矩阵变换器的无功特性及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:矩阵变换器具备能量双向流动、正弦输入输出电流、输入功率因数可控、无需储能环节等一系列优良的电气特性,因而在变频调速、可再生能源发电和电能质量控制等领域具有广阔的应用前景。在一些特殊应用领域,除要求矩阵变换器产生高质量的输入电流、输出电压以外,还希望它能在最大范围内自由调节输入无功功率。然而,因结构特性等原因,矩阵变换器的输入无功与调制策略、电压传输比及负载性质等的关系较复杂,不可像双PWM变换器那样可独立调节。因此,本文主要对矩阵变换器的输入无功特性及控制问题展开深入研究。
     对于传统矩阵变换器拓扑,论文分析了几种经典调制算法的输入无功特性及相关约束条件,发现它们的输入无功控制范围均有不同程度的受限。对此,提出了一种基于数学构造思想的扩展无功调制策略。该策略通过构造一种含负载电流相位信息的无功调制矩阵,达到减弱输入无功功率对负载功率因数依赖的目的。相对经典调制算法,所提算法具有实现简单和输入无功范围大等优点。
     对于双级矩阵变换器拓扑,由于要求其中间直流电压须始终为正,因而它在空间矢量调制框架下的输入无功控制范围相对传统矩阵变换器拓扑更为受限。对此,根据等效原则,提出了一种整流、逆变同时采用
     ‘相反矢量”代替原矢量的空间矢量合成方法(矢量倒置法),从而在一定程度上弥补了双级矩阵变换器的拓扑限制。虽然基于数学构造思想的扩展无功调制策略能大幅提高矩阵变换器的输入无功控制范围,但它无法直接应用于双级矩阵变换器。为此,提出了一种基于空间矢量合成的扩展无功调制策略。其基本思路是:首先对输出电压矢量和输入无功电流矢量进行独立空间矢量合成,再采用矢量倒置思想将上述两个合成过程进行“矢量合并”。相对于“脉冲合并”的调制策略,所提方法具有便于理解、计算量小以及输入无功控制范围更宽等特点。
     在双级矩阵变换器拓扑结构的基础上,提出了一种集成静止同步补偿器(STATCOM)功能的矩阵变换器新拓扑。论文阐述了该拓扑的结构特点及工作机理,并在此基础上提出了相应的调制算法,还分析了该拓扑在所提调制算法下的输入无功特性。理论上,该拓扑消除了矩阵变换器输入无功对输出电流的依赖,为矩阵变换器实现大范围输入无功控制提供了新思路。
     基于矩阵变换器的双馈风力发电系统的低电压跨失控制问题,实质也是矩阵变换器的无功控制问题。针对该问题,本文提出了一种基于矩阵变换器拓扑结构重构的解决方案。通过在双级矩阵变换器的直流环节中级联辅助开关电路,实现了双级矩阵变换器拓扑的结构重构。其工作原理是:电网电压正常时,辅助开关电路不工作;电网电压跌落时,立即通过触发辅助电路开关实现拓扑结构重组,即双级矩阵变换器被分解成功能上相互分离的电流型STATCOM和普通电压型逆变器。如此,该方案一方面向电网提供所需无功以支撑电网电压,另一方面能将双馈感应发电机的转子电流控制在合理水平,以确保矩阵变换器的安全运行。
Abstract:Matrix converter is a kind of green power electronic converter without intermediate energy storage link, featured by sinusoidal input and output currents, bidirectional energy flow, controllable input power factor as well as a compact design, and it has found many applications in adjustable speed drives, renewable energy generation, power quality control, and so on. In some applications, expect for the desired high-quality output voltages, matrix converter is also required to obtain the input reactive power freely as much as possible. However, due to the lack of the energy storage link, the input and output sides of matrix converter would interfere with each other, the input reactive power cannot be regulated independently as that of PWM converter. Besides, the reactive power characteristics and control methods are very complex, which are related to modulation algorithm, voltage transfer ratio, and load properties and so on. Hence, this paper will focus on the characteristics and control issues of the input reactive power for matrix converter. The main works may include:
     For the traditional matrix converter topology, the reactive power features under several conventional modulation methods are studied, and the related control ranges and constraints are analyzed and compared, which show that the control ranges of input reactive power are limited. Thus, a reactive power-extended modulation method based on mathematic construction is proposed, which eliminates the dependence of reactive power on the load power factor by constructing a reactive modulation matrix. The proposed method is compared with the optimum-amplitude method and indirect space vector modulation (SVM), in terms of the input reactive power under different operating conditions, which shows that the proposed method can obtain the maximum input reactive power over most situations.
