汽车零部件结构的拓扑优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国内汽车市场发展迅速,随着市场竞争的日益加剧,在汽车零部件开发、设计过程中对结构性能控制的要求越来越高。如何在汽车零部件结构设计的布局阶段实现结构最优化,是汽车零部件设计领域最新、发展最快的课题。
     在汽车零部件结构优化设计过程中,经常会遇到两大问题:一个是零部件结构的设计灵敏度分析,另一个是零部件结构修改后的快速重分析问题,难点就是灵敏度分析和重分析方法。目前汽车零部件结构设计中较多采用参数优化的方法,参数优化法对比较简单的静态工况可以起一定的作用,且往往不是最优化的结果;但对复杂工况而言参数化修改不仅效果甚微,有时还适得其反。采用结构拓扑优化设计可以极大地提高设计质量,缩短设计周期、增强产品的市场竞争力,具有很重要的实际应用价值。
     本文在汽车零部件结构设计领域,研究了结构布局拓扑优化修改的重分析问题,同时结合具体优化设计需要,研究了商用汽车柴油发动机飞轮壳结构静态拓扑优化问题和商用汽车白车身总成的动态设计问题,提出了相关的优化算法。主要内容有:
     1、研究了结构参数修改的静态重分析方法,提出了组合近似方法;
     2、研究了有限元系统下拓扑修改的模态重分析方法,并针对节点增加的工况给出了可扩展的算法流程;
     3、结合重型载货汽车柴油发动机飞轮壳后端面断裂的实际问题,研究了复杂工况下飞轮壳结构的布局优化,提出了单元灵敏度准则和优化方法,达到很好的实际优化结果;
     4、研究了商用汽车白车身总成的动态设计技术,提出了一种新的有频率约束的优化方法。
With the competition of domestic commercial vehicle market develop increasingly, the demanding of the more efficiency methods for controlling the performance about the vehicle components became urgently. The layout optimization deals with the selection of the best configuration for the vehicle component structural systems have turned into the newest and the most rapidly fields in vehicle engineering.
     In the optimal design process of an vehicle component structure, we have to modify the structure and resolve the displacement or generalized eigen problem in order to get the optimal result. There are two important problems are always confronted in the optimal process, the first is the design sensitivity analysis of the vehicle components and the second is the fast reanalysis of modified structure about the vehicle components. Considering a general layout optimization problem, the various reanalysis methods for modified structures could be classified as follows: the topology modification, the shape modification and the parameter modification. Commonly, the shape modification and the parameter modification usually applied in vehicle engineering field until the topological modification had enough progress in theory and engineering application with the promptly increasing of the computer technology. Topological optimization concerning the topological variations of a structure(number and orientation of elements) is difficult because of changes in the structural model. The solutions of topological optimization problems are more difficult because of changes in the structural model. Members and joints are deleted or added during the solution process and the reanalysis model becomes complicated. Developing reanalysis procedures for general topological modifications is particularly important when the number of degrees of freedom (DOFs) is modified and the structural response is significantly changed. It seems that more efforts are still required in order to implement topological modifications in practical structural design.
     In this paper, the reanalysis problem for the layout topological modification of vehicle component in automotive engineering field have been studied. Integrating with the layout
     Optimization of stiffeners for the engine’s flywheel housing of the commercial vehicle and the mode analyzing/optimization of the heavy vehicle load bearing system, bring for-ward some optimal resolutions accordingly. The main research work is summarized as follow:
     In chapter 2, the combined approximations of displacement, stress, and force are introduced. The main objectives in developing the method presented are to preserve the ease of implementation and the efficiency of the common first Taylor series approximations and to improve significantly the quality of results, such that the method can be used in problems with very large changes in the design variables.
     In chapter3, discussed the method of structural reanalysis for topological modification. The presented method is suitable for all three cases of topological modifications, especially for the condition that the DOFs about the additions of members and joints changed. Firstly, establish the rigid matrix of initial analysis structure, then reanalyzed the transitional rigid matrix of the structure. Continue the decompose solution to get the analysis result with constant rigid matrix that is assembled and decomposed to avoid reanalyzing the whole rigid matrix of the modified structure.
