高性能直齿圆柱齿轮开放成形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿轮精密成形具有产品性能好、生产率高、生产成本和能耗低、环境污染少等优点,但目前的成形方法由于成形力大,国内外尚无大模数齿轮精密成形用于实际生产的报道。本文围绕降低成形力、提高成形精度进行了以下几方面的研究:
    提出了以“开放镦挤”和“轴向导流,径向分流”为主要内容的直齿圆柱齿轮开放成形新方法,并对新方法的内涵进行了研究:在影响塑性成形力的诸因素中,如金属的流动应力、坯料与模具的接触面积、摩擦力的大小和金属在模具中可自由流动的空间等,发现金属在模具中可自由流动的空间是影响成形力最主要的因素,为直齿圆柱齿轮精密塑性成形新方法的研究从理论层面提出了研究方向;“开放镦挤”的开放量与随后的整形量是一对相互制约的参数,在一定条件下有一个最佳值;通过“逐次控制变形”方法合理分配温成形和冷整形的变形量,可进一步降低开放成形力,并成形出高精度的齿轮;“推挤成形”从模具结构上保证了“轴向导流,径向分流”新方法的实现,并且坯料成形后直接从凹模下方推出,解决了齿轮精密成形顶出力大的问题。
    用商业化软件对开放成形过程进行了数值模拟分析,结果表明:开放镦挤成形时齿形开放率是影响成形力最主要的因素,它不依齿轮参数、设备工作参数变化而改变。成形时摩擦力的减小、齿轮中心孔径的增大也可明显降低成形力,变位系数的增加将有利于成形力的降低。实验证明,数值模拟结果与实际成形情况较吻合,误差小于 8%。并提出了齿形开放率与单位成形压力之间的关系,该关系式在开放率小于 80%时与数值模拟结果吻合度较好,尤其是开放率小于 10%时误差小于 5%。
    当齿形开放率为 5%左右时,不但成形出的齿形质量好,而且避免了成形力的陡增。本文提出的齿形开放率与单位成形压力之间关系式不但具有理论意义,而且有实际应用价值。
    根据数值模拟和实验研究,模数在 2~6mm 之间时,推挤整形较佳工艺及模具参数为:齿形整形量在能够发生塑性变形的前提下越小越好,凹模锥角为 5o~7o,定径带的高度为 5~8mm。
Gear precision forming has the advantages of good product property, high productionrate, low convention cost and energy consumption, and little pollution. As the presentforming method need high force, there is no report about precision forming of spur gearusing in actual production. In order to lowing the forming force and improving the productaccuracy, the paper's study is as follows.
    The paper put forward the new method of opened-die forming for spur gear, whichmainly consists of ‘opened-die upset extrusion' and ‘guided flow at axis direction anddivided flow at diameter direction' and study on the new method's means. In the factorsaffecting forming force such as flow stress, contact area between billet and die, frictionforce, the free room in which the metal could freely flow, we find that the most importantfactor affecting forming force is the free room which mentioned above, which put forwardthe research direction from the theory level for the new method of spur gear precisionforming. The opened degree in opened-die upset-extrusion and later sizing quantity is a pairof parameter, which controls with each other and there will be a best value under a certaincondition. The opened-die forming force will be further reduced and the spur gear with highaccuracy will be formed by the method of ‘control the deformation gradually' whichreasonably distribute the quantity of deformation of warm forming and cold sizing. ‘Pushextrusion sizing' make sure the new method of ‘guided flow at axis direction and dividedflow at diameter direction' from the die construction, and the billet is pushed directly fromthe die at the process of push extrusion, which resolved the problem of high ejection forceat the time of spur gear's precision forming.