     For the two-stage matrix converter (TSMC) topology, the DC-link voltage should always be positive, which leads to a limited control range of input reactive power. Thus, a space vector-inversion method is proposed to realize SVM, which uses opposite vector to replace the original vector. This method can compensate the reactive power limitations to an extent. To further improve the reactive power control properties, a reactive power-extended modulation strategies based on space vector synthesis is presented for the two-stage matrix converter. The operating principle of this method is:first, the output voltage formation and input reactive current formation are completed separately; then, they are combined to form new output reference vectors, with the help of the space vector-inversion method; finally, the combined SVM is used to obtain the desired output voltage and input current. Compared with the existing modulation strategy based on pulse merging, the proposed method has lower computational effort and better reactive power control capability over most situations.
     Consider the flexible DC-link of the two-stage matrix converter, a novel topology with static synchronous compensator (STATCOM) function is proposed to enhance the input reactive power properties. First, the topology is introduced as well as its working principle, and the related modulation strategy is presented based on the indirect SVM. With this scheme, the input reactive power dependence on the output current can be removed, which would overcome the topological drawback of the limited reactive power control range.
     As for the matrix converter-based wind energy conversion system (WECS) with doubly-fed induction generator (DFIG), the low voltage ride through (LVRT) issue is also related to the reactive power control. For this issue, a novel scheme based on topology reconfiguration of TSMC is proposed, which adds an auxiliary switching circuit in the DC-link of TSMC. Under the normal network, the auxiliary switching circuit does not work; during the grid faults, the proposed topology would be reconfigured into a current source STATCOM and a general voltage source inverter. With this scheme, the WECS could stay connected to the grid, and provide reactive power to support the grid voltage.
引文
[1]刘勇,贺益康.矩阵式变换器交一交直接变换控制分析[J].电网技术,2002,26(2):37-40.
    [2]N. Mohan, T. Undeland, and W. P. Robbins. Power electronics-converters, applications, and design [M]. Wiley,2003.
    [3]Guerrero Josep, Blaabjerg Frede, Zhelev Toshko, et al. Distributed generation: toward a new energy paradigm [J]. IEEE Industrial Electronics Magazine,2010, 4(1):52-64.
    [4]Chicco Gianfranco and Mancarella Pierluigi. Distributed multi-generation:a comprehensive view [J]. Renewable and Sustainable Energy Reviews,2009,13(3): 535-551.
    [5]J. C. Smith, Wind power:Present realities and future possibilities [J]. Proceedings of the IEEE,2009,97(2):195-197.
    [6]Liserre Marco, Sauter Thilo and Hung John Y. Future energy systems:Integrating renewable energy sources into the smart power grid through industrial electronics [J]. IEEE Industrial Electronics Magazine,2010,4(1):18-37.
    [7]R. Saidur. A review on electrical motors energy use and energy savings [J]. Renewable and Sustainable Energy Reviews,2010,14(3):877-898.
    [8]马小亮.大功率交-交变频调速及矢量控制技术(第二版)[M].北京:机械工业出版社,1996.
    [9]宋文南等.电力系统谐波分析[M].水利电力出版社,1995.
    [10]J. W. Kolar, T. Friedli, J. Rodriguez, et al. Review of three-phase PWM AC-AC converter Topologies [J]. IEEE Transactions on Industrial Electronics,2011,58(11): 4988-5006.
    [11]庄心复.交-交型矩阵变换器的控制原理与试验研究[J].电力电子技术,1994,28(2):1-6.
    [12]贺益康,刘勇.交-交直接变换控制下矩阵式变换器的仿真研究[J].电工技术学报,2002,17(3):48-53.
    [13]粟梅,孙尧,余岳等.基于数学构造的矩阵变换器调制策略[J].电工技术学报,2008,23(10):64-68.
    [14]Yao, S., Mei, S., Xing, L., et al. Indirect four-leg matrix converter based on robust adaptive back-stepping control [J]. IEEE Transactions on Industrial Electronics, 2011,58(9):4288-4298.
    [15]P. W. Wheeler, J. Rodriguez, J. C. Clare, et al. Matrix converters:a technology review [J]. IEEE Transactions on Industrial Electronics,2002,49(2):276-288.
    [16]张绍,周波,仇红奎.永磁同步电机-矩阵变换器新型电流调制策略研究[J].中国电机工程学报,2008,28(21):90-95.
    [17]J. W. Kolar, F. Schafmeister, S. D. Round, et al. Novel three-phase AC-AC sparse matrix converters [J]. IEEE Transactions on Power Electronics,2007,22(5): 1649-1661.
    [18]S. Lopez Arevalo, P. Zanchetta, and P. W. Wheeler, et al. Control and implementation of a matrix-converter-based AC ground power-supply unit for aircraft servicing [J]. IEEE Transactions on Industrial Electronics,2010,57(6): 2076-2084.