     In chapter 4, For instance to do the optimal topological modification of the stiffness for the commercial vehicle engine wheel housing, proposed the rapid reanalysis method adapt to modified structure in automotive engineering field. According to cell sensitivity of the strain energy, establish the searching method for deciding optimal locations of the vehicle engine wheel housing stiffness and the optimal process. With the cell sensitivity of the strain energy we can identify the stiffness that ought to delete or not, to get the optimal stiffness layout. Using this method can shorten design period greatly, acquire exact result.
     In chapter 5, the method for structural modal reanalysis for topological modifications is presented. This method mainly aimed at the most challenging condition for the newly added degrees of freedom (DOFs) are linked to the original DOFs of the modified structure by means of the dynamic reduction so as to obtain the condensed equation. And then, the eigenvectors of newly added DOFs resulting from topological modification can be re-covered. At last, the Rayleigh-Ritz analysis is used to evaluate the eigen values and eigenvectors for the modified structure, avoid the conditional convergence when using iterative perturbation method based on the results of the initial structure. The reanalysis method can deal with mass and rigid matrix directly and applicable in universal FE system.
     In chapter 6, the dynamic optimal design of Body in white is discussed. A new like method is developed. In this method, the element is recovered according to the element sensitivity. Using the critical methods, the body in white of heavy commercial truck is improved, and the abnormal vibration is avoided. Also, the safety and the comfortable of body in white is improved by optimization with the modified structure is solved using the modal reanalysis method presented in chater5.
引文
[1]陈塑寰.《结构振动分析的矩阵摄动理论》[M].重庆:重庆出版社,1991.
    [2]胡海昌.《多自由度结构固有振动理论》[M].北京:科学出版社,1987.
    [3]胡海昌.《弹性力学的变分原理及其应用》[M].北京:科学出版社,1981.
    [4]钱令希.《工程结构优化设计》[M].北京:水力电力出版社,1983.
    [5] Liu, H.B. and Chen, S.H. Perturbation Based on Boundary Element Techniques in Structural Vibration [C]. Proceedings of the IV Conference of APCS, pp.763-769, 1991.
    [6] Kirsch, U. Approximation Behavior Models for Optimum Structural Design [C]. New Directions in Optimum Structural Design, edited by E.atrek, R.H. Gallagher, K.M. Ragsdell, and O.C.Zienliewicz, John Wilkey, New York, 1984.
    [7]Cox,H.L. The Design of Structures of Least Weight .Pergamon,London(1956).
    [8] Topping,BHV. Shape Optimization of Skeletal Structures: A Review [C]. J Struct.Eng. ASCE, 1983
    [9] M.P.Bendse. Generating Optimal Topologies in Structural Design using a Homogenization Method [C]. Computer Methods in Applied Mechanics and Engineering, NORTH-HOLLAND,1988.
    [10]LIU Z S, CHEN S H. Reanalysis of static response and its design sensitivity of locally modified structures[C]. Proceedings of the IV Conference of APCS,1991: 450-455.
    [11] CHEN SH, LIN YL. Matrix perturbation of vibration analysis [C]. Proc, 2-nd IMAC,1984,698-704.
    [12]HAUG E J,KOMKOV V, and CHOI K K. Design sensitivity analysis of structural systems [C]. Orlando: Academic Press, Orlando, FL.,1985.
    [13] Haug, E.J., Komkov, V., and Choi,K.K. Design Sensitivity Analysis of Structural Systems [J]. Academic Press, Orlando, FL.,1985.
    [14]Fox,R.L. Optimization Methods for Engineering Design [J]. Addison-Wesley, New York, 1971.
    [15] Brandon,J.A. Strategies for Structural Dynamic Modification [J]. Research Studies, Taunton England, U.K.,1990.
    [16]顾松年.《结构动力修改的发展与现状》[J].机械强度,Vol.13,No.1,pp.1-9,1991。
    [17] Baldwin, J.F. and Hutton, S.G. Natural Modes of Modified Structure [J]. AIAA Journal, Vol.23, No.11, pp.1737-1743,1984.