    The process of opened-die forming has been studied by the commercial software,numerical simulation results show that the most important factor affecting forming force isthe gear's opened degree at the time of upset-extrusion, which doesn't change even ifchanging the parameters of gear and press. The decreasing of friction and the increasing of
    gear's center hole could lower the forming force obviously. The increasing of addendumcoefficient will be in favor of the forming force's reduction. The experiment proved that thenumerical simulation results accord with the actual situation, the error is less than 8%. Atthe same time, we put forward the relationship formulation between the gear's openeddegree and the unit forming pressure. The formulation accords with the numericalsimulation results when the opened degree is less than 80%, especially the error is less than5% when the opened degree is less than 10%.When the gear's opened degree is about 5%, the new method not only can form spurgear with good tooth, but also avoid the forming force's sharp increasing. Therefore, theformulation between the gear's opened degree and unit forming pressure, which is putforward by the author, not only has theory meanings, but also has actual application value.According to the results of numerical simulation and experiment, when modulus is 2-6mm, the good upset-extrusion parameters of technology and die are: if the tooth can takeplace plastic deformation, the more small, the more sizing quantity is good;cone angle ofconcave die is 50-70and bearing height is 5-8mm.In order to make the push-extrusion to be a scientific and practical theory, at the basisof thinking the tooth's change when the die is pushed into the shrinkage ring and the gear'sspring after it was formed, the author deduces the formula of the die's addendum coefficient,the diameter of addendum circle and root circle. The experiment results show that the errorbetween formula and experiment is: the public laws line length of three teeth is from–0.0214 to 0.0024mm, the diameter of addendum circle is from –0.0073to 0.0227mm, thediameter of root circle is from -0.0162 to 0.0127mm.Push-extrusion sizing experiment has been done for the spur gear with the toothnumber of 18, modulus of 2.5, which was produced by the electrical discharge machine.The result shows: a) with the material hardness increasing, the push-extrusion force, thesized gear's public laws line length, diameter of addendum circle and diameter of root circleincrease. The above parameters changes are very small for 20CrMnTi steel between aircooling and annealing treatment after warm forming. b) with the sizing quantity increasing,the above parameters will all increase, but the changes of public laws line length, diameterof addendum circle and diameter of root circle are very small. c) with the quantity ofshrinkage increasing, the forming force will increase, the sized spur gear's public laws linelength, diameter of addendum circle and diameter of root circle will decrease. According to
    the above results, push-extrusion sizing can be directly done for carburizing steel afterwarm forming. The diameter of addendum circle and root circle should be equal to the die'scorresponding parameters and the sizing quantity should be as small as possible. The sizedgear's parameters can be adjusted in a certain range by the method of adjusting shrinkagequantity between die and the shrinkage ring, which has been used in the experiment andsmall scale production and has made good results.In order to resolve the problem of tooth's bending when gear with rib is sized bypush-extrusion, the author first put forward the method of push-extrusion through drive loadof working cylinder and driven load of ejection cylinder of hydroforming machine, whichmakes sure the formed gear's accuracy and stability.The microstructure shows that the tooth's grain degree of opened-die formed gear canimproved from No. 7-8, which is produced by traditional process, to 9-11, especially, thegrain of the root is more fine;the new technology can get intact flow line of the tooth,which will improve the strength and toughness of gear.In order to promote the spur gear's new technology of plastic forming using in actualproduction, the position problem between plastic formed gear and the later machine hasbeen resolved by the method of tooth faces' three point position. According to the measureresults, through later machine and heat treatment, the auxiliary variable speed gear andpinion housing formed by opened-die forming absolutely meet the need of product. Furthermore, after heat treatment, the plastic formed gear's consistency is better than that oftraditional process. After heat treatment and machine, the above two opened-die formedgears have been used in actual equipment.In a word, the paper has studied on the spur gear' opened-die forming basic theory,numerical simulation, control accuracy, improving property and die design. At the basis ofthe above results, the author drew up two representative gears' forming process, designedthe die, carried on experiments and small scale production and proved the new method ofthe opened-forming can be used in actual production.
引文
[1] Committee on Lightweight Materials for 21st Century Army Trucks, National Materials Advisory Board, Division on Engineering and Physical Sciences. Lightweight Materials for 21st Century Army Trucks. Washington: The National Academies Press, 2003.
    [2] 《齿轮制造手册》编辑委员会. 齿轮制造手册. 北京:机械工业出版社,1997.
    [3] 乐美豪. 中国齿轮制造业的发展预测. 华北机电信息. 2003(5): 132-133.
    [4] 黄天铭, 梁锡昌. 齿轮加工技术的现状及进展. 机械工艺师, 1994(4): 29-31.
    [5] 安立宝. 齿轮加工技术新进展. 航空工艺技术, 1994(1): 33-34.
    [6] M.H.Sadeghi,T.A.Dean. Precision Forging Straight and Helical spur Gears. Journal of Materials Processing Technology,1995(45):25-30.
    [7] E. M. Al-Shareedah, T. F. Lehnhoff. Strength calculation for forged straight bevel gear teeth having a linking web. International Journal of Mechanical Sciences, 1984,26(1):63-72.
    [8] 孙宗强, 田福祥. 直齿圆柱齿轮精锻研究的现状及发展趋势. 青岛建筑工程学院学报, 2000, 21(4): 98-102.
    [9] 陈泽中, 包忠诩, 连书勤, 等. 直齿圆柱齿轮精锻技术的研究进展. 金属成形工艺, 1999, 17(5): 1-2.