    [19]C. Ortega, A. Arias, C. Caruana, et al. Improved waveform quality in the direct torque control of matrix-converter-fed PMSM drives [J]. IEEE Transactions on Industrial Electronics,2010,57(6):2101-2110.
    [20]Kyo-Beum Lee, Blaabjerq.F. An improved DTC-SVM method for sensorless matrix converter drives using an overmodulation strategy and a simple nonlinearity compensation [J]. IEEE Transactions on Industrial Electronics,2007,54(6): 3155-3166.
    [21]P. Zanchetta, J. C. Clare, P. W. Wheeler, et al. Control design of a three-phase matrix converter mobile AC power supply using genetic algorithms [C]. IEEE 36th Power Electronics Specialists Conference,2005,2370-2375.
    [22]P. W. Wheeler, P. Zanchetta, J. C. Clare, et al. A utility power supply based on a four-output leg matrix converter [J]. IEEE Transactions on Industrial Applications, Jan/Feb.2008,44(1):174-186.
    [23]R. Pena, R. Cardenas, E. Reyes, et al. A topology for multiple generation system with doubly fed induction machines and indirect matrix converter [J]. IEEE Transactions on Industrial Electronics,2009,56(10):4181-4193.
    [24]程汉湘等.柔性交流输电系统(第2版)[M].机械工业出版社,2013.
    [25]N. Holtsmark and M. Molinas. Reactive power compensation using an indirectly space vector modulated matrix converter [C], IEEE International Symposium on Industrial Electronics,2010,2455-2460.
    [26]Gyugyi. Generalized theory of static power frequency changers [D]. PhD Thesis, University of Salford,1970.
    [27]Gyugyi, B. Pelly. Static power frequency changers:theory, performance and applications [M]. New York:Wiley,1976.
    [28]M. Venturini. A new high switching rate direct frequency converter. Italian Patent [P],1979,207:70-79.
    [29]M. Venturini. A new sine wave in sine wave out, conversion technique which eliminates reactive elements [C]. Proc. POWERCON 7,1980, E3_1-E3_15.
    [30]M. Venturini, A. Alesina. The generalized transformer:a new bidirectional sinusoidal waveform frequency converter with continuously adjustable input power factor [C]. Proc. IEEE PESC'80,1980,242-252.
    [31]A. Alesina, M. Venturini. Solid-state power conversion:an analysis approach to generalized transformer synthesis [J]. IEEE Transactions on Circuit and Systems, 1981, CAS-28(4).
    [32]A. Alesina, M. G. B, M. Venturini. Analysis and design of optimum-amplitude nine-switch direct AC-AC converters [J]. IEEE Transactions on Power Electronics, 1989,4(1):101-112.
    [33]K. limori, K. Shinohara, O. Tarumi, et al. New current-controlled PWM rectifier-voltage source inverter without DC link components [C]. Proceedings of the Power Conversion conference, Nagaoka, Japan,1997,2:783-786.
    [34]刘魏宏,朱建林,邓文浪,等.基于交-直-交型矩阵变换器的多驱动系统的控制策略[J].中国电机工程学报,2006,26(6):111-115.
    [35]M. Hornkamp, M. Loddenk otter, M. M unzer, et al. EconoMAC the first all-in-one IGBT module for matrix converters [C]. Proceedings of IPEC, Nuremberg, Jun. 19-21,2001,417-421.
    [36]O. Simon, J. Mahlein, M. Muenzer, et al. Modern solutions for industrial matrix-converter applications [J]. IEEE Transactions on Industrial Electronics, 2002,49(2):401-406.
    [37]P. Zwimpfer, H. Stemmler. Modulation and realization of a novel two-stage matrix converter [C]. Proceedings of the Power Electronics Conference, Florianopolis, Brazil,2001,2:485-490.
    [38]M. Jussila, M. Salo, H. Tuusa. Realization of a three-phase indirect matrix converter with an indirect vector modulation method [C]. Proceedings of the 34th Annual Power Electronics Specialists Conference,2003,2:689-694.
    [39]M. Jussila, M. Salo, H. Tuusa. Induction motor drive fed by a vector modulated indirect matrix converter [C]. IEEE 35th Annual Power Electronics Specialists Conference,2004,4:2862-2868.
    [40]L. Wei, T. A. Lipo, H. Chan. Matrix converter topologies with reduced number of switches [C]. IEEE 33rd Annual Power Electronics Specialists Conference,2002,1: 57-63.
    [41]L. Wei Matsushita Y, T. A. Lipo. Investigation of dual-bridge matrix converter operating under unbalanced source voltages [C]. IEEE Power Electronics Specialist Conference, Acapulco, Mexico,2003,3:1293-1298.