    [18] Kirsh, U. Optimal Topologies of Structures [J]. Applied Mechanics Review, Vol.42. No.8, pp.223-238, 1989.
    [19] Rao, S.S. and Pan, T.S. Modeling, Control, and Design of Flexible Structures: A Survey [J]. Applied Mechanics Review, Vol.43, No.5, 1990.
    [20] Pieson, B.L. A Survey of Optimal Design Under Dynamic Constrains [J]. International Journal for Numerical Methods in Engineering, Vol.4, pp.491-499, 1972.
    [21] Atora, J.S. Survey of Structural Reanalysis Techniques [J]. Journal of the Structural Division, ASCE, Vol.102, No.ST4,pp.783-803,1976.
    [22] Olhoff, N., and Talor, J.E. On Structural Optimization [J]. Journal of Applied Mechanics, Vol.50,pp.1139-1151, 1983.
    [23] Vanderplaats, G.N. Structural Optimization Past, Present, and Future [J]. AIAA Journal, Vol.20, pp.992-1000, 1982.
    [24] Venkayya, V.B. Structural Optimization: A Review and Some Recommendations [J]. International Journal for Numerical Methods in Engineering, Vol.13,pp.205-208,1978.
    [25] Levey, R. and Lev., O. Recent Developments in Structural Optimization [J]. Journal of Structural Engineering ASCE, Vol.113, pp.1939-1962, 1987.
    [26] Haftka, R.T. and Grandhi, R.V. Structural Shape Optimization-a Survey [J]. Computer Methods in Applied Mechanics and Engineering, Vol.57,pp.91-106,1986.
    [27] Bendse,M.P., Ben-Tal, A., and Zow, J. Optimization Methods for Truss Geometry an Topology Design [J]. Structural Optimization, Vol.17,pp.141-159, 1994.
    [28] Rozvany, G.I.N., BendsΦe,M.P., Kirsch, U. Layout Optimization of Structures [J]. Applied Mechanics Review, Vol.48,No2,pp.41-119,1995.
    [29] Adelmen, H.M. and Haftka, R.T. Sensitivity Analysis of Discrete Structural Systems [J]. AIAA Journal, Vol.24,pp.823-832,1996.
    [30] Argyris, J.H. The Matrix Analysis of Structures with Cutouts and Modifications [J]. Proceedings of 9th Int. Congress of Applied Mechanics, Univ. of Brussels, Vol.6,pp.131-140,1956.
    [31] Sobieszczanski, J. Structural Modification by Perturbation Method [J]. Journal of the Structural Division, ASCE, Vol.194, No.12, pp.2799-2816, 1968.
    [32] Beneet, J.M. Triangular Factors of Modified Matrices [J]. Numerical Mathematics, Vol.7, p.217-221,1965.
    [33] Wilhan, K., Anderson, W.J., and Sandstrom, R.E. Nonlinear Inverse Perturbation Method in Dynamic Analysis[J]. AIAA Journal, Vol.21, No.9, pp.1310-1316,1983.
    [34] Phansalkar, S.R. Matrix Iterative Methods for Structural Reanalysis [J]. Journal of Computers & Structures, Vol.1, pp.779-800, 1974.
    [35] Best, G.A. Method of Structural Weight Minimization Suitable for High Speed Digital Computers [J]. AIAA Journal, Vol.1, No.2, pp.478-479,1963.
    [36] Fox, R.L., Miura, H. An Approximate Analysis Technique for Design Calculations [J]. AIIA Journal, Vol.90, pp.171-179, 1971
    [37]陈塑寰.退化系统振动分析的矩阵摄动法,吉林工业大学学报,第4期,1981年.
    [38]胡海昌.参数小变化对本征值的影响[J].力学与实践,第2期,1981年。
    [39]林家浩.有频率禁区的结构优化设计[J].大连工学院学报,第1期,1981年.
    [40]冯振东,吕振华.振动系统实践模态参数的灵敏度分析[J].固体力学学报, VoL.10, No.4,1989。
    [41] Haug, E.J., Rousselet, B. Design Sensitivity Analysis in Structural Mechanics, Dynamics,Ⅱ, Eigenvalue Variations [J]. Journal of Structural Mechanics, Vol.8, No.2, pp.161, 1980.