    [10] 邓克, 王珍, 田福祥. 直伞齿轮精锻技术的应用及发展. 青岛建筑工程学院学报, 2002, 23(4): 85-88.
    [11] 张利, 杨淑荣, 王燕铭, 等. 钢制传动齿轮轮齿折断、塑性变形失效系统分析. 机械传动, 2002, 26(2): 59-60.
    [12] S.Sheljaskov.Current level of development of warm forging technology. Journal of Materials Processing Technology,1994(46):3~18.
    [13] Anil k. Gupta. Importance of cold and warm forging for automobile industries and recent trends in India[A]. Proceedings of 3rd JSTP International Seminar on Precision Forging[C]. Nagoya: The Japan Society for Technology of Plasticity, 2004: 81-86.
    [14] 张治民. 温热成形技术在车辆零件制造中的应用.北京:兵器工业出版社,1998.
    [15] S.Sheljaskov. Warm forging in comparison with hot and cold forging. In:Advanced technology of plasticity,Beijing:International Academic Publishers,1993.
    [16] Eckart Doege, Jurgen Thalemann, Frank Weber.Hot Forging of Precision Parts. Journal of Materials Processing Technology,1992(35):469~481.
    [17] 张质良.温塑性成形.上海:上海科学技术出版社,1986.
    [18] R. Neugebauer, M. Putz, H. Hartwig, et al. Investigation into the process basics of warm forming[A]. Proceedings of 7th International Conference on Technology of Plasticity[C]. Yokhama: The Japan Society for Technology of Plasticity, 2002. 211-216.
    [19] Wyfaru Takahashi.汽车齿轮的温锻.In:世界塑性加工最新技术(译文集),北京:机械工业出版社,1987.
    [20] R. Neugebauer, M. Kolbe and R. Glass. New warm forming processes to produce hollow shafts. Journal of Materials Processing Technology, 2001, 119(1-3): 277-282.
    [21] W. Voelkner. Present and future developments of metal forming: selected examples. Journal of Materials Processing Technology, 2000, 106(1-3): 236-242.
    [22] E. Doege and B. -A. Behrens. Reduce process chains due to the precision forging of gears-effect on the conventional forging technology. Journal of Materials Processing Technology, 1997, 71(1):14-17.
    [23] Shinichiro Fujikawa, Hideo Yoshioka and Saburo Shimamura. Cold- and warm-forging applications in the automotive industry. Journal of Materials Processing Technology, 1992, 35(3-4):317-342.
    [24] T. A. Dean, Z. M. Hu. A commercial route to net-shape gear forms[A]. Proceedings of 7th International Conference on Technology of Plasticity[C]. Yokhama: The Japan Society for Technology of Plasticity, 2002. 175-180.
    [25] 洪慎章. 塑性成形技术的现状及发展趋势. 模具技术, 2003(1): 54-56.
    [26] 周贤宾. 塑性加工技术的发展—更精、更省、更净[A]. 第八届全国塑性加工学术年会论文集[C], 北京, 2002: l-4.
    [27] 谢谈, 贾德伟, 蒋鹏, 尉哲. 精密塑性成形技术在中国的应用与进展. 机械工程学报, 2001, 37(7): 100-104.
    [28] 阮雪榆, 娄臻亮. 21 世纪数字化塑性成形技术与科学. 模具技术, 2003(2): 3-8.
    [29] M. Geiger. Manufacturing science – driving force for innovation[A]. Proceedings of 7th International Conference on Technology of Plasticity[C]. Yokhama: The Japan Society for Technology of Plasticity, 2002. 17-30.
    [30] 张士宏, 许沂, 王忠堂. 塑性加工技术的新进展. 锻压技术, 2001(6): 58-61.
    [31] Tuncer C and Dean T A. Die design alternatives for precision forging hollow parts. Int.J.Mach. Tolls Manufacture,1987,27(1):65-76.
    [32] J. Cai, T. A. Dean and Z. M. Hu. Alternative die designs in net-shape forging of gears. Journal of Materials Processing Technology, 2004, 150(1-2): 48-55.
    [33] 胡忠民. 齿轮精密锻造技术的发展. 塑性工程学报, 2002,9(4): 79-83.
    [34] K Kondo. 精密冷模锻新工艺的开发. 世界塑性加工最新技术译文集. 北京:机械工业出版社. 1987:701-709.
    [35] Kazuyoshi Kondo. Key points for the development of new manufacturing process[A]. Proceedings of 3rd JSTP International Seminar on Precision Forging[C]. Nagoya: The Japan Society for Technology of Plasticity, 2004: 1-6.