    [42]L. Wei, Y. Matsushita, T. A. Lipo. A compensation method for dual-bridge matrix converters operating under distorted source voltages [C].29th Annual Conference of the IEEE Industrial Electronics Society, Roanoke, VA, USA,2003,3: 2078-2084.
    [43]R. Lai, F. Wang, R. Burgos, et al. A systematic topology evaluation methodology for high-density three-phase PWM AC-AC converters [J]. IEEE Transactions on Power Electronics,2008,23(6):2665-2680.
    [44]孙尧,粟梅,王辉,等.双级矩阵变换器的非线性分析及其补偿策略[J].中国电机工程学报,2010,30(12):20-27.
    [45]粟梅,李丹云,孙尧,等.双级矩阵变换器的过调制策略[J].中国电机工程学报,2008,28(3):47-52.
    [46]邓文浪,杨欣荣,朱建林,等.18开关双级矩阵变换器的空间矢量调制策略及其仿真研究[J].中国电机工程学报,2005,25(15):84-90.
    [47]J. Kolar, M. Baumann, F. Schafineister, et al. Novel three-phase AC-DC-AC sparse matrix converter [C]. Proceedings of the 17th IEEE Applied Power Electronics Conference and Exposition, Dallas, USA,2002,2:777-791.
    [48]M. L. Heldwein, T. Nussbaumer, J. W. Kolar. Differential mode EMC input filter design for three-phase AC-DC-AC sparse matrix PWM converter [C]. IEEE 35th Annual Power Electronics Specialists Conference,2004,1:284-291.
    [49]L. Wei and T. A. Lipo. A novel matrix converter topology with simple commutation [C]. Rec. IAS Annual Meeting, Chicago, Sep.30-Oct.4,2001,1749-1754.
    [50]J. Schonberger, T. Friedli, S. D. Round, et al. An ultra sparse matrix converter with a novel active clamp circuit [C]. IEEE Power Conversion Conference, Nagoya, 2007,784-791.
    [51]M. Y. Lee, P. Wheeler, C. Klumpner. Space-vector modulated multilevel matrix converter [J]. IEEE Transactions on Industrial Electronics,2010,57(10): 3385-3394.
    [52]Poh Chiang Loh, F. Blaabjerg, Feng Gao, et al. Pulsewidth modulation of neutral-point-clamped indirect matrix converter [J]. IEEE Transactions on Industry Applications, Nov-Dec.2008,44(6):1805-1814.
    [53]M. Y. Lee, P. Wheeler, C. Klumpner. A new modulation method for the three-level-output-stage matrix converter [C]. IEEE Power Conversion Conference,2007, 776-783.
    [54]Y. Sun, W. Xiong, M. Su, et al. Topology and modulation for a new multi-level diode-clamped matrix converter [J]. IEEE Transactions on Power Electronics, In Press.
    [55]A. Klumpner, T. Wijekoon, P. Wheeler. A new class of hybrid ac/ac direct power converters [C]. Proceedings of IEEE Industry Applications Society Conference, 2005,4:2374-2381.
    [56]朱建林,岳舟,张小平,等.具有高电压传输比的BMC和BBMC矩阵变换器研究[J].中国电机工程学报,2007,27(16):85-91.
    [57]R. W. Erickson, O. A. Al-Naseem. A new family of matrix converters [C]. Proceedings of IEEE IECON'01,2001,1515-1520.
    [58]C. Klumpner. Hybrid direct power converters with increased/higher than unity voltage transfer ratio and improved robustness against voltage supply disturbances [C]. Proceedings of 36th IEEE Power Electronics Specialists Conference, Jun. 15-19,2005,2383-2389.
    [59]T. Wijekoon, C. Klumpner, P. Zanchetta, P. W. Wheeler. Implementation of a hybrid AC-AC direct power converter with unity voltage transfer [J]. IEEE Transactions on Power Electronics,2008,23(4):1918-1926.
    [60]M. K. Nguyen, Y. G. Jung, Y. C. Lim, et al. A single-phase Z-source buck-boost matrix converter [J]. IEEE Transactions on Power Electronics,2010,25(2): 453-462.
    [61]Y. Shi, X. Yang, Q. He, et al. Research on a novel capacitor clamped multilevel matrix converter [J]. IEEE Transactions on Power Electronics,2005,20(5): 1055-1065.
    [62]何群,郭海涛,石勇,等.一种新型多电平矩阵变换器及其控制策略研究[J].电力电子技术,2004,38(3):8-10.
    [63]L. Helle, K. B. Larsen, A. H. Jorgensen, et al. Evaluation of modulation schemes for three-phase to three-phase matrix converters [J]. IEEE Transactions on Industrial Electronics, Feb.2004,51(1):158-171.
