MEMS层叠式微带贴片天线的建模、分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微带天线具有许多优点,如体积小、重量轻、剖面薄、容易与载体共形、与集成电路的兼容性好、易于大批量制作等,在近几十年来得到了广泛的应用。对微带天线的研究必将为无线通信系统的发展带来深远的影响。通常微带贴片天线的频带较窄,而利用微电子机械系统(MEMS)技术制作具有多层介质和贴片结构的微带天线,可以有效地扩展天线的带宽。本论文的主要工作即是寻求一种好的方法来求解这类复杂结构微带天线的三维电磁场分布问题,分析天线的特性。
    本论文利用时域有限差分(FDTD)法,对一种新型的MEMS层叠式微带贴片天线进行了精确的时域仿真。FDTD法可以较精确地处理具有不规则形状和不同介质分界面的复杂结构;对不同方向的FDTD网格边界实施了具有不同精度的边界吸收条件,使计算更“经济”;采用了一种简单有效的激励源设置方法,使前端表面无需进行特殊处理, 同时,避免了前端表面和其附近的直流畸变的问题;利用时域解得到的丰富的电磁场信息,给电磁波在天线上的传播绘制出了清晰的图像,有助于直观地理解天线工作的物理过程;通过对时域计算的结果进行一次傅里叶变换,求得了天线在频域上的特征参量,从而有助于了解天线在宽频域内的辐射特性,FDTD计算与经验公式计算值取得了较好的一致,并与实验测试值符合得较好,证明这种计算方法用于新型MEMS微带天线的分析是行之有效的。
    本论文将FDTD法应用于MEMS微带天线的仿真分析,有效地节约了存储空间和计算时间,取得了较好的效果,显示了FDTD法用于分析复杂结构微带贴片天线的有效性和优越性
The popularity of microstrip antennas has steadily increased over the past decades, due to a number of advantages such as small volume, low weight, low profile, conformability with existing structures, compatibility with integrated circuits and ease of fabrication. The research of microstrip will give far-reaching impact on radio communication systems. Usually the frequency bandwidth of microstrip patch antenna is relatively narrow. However, it can be effectively broadened with the employment of the micro-electro-mechanism systems technique to fabricate microstrip antenna with multilayer dielectric substrates and patch. Therefore the main work in this dissertation is to calculate the electromagnetic field components' three dimension distributions of this kind of complicated structure antenna and analyzing the antenna's characteristics.
    The finite-difference time-domain (FDTD) method is applied to the accurate simulation of MEMS multilayer microstrip patch antenna. The FDTD method allows rigorous treatment of complicated structures such as unregulated shape or dielectric interface. To make the algorithm inexpensive to implement, the absorbing boundary conditions (ABCs) in different propagating directions are treated with various precision. With a simple and efficient excitation scheme for the microstrip antenna, the near-end terminal needn't any special treatment. In addition, no dc source distortions are induced on the source plane and nearby. Using abundant information offering in time domain, the spatial distribution of electromagnetic fields on the antenna can be plotted, which makes it easy to understand the antenna's physical working procession. At the same time, the frequency dependence of the relevant parameters can readily be found using the Fourier transform of the transient current. The numerical results obtained by the FDTD method are compared with experimental results, and the comparison shows excellent agreement, proving the effectiveness of analysis on the MEMS microstrip antenna.