    [36] K. Kondo. Some reminiscences of the development of precision forging processes[A]. Proceedings of 7th International Conference on Technology of Plasticity[C]. Yokhama: The Japan Society for Technology of Plasticity, 2002: 11-16.
    [37] K.Ohga,K.Kondo.Research on application range of the precision cold die forging utilizing divided flow to thick products. In:Advanced technology of plasticity,Beijing:International Academic Publishers,1993.
    [38] K.Kondo and K.Ohga.Precision cold die forging of a ring gear by divided flow method. Int. J. Mech. Sci.1995,35(8):1105-1113.
    [39] K. kondo, K. Ikushima, H. Inoshita, et al. Net shape forging of an external gear with boss and internal spline[A]. Proceedings of 7th International Conference on Technology of Plasticity[C]. Yokhama: The Japan Society for Technology of Plasticity, 2002:49-54.
    [40] K. Ohga, F. Murakoshi, H. Ando, et al. Low pressure precision cold die forging of machine part having both internal gear and external gear[A]. Proceedings of 7th International Conference on Technology of Plasticity[C]. Yokhama: The Japan Society for Technology of Plasticity, 2002: 43-48.
    [41] Y. Ukei, Y. Uchida, M. Hoshino. The forming of spur gear made from the drawn cup[A]. Proceedings of 7th International Conference on Technology of Plasticity[C]. Yokhama: The Japan Society for Technology of Plasticity, 2002:1699-1704.
    [42] Yoshinori Nagai and Yasutomo Nagai etal. The trial for forming of a spur gear made from the drawn cup. In: Advanced technology of plasticity, Beijing: International Academic Publishers,1993
    [43] Eckart Doege,Jurgen Thalemann,Frank Weber.Hot Forging of Precision Parts. Journal of Materials Processing Technology,1992(35):469-481.
    [44] M. H. Sadeghi, T. A. Dean. The ejection of precision-forged straight and helical spur-gear forms. Journal of Materials Processing Technology, 1992, 33(1-2):147-160.
    [45] M.H.Sadeghi,T.A.Dean. Precision Forging Straight and Helical spur Gears. Journal of Materials Processing Technology,1995(45):25-30.
    [46] M. H. Sadeghi and T. A. Dean. Precision forging straight and helical spur gears. Journal of Materials Processing Technology, 1994, 45(1-4):25-30.
    [47] N.R.Chitkara and M.A.Bhutta.Near-net shape forging of spur gear forms:an analysis and some experiments. Int. J. Mech. Sci.1996,38(8-9):891-916.
    [48] Yohng J. Kim and Naunit R. Chitkara. Determination of preform shape to improve dimensional accuracy of the forged crown gear form in a closed-die forging process. International Journal of Mechanical Sciences, 2001,43(3):853-870.
    [49] N. R. Chitkara and M. A. Bhutta. Shape heading of splines and solid spur gear forms: an analysis and some experiments. International Journal of Mechanical Sciences, 2001,43(4):1073-1106.
    [50] N. R. Chitkara and M. A. Bhutta. Forging and heading of hollow spur gear forms: an analysis and some experiments. International Journal of Mechanical Sciences, 1999,41(10):1159-1189.
    [51] N. R. Chitkara and M. A. Bhutta. Near-net shape forging of spur gear forms: an analysis and some experiments. International Journal of Mechanical Sciences, 1996,38(8-9):891-916.
    [52] Naunit R. Chitkara and Kim Yohngjo. An analysis of external spline gear forming by an upper bound energy method. International Journal of Mechanical Sciences, 1996,38(7):777-789.
    [53] Naunit R. Chitkara and Kim Yohngjo. Upper bound analysis of near-net shaped forging of gear coupling form. International Journal of Mechanical Sciences, 1996,38(7):791-803.
    [54] Jaechan Choi, Haeyong Cho, Hyukhong Kwon. A new extrusion process for helical-gears: experimental study. Journal of Materials Processing Technology, 1994(44): 35-53.
    [55] J.C.Choi etal.A study on the forging of spur gears. Int. J. Mech. Sci.1996,38(12):1333-1347.
    [56] J. C. Choi, Y. Choi and S. J. Tak. The forging of helical gears (Ⅱ): comparisons of the forging processes. International Journal of Mechanical Sciences, 1999, 41(6): 725-740.
    [57] J. C. Choi, Y. Choi and S. J. Tak. The forging of helical gears (II): comparisons of the forging processes. International Journal of Mechanical Sciences, 1999,41(6):725-739.
    [58] . C. Choi, Y. Choi and S. J. Tak. The forging of helical gears (I): experiments and upper-bound analysis. International Journal of Mechanical Sciences, 1998,40(4):325-337.