    [64]C. Klumpner, F. Blaabjerg, I. Boldea, et al. New modulation method for matrix converters [J]. IEEE Transactions on Industry Applications,2006,42(3):797-806.
    [65]A. Ishiguro, T. Furuhashi, and S. Okuma. A novel control method for forced commutated cycloconversion using instantaneous values of input line-to-line voltages [J]. IEEE Transactions on Industrial Electronics,1991,38(3):166-172, Aug.1991.
    [66]D. Casadei, G Serra, A. Tani, and L. Zarri. Matrix converter modulation strategies: A new general approach based on space-vector representation of the switch state [J]. IEEE Transactions on Industrial Electronics, Apr.2002,49(2):370-381.
    [67]L. Huber and D. Borojevic. Space vector modulated three-phase to three-phase matrix converter with input power factor correction [J]. IEEE Transactions on Industry Applications, Nov./Dec.l995,31(6):1234-1246.
    [68]P. D. Ziogas, S. I. Khan, and M. H. Rashid. Analysis and design of forced commutated cycloconverter structures with improved transfer characteristics [J]. IEEE Transactions on Industrial Electronics, Aug.1986,33(3):271-280.
    [69]R. Vargas, U. Ammann, J. Rodriguez, et al. Predictive strategy to control common-mode voltage in loads fed by matrix converters [J]. IEEE Transactions on Industrial Electronics, Dec.2008,55(12):4372-4380.
    [70]S. Muller, U. Ammann and S. Rees. New time-discrete modulation scheme for matrix converters [J]. IEEE Transactions on Industrial Electronics, Dec.2005, 52(6):1607-1615.
    [71]P. Correa, J. Rodriguez, M. Rivera, et al. Predictive control of an indirect matrix converter [J]. IEEE Transactions on Industrial Electronics, Jun.2009,56(6): 1847-1853.
    [72]粟梅,孙尧,陈睿,桂卫华.双电压合成调制和空间矢量调制的一致性[J].中国电机工程学报,2009,29(21):21-26.
    [73]W. Gui, Y. Sun, H. Qin, et al. A matrix converter modulation based on mathematical construction [C]. Proceedings of IEEE ICIT Conference, Apr.21-24,2008,1-5.
    [74]P. Kiatsookkanatorn and S. Sangwongwanich. A unified PWM strategy for matrix converters and its dipolar PWM realization [C]. Proceedings of IEEE IPEC Conference, Sapporo, Japan, Jan.21-24,2010,3072-3079.
    [75]H. Hojabri, H. Mokhtari, and L. Chang. A generalized technique of modeling, analysis, and control of a matrix converter using SVD [J]. IEEE Transactions on Industrial Electronics, Mar.2011,58(3):949-959.
    [76]Y. D. Yoon and S. K. Sul. Carrier-based modulation technique for matrix converter [J]. IEEE Transactions on Power Electronics, Nov.2006,21(6):1691-1703.
    [77]F. Bradaschia, M. C. Cavalcanti, F. Neves, et al. A modulation technique to reduce switching losses in matrix converters [J]. IEEE Transactions on Industrial Electronics,2009,56(4):1186-1195.
    [78]S. Kwak, H. A. Toliyat. An approach for matrix converter based induction motor drive with unity power factor and minimum switching losses [C].29th Annual Conference of the IEEE Industrial Electronics Society,2003,3:2939-2944.
    [79]D. Casadei, G. Serra, A. Tani. Reduction of the input current harmonic content in matrix converters under input output unbalance [J]. IEEE Transactions on Industrial Electronics,1998,45(3):401-410.
    [80]M. Jussila, H. Tuusa. Comparison of simple control strategies of space-vector modulated indirect matrix converter under distorted supply voltage [J]. IEEE Transactions on Power Electronics,2007,22(1):139-148.
    [81]X. Wang, H. Lin, H. She, et al. A research on space vector modulation strategy for matrix converter under abnormal [J]. IEEE Transactions on Industrial Electronics, 2012,59(1):93-104.
    [82]X. Li, M. Su, Y. Sun, et al. Modulation strategies based on mathematical construction method for matrix converter under unbalanced input voltages [J]. IET Power Electronics, March 2013,6(3):434-445.
    [83]F. Schafmeister, J. W. Kolar. Novel modulation schemes for conventional and sparse matrix converters facilitating reactive power transfer independent of active power flow [C].2004 IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germany,2004,4:2917-2923.
    [84]F. Schafmeister, J. W. Kolar. Novel hybrid modulation schemes significantly extending the reactive power control range of all matrix converter topologies with low computational effort [J]. IEEE Transactions on Industrial Electronics, Jan. 2012,52(1):194-210.