    [42] Chen, S.H. and Liu, Z.S. Substructure Analysis of Complex Structure With Weak Connections Using Matrix Perturbation [J]. International Journal of JSME, Vol.36,No.3,1993.
    [43] Zhang, Z.F., and Chen, S.H. The Standard Deviations of The Eigen-solutions for Random MODF Systems [J]. Computers & Structures, Vol.39, No.6, pp.603-607, 1991.
    [44] Vaicaitis, R. Free Vibration of Beams with Random Characteristics [J]. Journal of Sound and Vibration, Vol.39, pp.13-21, 1974.
    [45] Chen, S.H., and Liu, Z.S. Random Vibration Analysis for Large-scaleStructures with Random Parameters [J]. International Journal of Computers & Structures, Vol.43,No.4,1992.
    [46] Keel, L.H., Lim, K.B., and Juang, J,N. Robust Eigenvalue Assignment with Maximum Tolerance to System Uncertainties [J]. Journal of Guidance, Control and Dynamics, Vol.14,No.3,pp.615-620,1991.
    [47] Meirovitch, L. and Baruh, H. Robustness of the Independent Mode Space Control Method [J]. Journal of Guidance, Control and Dynamics, Vol.6,No.1,pp.20-25,1983.
    [48] Zhang, Z.F., and Chen, S.H. Dynamic Finite Element Method of Thin-walled Beams [J]. AIAA Journal, Vol.28,No.5, pp.910-914, 1990.
    [49] Chen, S.H., Xu, T. and Liu, Z.S. Nonlinear Frequency Spectrum in Nonlinear Structural Analysis [J]. International Journal of computers & Structures, Vol.45, No.3, 1992.
    [50] Qian, G.L., Gu, S.N. and Jiang, J.S. The Dynamics Behavior and Crack Detection of A Beam with A Crack[J]. Journal of Sound and Vibration, Vol.138, No.2, pp.233-243, 1990.
    [51] Gu, S.N. and Zhang, J.L. A Vibration Diagnosis Approach to Structural Fault [J]. Transactions of the ASME Journal of VASRD, Vol.111, pp.88-93, 1989.
    [52] Lim T.W. Analytical Model Improvement Using Measured Moeds and Submatrics [J]. AIAA Journal, Vol.29, No.8, pp.1015-1017, 1991.
    [53] Berman, A. and Nagy, E.J. Improvement of a large analytical Model Using Test Date [J]. AIAA Journal, Vol.21,No.8, pp.1168-1173, 1983.
    [54] Ram, Y.M., and Braun, S.G. An Inverse Problem Associated with Modification of Incomplete Dynamic Systems[J]. Journal of Applied Mechanics, Vol.58, pp.233-237, 1991.
    [55] Sun, J.G. Multiple Eigenvalue Sensitivity Analysis[J]. Linear Algebra and Its Applications, Vol.137/138, pp.183-211,1990.
    [56] Juang, J.N., Ghaemmaghami, P., and Lim, K.B. Eigenvalue and Eigenvector Derivatives of a Non-defective Matrix [J]. Journal of Guidance, Control and Dynamics, Vol.12, No.4, pp.480-486,1989.
    [57] Ress, R. Design Derivatives of Eigenvalues and Eigenfundations for Self-Adjoint Distributed Parameter System [J]. AIAA Journal, Vol.24, No.4,1989.
    [58] Liu, Z.S., and Chen, S.H. Reanalysis of Static Response and Its Design Sensitivity of Locally Modified Structures [J]. Proceedings of the IV Conference of APCS, pp.450-455, 1991.
    [59] Brandon, J.A. Second-Order Design Sensitivities to Asses the Applicability of Sensitivity Analysis [J]. AIAA Journal, Vol.29, No.1, 1991.
    [60] Juang, J.N. and Wright, J.R. A Multi-Point Force Appropriation Method Based Upon a Singular Value Decomposition Approach [J]. ASME Journal of Sound and Vibration, Vol.113, pp.176-187, 1991.