    [59] J. C. Choi, Y. Choi, K. D. Hur and C. H. Kim. A study on the forging of spur gears. International Journal of Mechanical Sciences, 1996,38(12):1333-1347.
    [60] Jaechan Choi, Haeyong Cho and Hyukhong Kwon. A new extrusion process for helical-gears: experimental study. Journal of Materials Processing Technology, 1994, 44(1-2):35-53.
    [61] Jongung Choi, Hae-Young Cho and Chang-Yong Jo. Forging of spur gears with internal serrations and design of the dies. Journal of Materials Processing Technology, 2000, 104(1-2): 1-7.
    [62] Jongung Choi, Hae-Yong Cho and Chang-Yong Jo. An upper-bound analysis for the forging of spur gears. Journal of Materials Processing Technology, 2000, 104(1-2): 67-73.
    [63] Jongung Choi, Haeyong Cho and Jaechan Choi. Upper bound analysis for forging of trochoidal gears. Journal of Materials Processing Technology, 2000, 103(3): 347-352.
    [64] Haeyong Cho, Jaechan Choi, Gyusik Min, Young Choi and Jongung Choi. An upper-bound analysis of the closed-die forging of spur gears. Journal of Materials Processing Technology, 1997, 67(1-3):83-88.
    [65] J. H. Song, Y. T. Im. Development of product design system for cold forged gears considering addendum profile shift[A]. Proceedings of 7th International Conference on Technology of Plasticity[C]. Yokhama: The Japan Society for Technology of Plasticity, 2002. 61-66.
    [66] D. H. Hristov, B. I. Tomov and D. K. Kolev. Stresses and strains in a die for closed-die forging of cylindrical spur gears. Journal of Materials Processing Technology, 1991, 23(1):56-63.
    [67] 许树勤.直齿圆柱齿轮的半精锻试验研究.先进制造技术(论文集),北京:机械工业出版社,1996:480-482.
    [68] 池成忠,许树勤.齿轮半热精锻件的齿形设计.锻压机械,1997,5:15-16.
    [69] 许树勤, 付元, 董仕深. 直齿圆柱齿轮的半精锻试验研究. 山西机械, 1996(2): 4-5.
    [70] 张清萍, 赵国群, 栾贻国, 等. 直齿圆柱齿轮精锻成形工艺及三维有限元模拟. 塑性工程学报, 2003, 10(1): 13-15.
    [71] 夏世升, 王广春, 赵国群,等. 直齿圆柱齿轮冷精锻新工艺数值模拟研究. 热加工工艺, 2003(2): 22-23.
    [72] 王洪义, 吴志明, 戴锫谊. 齿轮精密锻造的研究. 机械工程学报, 1994, 30(增刊): 218-224
    [73] 滕宏春, 任先玉, 曾宪文, 等. 直齿轮分流挤压精密成形试验研究. 农业机械学报, 2001, 32(1): 99-101.
    [74] 马兰, 张质良, 卢国纲. 汽车起动齿轮冷挤压过程金属流动规律研究. 锻压技术, 1997(1): 9-11.
    [75] 马兰. 齿轮挤压成形的数值模拟与物理模拟研究. 博士学位论文. 上海: 上海交通大学, 1997.
    [76] 程羽, 李刚, 郭成, 等. 齿轮冷精锻成形工艺的研究. 锻压技术, 2003(2): 11-12.
    [77] 李洪波, 吕玫, 骆俊廷. 精锻齿轮弹性回复的理论分析及有限元模拟. 模具技术, 2003(1): 7-9.
    [78] 李洪波, 吕玫, 骆俊廷, 等. 直齿轮精密塑性成形时齿面裂纹的产生机理及控制方法. 塑性工程学报. 2003, 10(1): 25-27.
    [79] 李洪波, 高新, 吕玫. 圆柱直齿轮精锻成形的 UBET 数值模拟. 金属成形工艺, 1996, 14(3): 21-23.
    [80] 赵军, 李志新, 曹宏强, 等. 塑性范成直齿轮组织分析. 燕山大学学报, 2002, 26(2): 99-101.
    [81] 寇淑清,傅沛福,杨慎华,等. 齿轮精锻成形三维弹塑性有限元数值模拟. 哈尔滨工业大学学报, 2000, 32(4): 68-71.
    [82] 寇淑清, 杨慎华, 赵勇. 直齿圆柱齿轮冷精锻成形过程数值模拟分析. 农业机械学报.2001,32(1): 95-98.
    [83] 寇淑清, 杨慎华, 傅沛福, 等. 高精度直齿圆柱齿轮冷锻成形加工方法的研究. 锻压技术. 2000(5): 10-13.