    [85]N. Holtsmark and M. Molinas. Extending the reactive compensation range of a direct AC-AC FACTS device for offshore grids [J]. Electric Power System Research, Aug.2012,89,183-190.
    [86]姜田贵.用于驱动无刷直流电机的矩阵变换器闭环调制[J].中国电机工程学报,2009,36,88-95.
    [87]D. Casadei, G. Serra and A. Tani. The use of matrix converters in direct torque control of induction machines [J]. IEEE Transactions on Industrial Electronics, Dec. 2001,48(6):1057-1064.
    [88]Kyo-Beum Lee, F. Blaabjerq. A nonlinearity compensation method for a matrix converter drive [J]. IEEE Power Electronics Letters, Mar.2005,3(1):19-23.
    [89]S. Bouchiker, G. A. Capolino, M. Poloujadoff. Vector control of a permanent-magnet synchronous motor using AC-AC matrix converter [J]. IEEE Transactions on Power Electronics, Nov 1998,13(6):1089-1099.
    [90]T.-H. Liu, D.-F. Chen and C.-K Hung. Nonlinear controller design and implementation for a matrix-converter-based PMSM drive system [J]. IEE Proceedings of Electric Power Applications, Sep.2005,152(5):1037-1048.
    [91]C. Ortega, A. Arias, C. Caruana, et al. Improved waveform quality in the direct torque control of matrix-converter-fed PMSM drives [J]. IEEE Transactions on Industrial Electronics, June 2010,57(6):2101-2110.
    [92]葛红娟,苏国庆,刘伯华,等.基于输入电流空间矢量调制-输出滞环电流控制的MC-PMSM矢量控制系统[J].电工技术学报,2008,23(4):39-43.
    [93]孙凯,黄立培,梅杨.矩阵式变换器驱动异步电机调速系统的非线性自抗扰控制[J].电工技术学报,2007,22(12):39-45.
    [94]M. E. Haque, M. Negnevitsky, K. M. Muttaqi. A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator [J]. IEEE Transactions on Industry Applications, Jan/Feb.2010,46(1):331-339.
    [95]L. Zhang and C. Watthanasam. A matrix converter excited doubly-Fed induction machine as a wind power generator [C].7th International Conference on Power Electronics and Variable Speed Drives, Sept.1998,532-537.
    [96]K. Ghedamsi, D. Aouzellag and M. Berkouk. Application of matrix converter for variable speed wind turbine driving a doubly fed induction generator [C]. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, May 2006,1201-1205.
    [97]苑国锋,柴建云,李永东.变速恒频风力发电机组励磁变频器的研究[J].中国电机工程学报,2005,25(8),90-94.
    [98]S. M. Barakati, M. Kazerani, and J. D. Aplevich. Maximum power tracking control for a wind turbine system including a matrix converter [J]. IEEE Transactions on Energy Conversion, Sep.2009,24(3):705-713.
    [99]Xu Lie. Coordinated control of DFIG's rotor and grid side converters during network unbalance [J]. IEEE Transactions on Power Electronics,2008,23(3): 1041-1049.
    [100]Hu Jiabing, He Yikang. Reinforced control and operation of DFIG-based wind-power-generation system under unbalanced grid voltage conditions [J]. IEEE Transactions on Energy Conversion,2009,24(4):905-915.
    [101]R. Vargas, J. Rodriguez, U. Ammann, et al. Predictive current control of an induction machine fed by a matrix converter with reactive power control [J]. IEEE Transactions on Industrial Electronics, Dec.2008,55(12):4362-4371.
    [102]P. Cardenas, R. Pena, G. Tobar, et al. Stability analysis of a wind energy conversion system based on a doubly fed induction generator fed by a matrix converter [J]. IEEE Transactions on Industrial Electronics, Oct.2009,56(10):4194-4206.
    [103]R. Pena, R. Cardenas, E. Reyes, et al. Control of a doubly fed induction generator via an indirect matrix converter with changing DC voltage [J]. IEEE Transactions on Industrial Electronics, Oct.2011,58(10):4664-4674.
    [104]Guoliang Yang and Yanping Zhu. Application of a matrix converter for PMSG wind turbine generator system [C]. IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Jun.2010,185-189.
    [105]H. Nikkhajoei and M. R. Iravani. A matrix converter based micro-turbine distributed generation system [J]. IEEE Transactions on Power Delivery, July 2005, 20(3):2182-2192.
    [106]V. Kumar, V. Choudhary, R. R. Joshi, et al. Intelligent optimal control of matrix converter based new WECS for performance enhancement & efficiency optimization [C]. IPEC 2007, Dec.2007,251-256.
    [107]Boon-Teck Ooi and M. Kazerani. Unified power flow controller based on matrix converter [C].27th Annual IEEE Power Electronics Specialists Conference, Jun. 1996,1:502-507.