    [61] Hartmann, D. Application of AI Tolls for Reanalysis Within Structural Optimization [J]. Engineering Optimization, Vol.11,pp3515-3679,1987.
    [62] Kirsh,U. Optimal Topologies of Flexural Systems[J]. Engineering Optimization, Vol.11,pp.141-149, 1987.
    [63] Lee, S.J. and Kapoor, S.G. On the Automatic Selection of Reanalysis Techniques in Machine Tool Structural Element Optimization [J]. Engineering Optimization, Vol.10, pp.163-181, 1986
    [64] Fox, R.L. and Kapoor, M.P. Rates of Changes of Eigenvalues and Eigenvectors [J]. AIAA Journal, Vol.6, No.12, pp.2426-2429, 1968.
    [65] Nelson, R.B. Simplified Calculation of Eigenvectors Derivatives[J]. AIAA Journal ,Vol.1,No.9,pp 1201-1205,1976.
    [66]张德文,魏步旋.重根特征向量导数计算的直接扰动法[J].固体力学学报,第14卷,第4期,1993。
    [67]章永强,王文亮.广义特征值问题中重特征值的特征向量导数[J].力学学报,第26卷,第1期,1994。
    [68] Andrew, A.L. Convergence of an Iterative Method for Derivatives of Eigen systems [J]. Journal of Computational Physics, Vol.26,pp.107-112,1978.
    [69] Tan, R.C.E. Some Acceleration Methods for Iterative Computation of Derivatives of Eigen values and Eigenvectors [J]. International Journal of Numerical Methods in Engineering, Vol.28, pp.1505-1519,1989.
    [70] ting,T. Accelerated Subspace Iteration for Eigenvector Derivatives [J]. AIAA Journal, Vol.30,No.8,pp.2114-2118,1992.
    [71] Wang, B.P. Improved Approximate Methods for Computing Eigenvectors in Structural Dynamics [J]. AIAA Journal, Vol.29,No.6,pp.1018-1020,1991.
    [72]韩万芝,宋大同,陈塑寰.计算特征向量摄动量的混合基展开法[J].固体力学学报,Vol.16,No.3,pp.237-243,1995.
    [73]刘中生,陈塑寰,赵又群.模态截断与简谐载荷的响应[J].航空学报,第14卷,第9期,537-541,1993.
    [74]陈塑寰,刘中生,赵又群.振型一阶导数的高精度截尾模态展开法[J].力学学报,Vol.25,No.4,427-434,1993.
    [75] Chun, Y.W. and Hang, E.J. Shape Optimization of a Solid of Revolution [J]. Journal of Engineering Mechanics, Vol.109, pp.30-46,1983.
    [76] Rousselet, B. and Hang, E.J. Design Sensitivity Analysis in Structural Mechanics, III, Effects of Shape Variation [J]. Journal of Structural Mechanics, Vol.10,No.3, pp.273-310,1983.
    [77] Lee, S.J. and Kapoor, S.G. A Shape and Size Optimization Algorithm for Machine Tool Element Design [J]. Engineering Design, Vol.10,pp.25-40,1986.
    [78] BendsΦe, M.P., and Kikuchi, N. Generating Optimal Topologies in Structural Design Using a Homogenization Method [J]. Computer Methods in Applied Mechanics and Engineering, Vol.71,pp.197-224,1988.
    [79] Olhoff, N., and Rozavany, G.I.N. Optimal Grillage Layout for Given Natural Frequency [J]. Journal of Structural Mechanics, ASCE, Vol.108, No.1, pp.971-974, 1990.
    [80] Prager, W. and Shield, R.T. A General Theory of Optimal Plastic Design [J]. Journal of Applied Mechanics, Vol.34, No.1, pp.184-186, 1997
    [81] Rozvany, G.I.N. and Gollub, W.,“Michell Layouts for Various Combinations of Line Supports,”Part I. International Journal of Mechanics, SCI, Vol.32, No.12, pp.1021-1043,1990.
