表主要植被类型的光谱可分性距离计算,分析研究区内主要植被物候差异和光谱可分性。经J-M距离计算可知,4月上旬为油菜种植面积遥感提取的最佳时相。
     在油菜种植面积遥感提取最佳波段组合研究中,研究以Landsat5-TM、ASTER、ALOS(AVNIR-2)、SPOT-5遥感数据为例,根据油菜生长期的光谱特征与中高空间分辨率遥感数据的波谱特征,利用最佳指示因子法(OIF)研究油菜种植面积遥感提取最佳波段组合方式。经OIF指数计算,研究区内Landsat-TM、ASTER, ALOS(AVNIR-2)、SPOT-5遥感数据在近红外和可见光波段均可较好的区分油菜与其他地物。
     在尺度变化对油菜种植面积提取精度影响的研究中,分别采用遥感自动分类法中的非监督分类法、监督分类中的最小距离法、最大似然法和马氏距离法对油菜种植面积进行提取。采用分类精度和分类效率指标两个参数,结合地面GPS调查数据和QUICKBIRD高分辨率遥感影像对分类结果进行精度评价。通过对提取结果混淆矩阵比较,非监督分类结果好于监督分类结果,且效率高。随着遥感数据空间分辨率的增加可提高油菜种植面积遥感信息提取精度。
     本论文基于中高空间分辨率遥感数据进行了油菜种植面积信息提取,研究结果表明利用中高空间分辨率遥感数据可以高精度提取油菜种植面积。随着遥感技术的高速发展,多传感器多空间分辨率遥感数据大量出现,今后会采用多数据源多方法对遥感提取油菜种植面积进行继续研究。
Rape, ranging the first in five oil-bearing crops in China, is the important edible oil source and protein feed, as well as important an industrial material. Taking up over 40% of total cultivated oil-crop area and over 30% of total output of oil plants nationwide, it ranks the first place in the world. Understanding the cultivated area of rape is of significance to enhance its production control, adjust agricultural structure, and make rational guiding policies assisting relevant departments. Through remote sensing technology, the extensive surface covering information can be obtained in different time resolutions and spaces. The man-made interference can be avoided for the information extraction results, and so it is scientific and objective. The Remote Sensing Information Extraction for rape cultivated area is deficient relatively at home and abroad, and can't satisfy requirements of practical applications. It is a certain difficulty for information extraction of rape planting area due to the fragmentary and dispersive planting lands and the severe crossing cultivation.
     In this paper, selection of research subjects, research progress at home and abroad, and proposed research methods all are introduced; the results and problems studied before in relevant researches are summed up; and the necessity and feasibility of the research are put forth. In addition, by mid and high space resolution remote-sensing image data as the main data source, the rape-cultivated area remote information extraction is studied aiming at the Anhui research region. The specific contents, methods and achieved results are introduced in detail. The research focuses on the rape in Anhui rape planting area division in combination of major factors such as its planting area, growth period and landforms in the region. The area-division results render reference for space sampling methods in Anhui rape cultivated area remote sensing information extraction.
     In the research on optimal time phase of the rape cultivated area remote-sensing extraction, the divisible distance of spectra in major vegetation types on the earth's surface are calculated in remote sensing images in rape growth seasons taking an example of multi-time phase Landsat5-TM data in 2009; the difference of phonological phenomenon spectrum and divisibility for major vegetations within the research region are analyzed. It is known by calculation of J-M distance that the beginning of April is the best time phase for the rape cultivated area remote sensing extraction.
     In the research on optimal band combination of the rape cultivated area remote-sensing extraction, the optimal indication factor method (OIF) is used to study the optimal band combination modes based on spectral characteristics during rape growth period and wave-spectrum features of mid and high space resolution remote sensing data, taking an example of Landsat5-TM、ASTER、ALOS(AVNIR-2)、SPOT-5 remote-sensing data. Through OIF index calculation, the Landsat5-TM、ASTER、ALOS(AVNIR-2)、SPOT-5 remote-sensing data can better distinguish rape and other crops within near-infrared and visible light bands.
     In the research on the impact of dimensional changes on rape cultivated area extraction precision, the rape cultivated area is extracted by the non-supervised classification in the remote-sensing auto classification, as well as the minimum distance method, maximum likelihood method and Mahalanobis distance in the supervised classification method respectively. By two indexes, i.e. precision and effectiveness of classification, the classification results are evaluated in precision in combination of ground GPS investigation data and QUICKBIRD high resolution remote sensing image. By comparison of confusion matrix of extraction results, the non-supervised classification result is better than the supervised classification results with high effectiveness. With increase of the remote sensing data space resolution, the rape cultivated area remote sensing information extraction is improved in precision.