    [108]B. Geethalakshmi, G. Devanathan and P. Dananjayan. A novel structure of UPFC with matrix converter [C]. International Conference on Power Systems, Dec.2009, 27-29.
    [109]A. R. Marami Iranaq, M. Tarafdar Haque and E. Babaei. A UPFC based on matrix converter [C]. Power Electronic & Drive Systems & Technologies Conference (PEDSTC),2010, Feb.2010,95-100.
    [110]J. Monteiro, J. F. Silva, S. F. Pinto, et al. Direct power control of matrix converter based unified power flow controllers [C].35th Annual Conference of IEEE Industrial Electronics (IECON 2009), Porto, Portugal,2009:1525-1530.
    [111]Wang Bingsen and G. Venkataramanan. Dynamic voltage restorer utilizing a matrix converter and flywheel energy storage [C].42nd Industry Applications Conference, Sept.2007,208-215.
    [112]陈希有,陈学允.矩阵式电力变换器的无功功率分析[J].中国电机工程学报,1999,19(11):5-9.
    [113]陈希有,陈学允.双电压合成矩阵变换器无功功率的控制与输入电流消谐[J].电气传动,2001(1):11-15.
    [114]穆新华,庄心复,陈怀亚.双电压控制的矩阵变换器的开关状态与仿真分析[J].电工技术学报,1998,13(1):46-50,54.
    [115]J. Igney and M. Braun. A new matrix converter modulation strategy maximizing the control range [C]. IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germany, Jun.21-24,2004,2875-2880.
    [116]陆晓楠,孙凯,李刚,等.双级矩阵变换器网侧功率因数的控制方法[J].电工技术学报,2010,25(10):108-114.
    [117]刘晓宇,孙凯,李刚,等.双级矩阵变换器的网侧功率因数[J].电工技术学报,2012,27(12):71-78.
    [118]H. M. Nguyen, H. H. Lee, and T. W. Chun. Input power factor compensation algorithms using a new direct-SVM method for matrix converter [J]. IEEE Transactions on Industrial Electronics, Jan.2011,58(1):232-243.
    [119]S. Kwak. Indirect matrix converter drives for unity displacement factor and minimum switching losses [J]. Electric Power Systems Research,2007,77(5/6): 447-454.
    [120]E. ON Netz Gmbh. Grid code for high and extra high voltage [S]. Bayreuth, Germany, August 2003.
    [121]R. C. Bansal. Automatic reactive-power control of isolated wind-diesel hybrid power systems [J] IEEE Transactions on Industrial Electronics, June 2006 53(4): 1116-1126.
    [122]G. Tapia, A. Tapia, and J. X. Ostolaza. Proportional-integral regulator-based approach to wind farm reactive power management for secondary voltage control [J]. IEEE Transactions on Energy Conversion, June 2007,22(2):488-498.
    [123]R. Cardenas, R. Pena, M. Perez, et al. Vector control of front-end converters for variable-speed wind-diesel systems [J] IEEE Transactions on Industrial Electronics, June 2006,53(4):1127-1136.
    [124]M. Kayikci and J. V. Milanovic. Reactive power control strategies for DFIG-based plants [J] IEEE Transactions on Energy Conversion, Jun.2007,22(2):389-396.
    [125]S. M. Muyeen, R. Takahashi, T. Murata et al. A variable speed wind turbine control strategy to meet wind farm grid code requirements [J]. IEEE Transactions on Power Systems, Feb.2010,25(1):331-340.
    [126]R. Cardenas, R. Pena, J. Clare, et al. Control of the Reactive Power Supplied by a Matrix Converter [J]. IEEE Transactions on Energy Conversion, Mar.2009,24(1): 301-303.
    [127]R. Cardenas, R. Pena, P. Wheeler, et al. Control of the Reactive Power Supplied by a WECS Based on an Induction Generator Fed by a Matrix Converter [J]. IEEE Transactions on Industrial Electronics, Feb.2009,56(2):429-438.
    [128]H. Hojabri, H. Mokhtari, and L. Chang, Reactive power control of permanent-magnet synchronous wind generator with matrix converter [J]. IEEE Transactions on Power Delivery, Apr.2013,28(2):575-584.
    [129]K. Inomata, H. Hara, S. Morimoto, et al. Enhanced fault ride through capability of matrix converter for wind power system [C].39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Nov.2013,4838-4843.
    [130]M. Pahlevaninezhad, S. Eren, A. Bakhshai et al. A model reference adaptive controller for a wind energy conversion system based on a permanent magnet synchronous generator fed by a matrix converter [C].35th Annual Conference of the IEEE Industrial Electronics Society, Nov.2009,65-70.
    [131]K. R. Padiyar, FACTS controllers in power transmission and distribution [M] New Age International Publishers,2007.