    [82] Rozvany, G.I.N., Birker, T., and Lewinski, T. Some Unexpected Properties of Exact Least-Weight Plane Truss Layouts with Displacement Constraints for Several Load Conditions [J]. Structural Optimization, Vol.7, pp.76-86, 1994.
    [83] Rozvany, G.I.N. A Rational Approach to Plate Design [J]. Amer. Conc. Inst., Vol.63, pp.1077-1094, 1966.
    [84] Rozvany, G.I.N. Analysis Versus Synthesis in Structural Engineering [J]. Civil Eng. Trans. Inst. Eng. Aust. CE., Vol.8,pp.158-166,1966.
    [85] Hill, R.H. and Rozvany, G.I.N. Prager’s layout Theory: a Non-numeric Computer Algorithm for Generating Optimal Structural Configurations and weight Influence Surfaces [J]. Computer Methods in Applied Mechanics andEngineering, Vol.49, pp.131-148, 1966.
    [86] Morley, C.T. The Minimum Reinforcement of Concrete Slabs [J]. International Journal of Mechanics, SCI, Vol.8, pp.305-319, 1966.
    [87] Rozvany, G.I.N. and Ong, T.G. A General Theory of Optimal Layouts for Elastic Structures [J]. Journal of Engineering Mechanics, ASCE< Vol.112, pp.851-857, 1993.
    [88] Kirsch, U. Optimal Topologies of Truss Structures [J]. Computer Methods in Applied Mechanics Engineering, Vol.72, pp.15-28, 1989.
    [89] Taylor, J.E. and Rossow, M.P. Optimal Truss Design Based on an Algorithm Using Optimality Criteria [J]. International Journal of Solids Structures, Vol.13, pp.913-923, 1991.
    [90] Diaz, A.R. and Kikuchi, N. Solution to Shape and Topology Eigenvalue Optimization Problems Using Homogenization Methods [J]. International Journal of Numerical Methods in Engineering, Vol.35, pp.1487-1502, 1992.
    [91] Ma, Z.D., Cheng, H.C., Kikuchi, N. and Hagiwara, I.Topology and Shape Optimization Technique for Structure Dynamic Problems [J]. Recent Advances in Structural Problems, PVP 248/NE-10, pp.133-143, 1992.
    [92] Ma, Z.D., Kikuchi, N. and Hagiwara, I. Structural Topology and Shape Optimization for a Frequency Response Problem [J]. Computational Mechanics, Vol.13, No.3, pp.1157-1174, 1993.
    [93] Cheng, H.C., Kikuchi, N. and Ma, Z.D. An Improved Approach for Determining the Optimal Orientation of the Orthotropic Material [J]. Structural Optimization, vol.8, 1994.
    [94] Ma, Z.D. and Hagiwara, I. Improved Modes Superposition Technique for Modal Frequency Response Analysis of Couple Acoustic-structural Systems[J]. AIAA Journal, Vol.29, No.10, pp.1720-1726, 1991.
    [95] Ma, Z.D., Kikuchi, N. and Cheng, H.C. Topological Design for Vibrating Structures [J]. Computer Methods in Applied Mechanics and engineering, Vol.121, pp.259-280, 1995.
    [96] Majid, K.I. and Elliott, D.W.C. Forces and Deflections in changing Structures [J]. The structural Engineer, Vol.51, No.3, 1973.
    [97] Majid, K.I., Saka, M.P. and Celik, T. The Theorems of Structural Variation Generalized for Rigidly Jointed Frames [J]. Proc. Inst. Cir. Eng., Vol.65, No.2,1978.
    [98] Rong, T.Y. and Lu, A.Q. Theory and Method of Structural Variations of Finite Element Systems [J]. AIAA Journal, VPl.32, No9, 1994.
    [99] Lawther, R. A Mixed Formulation for Structural Changes in Linear and Eigenvalue Analysis [J]. Journal of Computational Structural Mechanics and Applications, Vol.12, Special Issue, pp.68-78, 1995.