     In the paper, the rape cultivated area information extraction is conducted based on mid and high space resolution remote sensing data. The research results show that the rape cultivated area can be extracted in high precision by mid and high space resolution remote sensing data. With rapid development of remote sensing technology, a great deal of the multi-sensor and multi-space resolution remote sensing data appears. The multi-data source method will be used to continue to further study the remote sensing extraction of rape cultivated area in the future.
引文
[1]高丹文,刘翔,王敏.基于Internet的油菜生产专家系统的开发和示范应用.中国农业科技导报,2004,6(4):62-66.
    [2]梅安新,彭望碌,秦其明,刘慧平.遥感导论.北京:高等教育出版社,2001.
    [3]许文波,田亦陈.作物种植面积遥感提取方法的研究进展[J].云南农业火学学报,2005,20(1):94-98.
    [4]周清波.国内外农情遥感现状与发展趋势.中国农业资源与区划,2004,25(5):9-14.
    [5]Moran M S,Inoue Y,Barnes E M.Opportunities and limitations for image-based remote sensing in precision crop management[J].Remote Sensing of Environment,1997,(61):319-346.
    [6]吴炳方.全国农情监测与估产的运行化遥感方法.地理学报,2000,55(1):25-35.
    [7]Nageswara P P,Rao V R. Rice crop identification and area estimation using remotely sensed data from Indian cropping patterns[J]. International Journal of Remote Sensing,1987,8(4):639-650.
    [8]Okamoto K,Kawashima H.Estimation of Rice Land Planted Area in the Tropical Zone using a Combination of Optical and Microwave Satellite Sensor Data[J].International Journal of Remote Sensing,1999,20(5):1045-1048.
    [9]Tennakoon S B,Murty V V N,Eiunmoh A.Estimation of cropped area and grain yield of rice using remote sensing data. International Journal of Remote Sensing.1992,13:427-439.
    [10]Mahesh P,Paul M M.Decision tree based classification oremotely sensed data[A]. In:Proceedings of the 22nd AsianConference of Remote Sensing[C], Singapore, November 5-9,2001.
    [11]Giorgio QFabio R,Piazza D.Ensembles of neural network for soft classification of remote sensing images[A]. Proceeding of the European Symposium on Intelligen.1997.
    [12]Wardlow B D,Egbert S L,Kastens J H. Analysis of time-series MODIS 250m vegetation index data for crop classification in the U.S. Central Great Plains[J].Remote sensing of Environment,2007,(108):290-310.
    [13]Sara Verbeiren,Herman Eerens,Isabelle Piccard,Ides Bauwens, Jos Van Orshoven. Sub-pixel classification of SPOT-BEGETATION time series for the assessment of regional crop areas in Belgium.International Journal of Applied Earth Observation and Geoinformation,2008,(10): 486-497.
    [14]徐新刚,李强子,周万村,吴炳方.应用高分辨率遥感影像提取作物种植面积.遥感技术与应用.2008.23(1):17-23.
    [15]De Wit,A.J.W.,Clevers,J.GP.W. Efficiency and accuracy of per-field classification for operational crop mapping[J].International Journal of Remote Sensing,2004,(25):4091-4112.
    [16]Yafit Cohen,Maxim Shoshany. A national knowledge-based crop recognition in Mediterranean environment[J].International Journal of Applied Earth Observation and Geoinformation,2002,(4):75-87.
    [17]孟庆岩,顾行发,余涛,荆凤.我国民用卫星遥感应用现状、问题与趋势.地震,2009,29(增刊):1-8.
    [18]竞霞,刘良云,张超,王纪华,贾建华,李国靖.利用多时相NDVI监测京郊冬小麦种植信息.遥感技术 与应用,2005,20(2):238-242.
    [19]张群,胡春胜,陈素英,雷玉半.多时相遥感影像监测冬小麦种植面积的变化研究-以河北省三河市与大厂回族自治县为例.中国生态农业学报,2006,14(3):180-183.
    [20]李寄,黄进良,许文波.湖北省冬小麦种植面积遥感估算方法研究.世界科技研究与发展,2008,30(5):597-599.
    [21]张明席,胡成群.用卫星探测资料建立水稻种植面积测算模式研究[J].气象,1992,18(4):4:9-16.
    [22]张春桂,林晶,吴振海,潘卫华.基于MODIS数据的水稻种植面积监测方法研究.自然资源学报,2007,22(1):1-8.
    [23]张友水,原立峰,姚永慧.多时相MODIS影像水田信息提取研究遥感学报,2007,11(2):282-288
    [24]杨沈斌,申双和,张萍萍,李秉柏ENVISATASAR数据用于大区域稻田识别研究.南京气象学院学报,2007,30(3):365-370.