    [132]B. Wang and G. Venkataramanan. Dynamic voltage restorer utilizing a matrix converter and flywheel energy storage [J]. IEEE Transactions on Industrial Applications, Jan/Feb.2009,45(1):222-231.
    [133]J. Monteiro, J. F. Silva, S. F. Pinto, et al. Matrix converter based unified power-flow controllers:advanced direct power control method [J]. IEEE Transactions on Power Delivery,2011,26(1):420-430.
    [134]J. Monteiro, J. F. Silva, S. F. Pinto, et al. Linear and sliding-mode control design for matrix converter-based unified power flow controllers [J]. IEEE Transactions on Power Electronics,2014,29(7):3357-3367.
    [135]H. Akagi, E. H. Watanabe, M. Aredes. Instantaneous power theory and applications to power conditioning [M]. John Wiley & Sons,2007.
    [136]M. H. J. Bollen. Understanding power quality problems-voltage sags and interruptions [M]. Piscataway, NJ:IEEE,2000.
    [137]Jesus Lopez, P. Sanchis, X. Roboam, et al. Dynamic behavior of the doubly fed induction generator during three-phase voltage dips [J]. IEEE Transaction on Energy Conversion,2007,22(3):709-717.
    [138]Jesus Lopez, Eugenio Gubia, P. Sanchis, et al. Wind turbines based on doubly fed induction generator under asymmetrical voltage dips [J]. IEEE Transaction on Energy Conversion,2008,23(1):321-330.
    [139]A. Luna, A. Rolan, G。 Medeiros, et al. Control strategies for DFIG wind turbines under grid fault conditions [C].35th Annual Conference of the IEEE Industrial Electronics, Porto, Nov.2009,3886-3891.
    [140]J. Morren, S. W. H. de Haan. Ride through of wind turbines with doubly-fed induction generator during a voltage dip [J]. IEEE Transactions on Energy Conversion,2005,20(2):435-441.
    [141]J. Morren, S. W. H. de Haan. Short circuit current of wind turbines with doubly fed induction generator [J]. IEEE Transactions on Energy Conversion,2007,22(1): 174-180.
    [142]M. Tsili, S. Papathanassiou. A review of grid code technical requirements for wind farms [J]. IET Renewable Power Generation,2009,3(3):308-332.
    [143]张兴,张龙云,杨淑英,等.风力发电低电压穿越技术综述[J].电力系统及其自动化学报,2008,20(2):1-8.
    [144]D. Xiang, L. Ran, P. J. Tavner, et al. Control of a doubly fed induction generator in a wind turbine during grid fault ride-through [J]. IEEE Transactions on Energy Conversion,2006,21(3):652-662.
    [145]J. P. Da Costa, H. Pinheiro, T. Degner, et al. Robust controller for DFIGs of grid-connected wind turbines [J]. IEEE Transactions on Industrial Electronics, Sep. 2011,58(9):4023-4038.
    [146]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的励磁控制策略[J].中国电机工程学报,2006,26(3):164-170.
    [147]S. Hu, X. Lin, Y. Kang, et al. An improved low-voltage ride-through control strategy of doubly fed induction generator during grid faults [J]. IEEE Transactions on Power Electronics, Dec.2011,26(12):3653-3665.
    [148]Y. Zhou, P. Bauer, A. Ferreira, et al. Operation of grid-connected DFIG under unbalanced grid voltage condition [J]. IEEE Transactions on Energy Conversion, Mar.2009,24(1):240-246.
    [149]D. Santos-Martin, J. L. Rodriguez-Amenedo, and S. Arnaltes. Providing ride-through capability to a doubly fed induction generator under unbalanced voltage dips [J]. IEEE Transactions on Power Electronics, Jul.2009,24(7): 1747-1775.
    [150]J. Hu, Y. He, L. Xu, et al. Improved control of DFIG systems during network unbalance using PI-R current regulators [J]. IEEE Transactions on Industrial Electronics, Feb.2009,56(2):439-451.
    [151]胡家兵,孙丹,贺益康.电网电压骤降故障下双馈风力发电机建模与控制[J].电力系统自动化,2006.30(8):21-26.
    [152]D. Shen, P. W. Lehn. Modeling, analysis, and control of a current source inverter-based STATCOM [J]. IEEE Transactions on Power Delivery,2002,17(1): 248-253.
    [153]Y. Ye, M. Kazerani, V. H. Quintana. Current-source converter based STATCOM: modeling and control [J]. IEEE Transactions on Power Delivery,2005,20(2): 795-800.
    [154]H. F. Bilgin, M. Ermis. Current source converter based STATCOM:operating principles, design and field performance [J]. Electric Power Systems Research, 2011,81:478-487.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700