    The application of the FDTD method to imitation and analysis of the MEMS microstrip antenna effectually saves memories and the computing time. It consequently achieves preferable purpose. As a result, it shows the validity and superiority of the algorithm in analyzing complicate microstrip patch antennas
引文
[1] I.J.鲍尔, P.布哈蒂亚﹒梁联倬,寇廷耀译﹒微带天线﹒第一版﹒北京﹒电子工业出版社﹒1984.12
    [2] S.S.Zhong, Y.T.Lo, Single-Element Rectangular Microstrip Antenna for Dual - Frequency Operation, Electronics Letters. 1983, 19(18): 298~300
    [3] G.Kumar, Directly Coupled Multiple Resonator Wideband Microstrip Antennas. IEEE Trans. Antennas Propagat. 1985,33(3):588~593
    [4] K.R.Garver, Microstrip Antenna Technology. IEEE Trans. Antennas and Propagat.,1988,36(11): 1519~1525
    [5] 钟顺时﹒微带天线理论与应用﹒第一版﹒西安﹒西安电子科技大学出版社﹒1991.6
    [6] 张均,刘克诚,张贤铎,赫崇骏﹒微带天线理论与工程﹒第一版﹒北京﹒国防工业出版社出版﹒1988.7
    [7] 刘泽文,李志坚,刘理天﹒用于通信领域中的MEMES器件﹒电子科技导报﹒1999.7: 23~27
    [8] 张兴,郝一龙,李志宏,王阳元﹒跨世纪的新技术-微机电系统(MEMS)﹒电子科技导报﹒1999.4: 2~6
    [9] 邱玲,朱近康,孙葆根,张磊﹒第三代移动通信技术﹒第一版﹒北京﹒人民邮电出版社﹒2001.8
    [10] 刘元安﹒未来移动通信系统概论﹒第一版﹒北京﹒北京邮电大学出版社﹒1991.11
    [11] 李志坚﹒微电子技术的又一次革命--微电子机械系统(MEMS)发展展望﹒科技导报﹒1997.9: 3~5
    [12] Z.J.Yao, S.Chen, S.Eshelman, et al., Micromachined Low-Loss Microwave Switches. IEEE Journal of Microelectromechanical Systems, 1999,8(2): 129~134
    [13] M.Kim, J.B.Hacher, R.E.Mihailovich, et al., A Monolithic MEMS Switch Dual-Path Power Amplifier. IEEE Microwave and Wireless Components Letters, 2001, 11(7): 285~287
    [14] R.E.Mihailovich, M.Kim, J.B.Hacker, et al., MEM Relay for Reconfigurable RF Circuits. IEEE Microwave and Wireless Components Letters, 2001, 11(2): 53~55
    [15] J.G.Yook, L.P.B. Katchi, Micromachined Microstrip Patch Antenna with Controlled Mutual Coupling and Surface Waves. IEEE Trans. Antennas and Propagat., 2001, 49(9): 1282~1289
    [16] 金纯,许光辰,孙睿﹒蓝牙技术﹒第一版﹒北京﹒电子工业出版社﹒2001.3
    [17] Nathan J. Muller 著﹒周正译﹒蓝牙揭密﹒第一版﹒北京﹒人民邮电出版社﹒2001.8
    [18] V.Vigayak, W.O. Keese, C.Lam, A 2.4GHz Radio Solution for Bluetooth and Wireless Home
    
    Networking. Electronic Engineering, 2001, 73(889): 42~43
    [19] K.S.Yee, Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media. IEEE Trans. Antennas and Propagat., 1966,14(5): 302~307
    [20] 王长清,祝西里﹒电磁场计算中的时域有限差分法﹒第一版﹒北京﹒北京大学出版社.1994.12
    [21] 高本庆﹒时域有限差分法﹒第一版﹒北京﹒国防工业出版社﹒1995.3
    [22] K.S.Yee, D.Ingham, K.Shlager, Time-Domain Extrapolation to the Far Field Based on FDTD calculations. IEEE Trans. Antennas Propagat., 1991,39(3):410~413
    [23] X. Zhang and K. K. Mei, Time-Domain Finite Difference Approach to the Calculation of Frequency-Dependent Characteristics of Microstrip Discontinuities. IEEE Trans. Microwave Theory Tech., 1988, 36(12): 1775~1783
    [24] Reineix, B. Jecko, Analysis of Mircostrip Patch Antennas Using Finite Difference Time Domain Method. IEEE Trans. Antennas Propagat., 1989,37(11): 1361~1369