    [25]李岩,彭少麟,廖其芳,廖圣东RADARSAT SNB SAR数据在大面积水稻估产中的应用研究.地球科学进展,2003,18(1):109-115.
    [26]马丽,顾晓鹤,徐新刚,黄文江,贾建华.地块数据支持下的玉米种植面积遥感测量方法.农业工程学报,2009,25(8):147-152.
    [27]杨桄,张柏,边红枫,王宗明,王志强.基于TM遥感影像的玉米地专题信息提取.资源科学,2006,28(4):91-96.
    [28]钟仕全,陈燕丽,莫建飞,陈玉兰.基于中巴02B星遥感数据的油菜识别技术研究.国土资源遥感,2010(2):77-79,85.
    [29]方海宝,张水香.基于GIS的太湖县油菜种植适宜性评价.现代农业科技,2009,13:358-362.
    [30]王渊,王福民,黄敬峰.油菜不同组生物量光谱遥感估算模型.浙江农业学报,2004,16(2):79-83.
    [31]程言新,张福生,王婉茹,董伯亮.安徽省地貌分区和分类,安徽地质,1996,6(1):63-69
    [32]童庆禧,张兵,郑兰芬.高光谱遥感-原理、技术与应用[M].北京:高等教育出版社,2006.
    [33]齐腊,刘良云,赵春江,王纪华,王锦地.基于遥感影像时间序列的冬小麦种植监测最佳时相选择研究.遥感技术与应用,2008,23(2):154-160.
    [34]林婷.基于多光谱遥感数据的植被信息最佳波段组合研究.林业勘察设计,2010,(2):83-87.
    [35]戴昌达,雷莉萍.TM图像的光谱信息特征与最佳波段组合[J].环境遥感,1989,4(4):282-292.
    [36]冯美臣,杨武德.基于RS的冬小麦种植面积提取及最佳时相选择.山西农业大学学报,自然科学版,2010,30(6):487-490.
    [37]贺容.基于多源数据的土地利用信息遥感提取研究..硕士论文.成都:电子科技大学,2008.
    [38]周清波,陈仲新等.农情遥感监测与信息服务系统平台的设计与实现.资源遥感与数字农业-3S技术与农业应用.北京:中国农业科学技术出版社,2005.
    [39]项月琴.遥感估算水稻产量[J].环境遥感,1988,3(4):308-316.
    [40]孙九林.中国农作物遥感动态监测与估产[M],北京:中国科学技术出版社,1996.
    [41]董彦芳,孙国清,庞勇.基于ENVISATASAR数据的水稻监测.中国科学D辑地球科学,2005,35(7):682-689.
    [42]张云柏ASAR影像应用于水稻识别和面积测算研究——以江苏宝应县为例.硕士学位论文.南京:南京农业大学,2004.
    [43]张萍萍,申双和,李秉柏,王小妹.水稻极化散射特征分析及稻田分类方法研究[J].江苏农业科学,2006(1):148-152.
    [44]马龙,陈文波,戴模ENVISAT的ASAR数据产品介绍[J].国土资源遥感,2005,(1):70-71.
    [45]谭炳香,李增元.SAR数据在南方水稻分布图快速更新中的应用方法研究[J].国土资源遥感,2000,(1):24-27.
    [46]郑长春,王秀珍,黄敬峰.多时相MODIS影像的浙江省水稻种植面积信息提取方法研究.浙江大学学报(农业与生命科学版),2009,35(1):98-104.
    [47]江东,王乃斌,杨小唤.我国粮食作物卫星遥感估产的研究[J].自然杂志,1999,21(6):351-355.
    [48]许文波.火范围作物种植面积遥感监测方法研究[D].博士学位论文.北京:中国科学院研究生院,2003.
    [49]乔红波,张慧,程登发.不同时序EOS/MODIS-NDVI监测河南省冬小麦面积.安徽农业科学,2008,36(27):11940-11941.
    [50]徐新刚,李强子,周万村,吴炳方.应用高分辨率遥感影像提取作物种植面积.遥感技术与应用,2008,23(1):17-24.
    [51]赖格英,杨星卫.南方丘陵地区水稻种植面积遥感信息提取的试验[J].应用气象学报,2000,11(1):47-54.
    [52]李郁竹,曾燕.应用NOAA/AVHRR数据测算局地水稻种植面积方法研究[J].遥感学报,1998,2(2):125-130.
    [53]邱新法,曾燕.中红外和热红外在测算水稻种植面积上的应用[J].南京气象学院学报,2000,23(1):24-28.