    [84] 付沛福, 寇淑清, 杨慎华, 等. 冷精锻直齿轮的工艺方案与充填规律. 农业机械学报, 1997, 28(增刊): 118-123.
    [85] 寇淑清,杨慎华,黄良驹, 等. 直齿圆柱齿轮净形成形技术研究. 热加工工艺. 1999,5: 29-31
    [86] 杨慎华, 寇淑清, 王玉国, 等. 钢质直齿圆柱齿轮冷精锻技术研究. 农业机械学报, 1999, 30(6): 115-119.
    [87] 杨慎华, 傅沛福, 黄良驹, 等. 直齿圆柱齿轮冷精锻上限模型的建立与分析. 吉林工业大学自然科学学报, 1999, 29(4): 23-28.
    [88] 杨慎华, 寇淑清, 傅沛福, 等. 直齿圆柱齿轮冷精锻实用化工艺研究. 中国机械工程, 1999, 10(4): 401-402.
    [89] 寇淑清. 三维复杂锻造过程数值模拟及直齿轮冷精锻成形研究. 博士学位论文. 长春: 吉林工业大学, 1999.
    [90] 寇淑清, 杨慎华, 黄良驹, 等. 用约束分流法冷锻成形高精度直齿圆柱齿轮. 吉林工业大学自然科学学报, 2000, 30(2): 19-23.
    [91] 江雄心, 万平荣, 扶名福, 等. 齿轮精锻的数值模拟与实验研究. 塑性工程学报, 2002,9(1): 62-65.
    [92] 万平荣, 陈晓华, 江雄心. 直齿圆柱齿轮精锻过程的实验研究. 南昌大学学报(工科版), 2001, 23(4): 49-52.
    [93] 江雄心, 扶名福, 林治平. 直齿圆柱齿轮精锻过程的三维刚塑性有限元模拟. 金属成形工艺, 2003, 21(4): 19-21.
    [94] 江雄心, 林治平. 带毂直齿圆柱齿轮精锻成形的上限分析. 塑性工程学报, 1998, 5(1): 8-14.
    [95] 江雄心, 林治平. 带毂直齿圆柱齿轮精锻的计算机模拟. 金属成形工艺, 1997, 15(2): 12-15.
    [96] 谭险峰, 林治平. 带轮毂直齿圆柱齿轮精锻的变形分析. 金属成形工艺, 1998, 16(1): 31.
    [97] 谭险峰, 林治平. 直齿圆柱齿轮精锻力的上限解. 锻压技术, 1998(1): 7-10.
    [98] 程军, 林治平, 李禾. 用三维光弹法分析直齿精锻圆柱齿轮凹模. 机械传动, 2000, 24(1): 21-22.
    [99] 林治平, 陶泽球. 用实心坯料冲挤精锻直齿圆柱齿轮的计算机模拟. 塑性工程学报, 2000,7(1): 50-54.
    [100] 林治平, 谭险峰, 闫洪, 等. 直齿圆柱齿轮精锻的生产性实验. 锻压技术, 1999(3): 3-5.
    [101] 林治平, 陶泽球, 谭险峰, 等. 直齿圆柱齿轮精锻工艺方案的研究. 锻压技术, 1999(2): 9-12.
    [102] 陈泽中, 林治平, 连书勤. 直齿圆柱齿轮冲挤精锻变形分析. 锻压技术, 1999(5): 3-5.
    [103] 陈泽中, 林治平, 连书勤. 直齿圆柱齿轮冲挤精锻应变解析. 锻压技术, 2000(4): 3-5.
    [104] 陈泽中, 包忠诩, 连书勤, 等. 直齿圆柱齿轮精锻技术的研究进展. 金属成形工艺, 1999, 17(5): 1-2.
    [105] 江雄心. 直齿圆柱齿轮精锻过程的有限元模拟. 博士学位论文. 南昌: 南昌大学, 1998.
    [106] 田福祥,林化春,孟凡利, 等.直齿圆柱齿轮热精锻—冷推挤精密成形研究.锻压机械,1997,32(6) :26-28.
    [107] Mingwang Fu,Baozhong Shang.Stress analysis of the precision forging die for a bevel gear and its optimal design using the boundary-element method. Journal of Materials Processing Technology,1995(53):511-520.
    [108] 冯冲前. 浮动凹模镦挤直齿圆柱齿轮成形原理及工艺研究. 硕士学位论文.秦皇岛: 燕山大学, 2001.
    [109] 尉喆. 直齿圆柱齿轮径向冷挤成形的理论分析和实验研究.硕士学位论文. 北京: 机械科学研究院, 2000.