    [25] A.Taflove, K.R.Umashankar, The Finite-Difference Time-Domain (FD-TD) Method for Numerical Modeling of Electromagnetic Scattering. IEEE Trans. Magnetics, 1989,25(4): 3086~3091
    [26] W.L.Ko, R.Mittra, A Combination of FD-TD and Prony's Methods for Analyzing Microwave Integrated Circuits. IEEE Trans. Microwave Theory Tech., 1991,39(12): 2176~2181
    [27] C.M.Furse, D.H.Roper, D.N.Buechler, et al., The Problem and Treatment of DC offsets in FDTD Simulations. IEEE Trans. Antennas and Propagat. 2000, 48(8): 1198~1201
    [28] C.Q.Wang, O.P.Gandhi, Numerical Simulation of Annular Phased Arrays for Anatomically Based Models Using the FDTD Method. IEEE Trans. Microwave Theory Tech., 1989,37(1): 118~126
    [29] 阮成礼﹒毫米波理论与技术﹒第一版﹒成都﹒电子科技大学出版社﹒2001.3
    [30] 陈雅娟,龙云亮﹒宽带微带贴片天线的研究进展﹒电波科学学报﹒1999﹒14(3): 357~361
    [31] 林昌禄,陈海,吴为公﹒近代天线设计﹒第一版﹒北京﹒人民邮电出版社﹒1990.8
    [32] 刘庭华,章文勋﹒双层微带贴片天线单元的实验研究﹒现代雷达﹒1997﹒19(1): 54~60
    [33] Z.F.Liu, P.S. Kooi, L.W.Li, et al, A Method for Designing Broad-band Microtrip Antennas in Multiplayered Planar Structures. IEEE Trans. Antennas and Propat. 1999,47(9): 1416~1420
    [34] G.P.Gauthier, A.Courtay, G. M. Rebeiz, Microstrip Antennas on Synthesized Low Dielectric-Constant Substrates. IEEE Trans. Antennas and Propagat., 1997, 45(8): 1310~1314
    [35] M.Zheng, Q.Chen, P.S.Hall, et al., Broadband Microstrip Patch Antenna on Micromachined Silicon Substrates. Electronic Letters, 1998, 34(1): 3~4
    [36] K.L.Wong, T.W.Chiou, Broad-Band Single-patch Circularly Polarized Microstrip Antenna with Dual Capacitively Coupled Feeds. IEEE Trans. Antennas and Propagat., 2001,49(1):41~44
    
    
    [37] F.Tefiku, C.A.Grimes, Design of Broad Band and Dual-Band Antennas Comprised of Series-Fed Printed-Strip Dipole Pairs. IEEE Trans. Antennas and Propagat., 2000,48(6):895~900
    [38]S.M.Duffy, An Enhanced Bandwidth Design Technique for Electromagnetically Coupled Microstrip Antennas. IEEE Trans. Antennas and Propagat., 2000,48(2): 161~164
    [39] S.K.Palit, A.Hamadi, Design and Development of Wideband and Dual-Band Microstrip Antennas. IEE Proc. Microwave Antennas and Propagat., 1999,146(1): 35~39
    [40] 封建湖,车刚明,聂玉峰﹒数值分析原理﹒第一版﹒北京﹒科学出版社﹒2001.9
    [41] 颜庆津﹒数值分析﹒第一版﹒北京﹒北京航空航天大学出版社﹒2001.1
    [42] 李庆扬,关治,白峰杉﹒数值计算原理﹒第一版﹒北京﹒清华大学出版社﹒2000.9
    [43] H.Pues, A.V.Cappele, Accurate Transmission-line Model for the Rectangular Microstrip Antenna. Proc. Inst. Elect. Eng. Microwave Antennas and Propagat., 1984,133(11): 334~340
    [44] D.L.Sengupata, Transmission Line model Analysis of Rectangular Patch Antennas. Electromagnetics, 1984, 4(4): 355~376
    [45]电子科技大学应用数学系编﹒实用数值计算方法﹒第一版﹒北京﹒高等教育出版社﹒2001.1
    [46] F.Capalino, M.Albani, S.Maci, et al., Frequency-Domain Green's Funcion for a Planar Periodic Semi-Infinite Phased Array. IEEE Trans Antennas and Propagat., 2000, 48(1): 67~85
    [47] A.Reineix, B.Jecko, Analysis of Microstrip Patch Antennas Using Finite Difference Time Domain Method. IEEE Trans. Antennas and Propagat., 1989,37(11):1361~1369