    [100] Barthelemy, J.-F.M. and Haftka, R.T. Recent Advances in Approximation Concepts for Optimum Structure Design [J]. Proceedings of NATO/DFG ASI on Optimization of Large Structure Systems, Berchtesgaden, German, 1991,pp. 235-256.
    [101] Kirsh, U. Structural Optimizations [J]. Fundamentals and Applications Springer-Verlag, Heidelberg, 1993.
    [102] Fox, R.L., and Miura, H. An Approximate Analysis Technique for design Calculations[J]. AIAA Journal, Vol.9, 1971, pp.177-179.
    [103] Haftka, R.T., Nachlas, J.a., Watson, L.T., Rizzo,T., and Desai, R. Two point Constraint Approximation in Structural Optimization [J]. Computer Methods of Applied Mechanical Engineering, Vol.60,1989,pp.289-301.
    [104] Fuchs,M.B. Linearized Homogeneous Constraints in Structural Design [J]. International Journal of Mechanical Science, Vol.22,1980,pp.333-400.
    [105] Schmit,L.A., and Farshi, B. Some Approximation Concepts for Structural Synthesis [J]. AIAA Journal, Vol.11,1974,pp.489-494.
    [106] Starnes,J.H., Jr., and Haftka, R.T. Preliminary Design of Composite Wings for Bucking Stress and Displacement Constraints [J]. Journal of Aircraft, Vol.16,1979, pp.564-570.
    [107] Fleury, C., and Braibant, V. Structural Optimization: a New Dual Method Using Mixed Variables[J]. International Journal of Numerical Methods in Engineering, Vol.24, 1987, pp.409-428.
    [108] Svanberg, K. The Method of Moving Asymptotes a New Method for Structural Optimization [J]. International Journal of Numerical Methods in Engineering, Vol.24,1987, pp.359-373.
    [109] Fleury, C. Efficient Approximation Concepts Using Secong Order Information [J]. International Journal of Numerical Methods in Engineering, Vol.28, 1989, pp.2041-2058.
    [110] Fleury, C. First and Second Order Convex Approximation Strategies in Structural Optimization [J]. Structural Optimization, Vol.1,1989, pp.3-10.
    [111] Kirsch, U., and Toledano, G. Approximation Reanalysis for Modifications of Structural [J]. Geometry Computers and Structures, Vol.16, 1983, pp.269-279.
    [112] Hjali, R.M., and fuchs, M.B. Generalized Approximations of Homogeneous Constraints in Optimal Structural Design [J]. Computer Aided Optimum Design of Structures, edited by C.A. Brebbia and S. Hernandez, Springer Verlag, Berlin, 19889, pp.167-178.
    [113] Kirsch, U. Reduced Basis Approximations of Structural Displacements for Optinal Design [J]. AIAA Journal, Vol.29, 1991, pp.1751-1758.
    [114] Kirsch, U. Approximate Reanalysis Methods [J]. Structural Optimization: Status and Promise, edited by M.P. Kamat, Vol.150, AIAA, Washington, DC, 1993.
    [115] Kirsch, U. Approximate Reanalysis for Topological Optimization [J]. Structural Optimization, Vol.6,1993, pp.143-150.
    [116] Vanderplaats, G.N., and Salajegheh, E. A New Approximation Method for Stress Constraints in Structural Synthesis [J]. AIAA Journal, Vol.27, 1989, pp.352-358.
    [117] Kirsch, U. Effective Sensitivity Analysis for Structural Optimization [J]. Computer Methods in Applied Mechanics and Engineering, Vol.117, 1994, pp.143-156.
    [118] Haftka, R.T., and Kamat, M.P. Element of Structural Optimization [J]. Martinnus Nijhoff, Dordrecht. The Netherlands, 1985.
    [119] Fadel, G.M., Riley, M.F., and Barthelemy, J.M. Two Point Exponential Approximation Method for Structural Optimization [J]. Structural Optimization, Vol.2,1990, pp.117-124.
    [120] Chen,Suhuan. Matrix Perturbation Theory in Structural Dynamics [J]. International Academic Publishers, 1993.
    [121] Haug,E.J.,Komkov,V.and Choi,K.K. Design sensitivity Analysis of Structural Systems [J]. Academic Press, Orlando FL.,1985.