    [110] 詹先义, 刘占芳, 刘道伦, 等. 齿轮精密锻造三维有限元分析. 计算力学学报, 2002,19(2): 236-239.
    [111] 陈拂晓,杨永顺,苏娟华,等. 直齿轮径向挤压过程金属流动的上限元模拟. 热加工工艺, 1999(6): 24-26.
    [112] 陈拂晓, 郭俊卿, 杨永顺. 圆柱直齿轮超塑挤压的试验研究. 热加工工艺, 2003(3): 29-30.
    [113] 郭俊卿,陈拂晓. 圆柱直齿轮超塑挤压成形中金属流动的模拟试验. 河南科技大学学报(自然科学版), 2003, 24(1): 16-19.
    [114] 陈拂晓, 姜开宇, 杨永顺, 等. 直齿轮径向挤压过程变形力规律的数值模拟. 洛阳工学院学报, 1998, 19(1): 1-5
    [115] 陈拂晓, 姜开宇, 杨永顺, 等. 直齿轮径向挤压过程变形力规律的数值模拟. 中国机械工程, 1998, (9)9: 12-14.
    [116] 孟令先,宋学进. 汽车复杂齿形类零件的冷挤压成形[A]. 第八届全国塑性加工学术年会论 文集[C], 北京, 2002: 183-185.
    [117] 蔡利, 张晞. 圆柱齿轮冷锻成形技术探讨. 金属成形工艺, 2001, 19(6): 25-30.
    [118] 钱荣芳. 基于芯轴交换的圆柱齿轮复动挤压成形. 锻压技术. 2002(1): 1-3.
    [119] 张宝红, 张治民, 马宏强. 直齿轮径向导流成形工艺研究. 山西机械, 1998(2): 4-6.
    [120] 蒋鹏, 贺小毛, 吴瑛, 等. 复合塑性成形新技术及其应用. 锻压技术, 2000(1): 38-41.
    [121] 胡建国. 复合成形技术. 锻压机械, 2002(5): 39-41.
    [122] Masaaki Otsum, Gaisuke Hayashida, Kozo Osakada, Shinji Hanami. Combined forward-backward extrusion of gear with reverse extrusion[A]. Proceedings of 3rd JSTP International Seminar on Precision Forging[C]. Nagoya: The Japan Society for Technology of Plasticity, 2004: 119-122.
    [123] 孙志超. 无模约束自由变形规律与管轴压精密成形过程的研究. 博士学位论文. 西安: 西北工业大学, 2003.
    [124] 耿健. 齿轮净成形工艺的数值模拟及工艺优化. 博士学位论文. 北京: 清华大学, 2000.
    [125] J. L. Chenot, L. Fourment, R. Ducloux. State of the art and future developments in 3-D finite element simulation of the forging process[A]. Proceedings of 7th International Conference on Technology of Plasticity[C]. Yokhama: The Japan Society for Technology of Plasticity, 2002:145-150.
    [126] K. Mori. Rigid-plastic finite element simulation of metal forming processes[A]. Proceedings of 7th International Conference on Technology of Plasticity[C]. Yokhama: The Japan Society for Technology of Plasticity, 2002: 261-270.
    [127] G. Ngaile, T. Altan. Simulation of manufacturing processes: past, present and future[A]. Proceedings of 7th International Conference on Technology of Plasticity[C]. Yokhama: The Japan Society for Technology of Plasticity, 2002:271-282.
    [128] N. Biba, S. Stebounov, A. Lishny, et al. New approach to 3D finite-element simulation of material flow and its application to bulk metal forming[A]. Proceedings of 7th International Conference on Technology of Plasticity[C]. Yokhama: The Japan Society for Technology of Plasticity, 2002: 829-834.
    [129] Markus Knoerr, Joon Lee and Taylan Altan. Application of the 2D finite element method to simulation of various forming processes. Journal of Materials Processing Technology, 1992, 33(1-2):31-55.
    [130] P. Holland, P. M. Standring, H. Long, et al. The development of shape simulation software(SSS) for metalforming process optimisation[A]. Proceedings of 7th International Conference on Technology of Plasticity[C]. Yokhama: The Japan Society for Technology of Plasticity, 2002: 151-156.
    [131] 李尚健. 金属塑性成形过程模拟. 北京:机械工业出版社,1999.
    [132] 董湘怀. 材料成形计算机模拟. 北京:机械工业出版社,2002.
    [133] 刘建生, 陈慧琴, 郭晓霞. 金属塑性加工有限元模拟技术与应用. 北京:冶金工业出版社,2003.
    [134] 万胜狄. 金属塑性成形原理. 北京: 机械工业出版社, 1995.