    [48] D.M.Sheen, S.M.Ali, M.D.Abouzahra, et al., Application of the Three-Dimensional Analysis of Planar Microstrip Circuits. IEEE Trans. Microwave Theory Tech., 1990, 38(7): 847~857
    [49] C.Wu, K.L.Wu, Z.Q.Bi, et al. Accurate Characterization of Planar Printed Antennas Using Finite-Difference Time-Domain Method. IEEE Trans. Antennas and Propagat., 1992,40(5): 526~534
    [50] A.Taflove, M.E.Brodwin, Numerical Solution of Steady-state Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations. IEEE Trans. Microwave Theory Tech. 1975, 23(8): 623~630
    [51] G.Mur, Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations. IEEE Trans. Electromagnetic Compatibility, 1981, 23(4): 1073~1077
    [52] K.K.Mei, J.Y.Fang, Superabsorption-A Method to Improve Absorbing Boundary Conditions. IEEE Trans. Antennas Propagat., 1992, 40(9): 1001~1010
    [53] J.P.Berenger, A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. Journal of Computational Physics, 1994, 114: 185~200
    
    
    [54] 马双武,高攸纲﹒时域有限差分法中超吸收技术的改进及数值验证﹒电波科学学报﹒2000﹒15(1): 20~24
    [55] F.Akleman, L.Sevgi, A novel Implementation of Berenger's PML for FDTD Applications. IEEE Microwave and Guided Wave Lett., 1998, 5(10): 324~326
    [56] D.T.Prescott, N.V.Shuley, Reflection Analysis of FDTD boundary Conditions-Part II: Berenger's PML Absorbing Layers. IEEE Trans. Microwave Theory, 1997,45(8): 1171~1178
    [57] G.X.Fan, Q.H.Lin, An FDTD Algorithm with Perfectly Matched Layers for General Dispersive Media. IEEE Trans. Antennas and Propagat., 2000, 48(5): 637~646
    [58] H.Derudder, F.Olyslager, D.D.Zutter, et al., Efficient Mode-Matching Analysis of Discontinuities in Finite Planar Substrates Using Perfectly Matched Layers. IEEE Trans. Antennas and Propagat., 2001,49(2):185~195
    [59] S.Winton, C.M.Rappaport, Specifying PML Conductivities by Considering Numerical Reflection Dependencies. IEEE Trans. Antennas and Propagat., 2000,48(7): 1055~1063
    [60] 陈彬,方大纲﹒完全匹配层(PLM)吸收边界条件的理论分析﹒微波学报﹒1996﹒12(2): 110~115
    [61] 马双武, 高攸纲﹒时域有限差分法中几种吸收边界条件的比较与数值验证﹒长沙大学学报﹒1999﹒13(4): 1~4
    [62] B.Engquist, A.Majda., Absorbing Boundary Conditions for the Numerical Simulation of Waves. Math. Comp. , 1977, 31(139): 629~651
    [63] 邓次平﹒现代微波网络导论﹒第一版﹒北京﹒国防工业出版社﹒1994.6
    [64] 尹家贤,谭怀英,刘克成,毛钧杰﹒FDTD中微带线激励源分析﹒国防科技大学学报﹒2000﹒22(5): 60~63
    [65] A.P.Zhao, A.V.Raisanen , S.R.Cvetkovic, A Fast and Efficient FDTD Algorithm for the Analysis of Planar Microstrip Discontinuities by Using a Simple Source Excitation Scheme. IEEE Microwave and Guided Wave Lett. 1995, 5(10): 341~343
    [66] X.Zhang, J.Fang, K.K.Mei, Calculations of the Dispersive Characteristics of Microstrips by the Time-Domian Finite Difference Method. IEEE Trans. Microwave Theory Tech., 1988, 36(2): 263~267

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700