    [54]齐腊,刘良云,赵春江,王纪华,王锦地.基于遥感影像时间序列的冬小麦种植监测最佳时相选择研究.遥感技术与应用,2008,23(2):154-160
    [55]顾晓鹤,潘耀中,朱秀芳,张锦水,韩立建,王双MODIS与TM冬小麦种植面积遥感测量一致性研究-小区域实验研究.遥感学报,2007,11(3):351-357.
    [56]荣松柏.安徽油菜生产发展形势及策略分析.中国种业,2009,(9).
    [57]何浩,朱秀芳,潘耀忠,朱文泉,张锦水,贾斌.尺度变化对冬小麦种植面积遥感测量区域精度影响的研究遥感学报,2008,12(1):168-175.
    [58]陆忠军.多源遥感数据在黑龙江水稻种植面积本底调查中的应用.黑龙江农业科学,2009,(6):134-136.
    [59]高建峰,姜小三,刘绍贵,潘剑君.辅以ETM的MODIS水稻种植面积监测研究.土壤,2008,40(3):484-489.
    [60]陈忠.高分辨率遥感图像分类技术研究.博士学位论文.北京:中国科学院研究生院,2006.
    [61]陈拉.高光谱遥感数据在植被信息提取中的应用研究.安徽农业科学,2009,37(8):3842-3843.[62]林文鹏.基于MODIS波谱分析的作物信息提取研究.博士学位论文.北京:中国科学院研究生院,2006.
    [63]闫峰,王艳姣,武建军,李春强.基于Ts-EVI时间序列谱的冬小麦面积提取.农业工程学报,2009,25(4):135-140.
    [64]李颖,陈秀万,段红伟,沈阳.多源多时相遥感数据在冬小麦识别中的应用研究.地理与地理信息科学,2010,26(4):47-49.
    [65]冯丽.基于时相和波谱信息的植被信息提取研究.硕士学位论文.西安.西安科技大学,2009.
    [66]蔡学良,崔运来.基于异源多时相遥感数据提取灌区作物种植结构.农业工程学报,2009,25(8):127-130.
    [67]孙小丹,徐涵秋.农用地遥感影像信息的角提取方法.农业工程学报,2009,25(10):135-141.
    [68]胡潭高,朱文泉,阳小琼,潘耀忠,张锦水.高分辨率遥感图像耕地地块提取方法研究.光谱学与光谱分析,2009,10(29):2703-2707.
    [69]韩兰英,陈全功,韩涛,郭铌,张正偲.基于3S技术的棉花面积估测方法研究.干旱区研究,2008,25(2):207-211.
    [70]李占胜,潘剑君.基于尺度转换提高MODIS影像耕地解译精度的研究—以苏北平原为例.遥感技术与应用,2010,25(2):240-244.
    [71]韩立建,潘耀忠,贾斌,朱秀芳,刘旭拢,王双,张锦水.基于多时相IRS-P6卫星/AMIFS影像的水稻种植面积提取方法.2007,23(5):137-143.
    [72]蔡栋,魏巍.基于决策树的水生植被遥感信息提取研究.2009,37(16):7615-7616.
    [73]吴炳方,李强子.基于两个独立抽样框架的农作物种植面积遥感估算方法.遥感学报,2004,8(6):551-569.
    [74]崔莹.基于时间序列数据的粮食播种面积单产预测模型研究.长江大学学报(自然科学版),2008,5(2):102-104.
    [75]郑长春,王秀珍,黄敬峰.基于特征波段的SPOT-5卫星影像水稻面积信息自动提取的方法研究.遥感技术与应用.2008,23(3):294-299.
    [76]陈仲新,刘海启,周清波,杨桂霞,刘佳.全国冬小麦面积变化遥感监测抽样外推方法的研究.农业工程学报,2000,16(5):126-129.
    [77]J.C.D.M.Esquerdo,J. Zullo Junior, J.F.G.Antunes. Use of NDVI/AVHRR time-series profiles for soybean crop monitoring in Brazil. International Journal of Remote Sensing.Vol.32,No.13,10 July 2011,3711-3727.
    [78]Qiangzi Li, Bingfang Wu, Kun Jia, Qinghan Dong, Herman Eerens, Miao Zhang.Maize acreage estimation using ENVISAT MERIS and CBERS-02B CCD data in the North China Plain.Computers and Electronics in Agriculture 78(2011):208-214.
    [79]齐腊,赵春江,李存军,刘良云,谭昌伟,黄文江.基于多时相中巴资源卫星影像的冬小麦分类精度.应用生态学报,2008,19(10):2201-2208.
    [80]李谢辉,郑奕.基于最优波段组合的土地利用/覆盖遥感信息提取研究.安徽农业科学,2009,37(14):6696-6699.
    [81]黄青,王迪,刘佳.农情遥感监测中空间抽样技术研究现状与发展趋势.中国农业资源与区划,2009,30(2):13-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700