    [135] 王祖唐. 金属塑性加工工步的力学分析. 北京: 清华大学出版社,1987.
    [136] 林治平, 谢水生, 程军. 金属塑性变形的实验方法. 北京:冶金工业出版社,2002.
    [137] 中国机械工程学会锻压学会. 锻压手册:锻造(第 2 版). 北京:机械工业出版社,2002
    [138] 吕炎.锻造工艺学. 北京: 机械工业出版社,1995.
    [139] Y.B. Park, K.H. Lee. Study on the deformation of die and product in closed die upsetting. Journal of Materials Processing Technology, 2001, 118(1-3): 417-421.
    [140] E. Doege and R. Bohnsack. Closed die technologies for hot forging. Journal of Materials Processing Technology, 2000, 98(2): 165-170.
    [141] 张治民. 直齿圆柱齿轮渗碳—温挤压成形技术几个基本问题的研究. 博士学位论文. 秦皇岛: 燕山大学, 2002.
    [142] 张宝红. 钢制直齿轮精密塑性成形研究. 硕士学位论文. 太原: 华北工学院, 1999
    [143] ZhangZhimin, ZhangBaohong, LiangLiang. Investigation of Plastic Forming Process For Spur Gear. Nuberg: Proceedings of the 6th ICTP, 1999: 799-802.
    [144] B.H. Zhang, Z. M. Zhang. Precision Extruding of Spur Gear With Tall Gear Tooth and Great Module and Diameter[A]. Proceedings of 3rd JSTP International Seminar on Precision Forging[C]. Nagoya: The Japan Society for Technology of Plasticity, 2004: 115-118.
    [145] 马怀宪. 金属塑性加工学——挤压拉拔与管材冷轧. 北京:冶金工业出版社,1991.
    [146] Gracious Ngaile, Taylan Altan. Computer aided engineering in forging[A]. Proceedings of 3rd JSTP International Seminar on Precision Forging[C]. Nagoya: The Japan Society for Technology of Plasticity, 2004:21-30.
    [147] J. Groenbaek, C. Hinsel. Optimization of tool life & performance through advanced material and prestress design[A]. Proceedings of 3rd JSTP International Seminar on Precision Forging[C]. Nagoya: The Japan Society for Technology of Plasticity, 2004:41-50.
    [148] 张宝红,张治民,冯再新.轴套镦挤成形过程的计算机模拟及工艺优化. 材料科学与工艺,1998,4.
    [149] B.H. Zhang, Z. M. Zhang. Computer Simulation on The Influence of Punch Shape in Warm Extrusion of Cup[A]. Proceedings of 7th International Conference on Technology of Plasticity[C]. Yokhama: The Japan Society for Technology of Plasticity, 2002:1753-1758.
    [150] 洪慎章. 冷挤压实用技术. 北京: 机械工业出版社,2005.
    [151] 陈国学, 曹长征,刘晓龙, 等. 精密塑性成形模拟仿真的若干问题[A]. 第八届全国塑性加工学术年会论文集[C], 北京, 2002: l-4.
    [152] 童隆长. 有限元法模拟塑性加工过程的发展和困难[A]. 第八届全国塑性加工学术年会论文集[C], 北京, 2002: l-4.
    [153] 王秉义. 谢谈. 精锻同步器齿环模具和电极点形设计方法. 锻压技术, 1986(2):26-28.
    [154] 王孝培.冲压手册(第二版). 北京: 机械工业出版社,1990.
    [155] 杨长顺.冷挤压模具设计.北京:国防工业出版社,1994.
    [156] 机械工程手册电机工程手册编辑委员会.机械工程手册:传动设计卷.第二版. 北京:机械工业出版社,1997.
    [157] 赵学镛.机械设计基础. 北京: 北京理工大学出版社,1990.
    [158] 石霖,朱兆良.兵工金属材料热处理手册.北京:兵器工业出版社,1991.
    [159] 胡光立,谢希文.钢的热处理(原理和工艺).1993 年修订版.西安:西北工业大学出版社,1989.
    [160] 史美堂.金属材料及热处理.上海:上海科学技术出版社,1980.
    [161] 《热处理手册》编委会. 热处理手册:第四分册. 北京:机械工业出版社,1978.
    [162] 张星. 张治民. 李保成. 温挤成形齿轮组织性能研究. [A]. 第八届全国塑性加工学术年会论文集[C], 北京, 2002: l-4.
    [163] 侯增寿. 卢光熙. 金属学原理. 上海: 上海科学技术出版社,1993.
    [164] 《锻件质量分析》编写组.锻机质量分析. 北京:机械工业出版社,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700