    [122] Adelmen, H.M. and Haftka,R.T. Sensitivity Analysis of Discrete Structural Systems [J]. AIAA Journal, 1986,24:823-832.
    [123] Z.S.Liu,S.H.Chen. Reanalysis of static Response and its DesignSensitivity of Locally Modified Structures [J]. Communication in Numerical Methods in Engineering, 1992,8(11):797-800.
    [124] T.Y.Chen. Structural Modification with Frequency Response Constraints for Undamped MDOF Systems [J]. Computers & Structures, 1990.
    [125] Ping Liang, Suhuan Chen and Cheng Huang. Moor-Penrose Inverse Method of Topological Variation of Finite Element Systems [J]. Computer & Structures, 1997.
    [126] U.Kirsch. Efficient Reanalysis for Topological Optimization[J]. Structural Optimization 1996, 6:143-150.
    [127] U.Kirsch and Shenghu Liu. Structural Reanalysis for General Layout Modifications[J]. AIAA J., 1997,35(2):382-388.
    [128] Liu ZS, Chen SH. Reanalysis of static response and its design sensitivity of locally modified structures [J]. Communications in Numerical Methods in Engineering 1992; 8:797-800.
    [129]Noor AK. Recent advances and applications of reduction methods [J]. Applied Mechanics Reviews 1994; 47(5): 125-146.
    [130]Rozvany GIN, Bendose MP, Kirsch U. Layout optimization of structure [J]. Applied Mechanics Reviews 1995; 48(2): 41-118.
    [131]Liang P, Chen SH, Huang C. Moor-Penrose inverse method of topological variation of finite element systems [J]. Computers and Structures 1997; 62:243-251.
    [132]Lian HD, Yang XW, Chen SH. Two-step method for static topological reanalysis [J]. AIAA Journal, 2002; 40(1): 172-174.
    [133] LIAN H D, YANG X W, CHEN S H. Two-step method for static topological Reanalysis [J]. AIAA Journal, 2002, 40 (1):172-174.
    [134]NOOR A K. Recent advances and applications of reduction methods[J]. Applied Mechanics Reviews 1994, 47 (5): 125-146.
    [123]CHEN SH, HUANG C, LIU ZS. Structural approximate reanalysis for topological modifications of finite element systems [J]. AIAA Journal, 1998, 36(9): 1760-1762.
    [135] KIRSCH U, LIU S. Structural reanalysis for general layout modifications [J]. AIAA Journal, 1997; 35 ( 2):382-388.
    [136]LIANG P, CHEN SH, HUANG C. Moor-Penrose inverse method of topological variation of finite element systems [J]. Computers and Structures 1997,62:243-251.
    [137]Chen SH, Huang C, Liu ZS. Structural approximate reanalysis for topological modifications of finite element systems [J]. AIAA Journal, 1998; 36(9): 1760-1762.
    [138]Kirsch, U.and Liu, S.H. Structural reanalysis for general layout modifications [J]. AIAA J.35(1997),382-388.
    [139]Abu Kasim AM,Topping BHV. Static reanalysis: A review, Journal of Structural Engineering [J]. 1987; 113(6): 1029-1045.
    [140]Kirsch U. Combined approximations—a general approach for structural optimization [J]. Struct. Multidisc. Optim. 2000;20,97-106
    [141]Z.S. Liu, S.H. Chen. Reanalysis of static response and its design sensitivity of locally modified structures [J]. Commun Numer. Meth. Eng. 8(11) (1992) 797-800.
    [142]G.I.N. Rozvany, M.P. Bendsoe, U. Kirsch. Layout optimization of structure [J]. Appl. Mech. Rev. 48(1995) 41-118.
    [143]A.K. Noor. Recent advances and applications of reduction method [J]. Appl. Mech. Rev. 47(1994) 125-143.
    [144]P. Liang, S.H. Chen, C. Huang. Moor-Penrose inverse method of topological variation of finite element systems [J]. Comput. Struct. 62 (2) (1997) 243-251.
    [145]T.Y. Chen. Structural modification with frequency response constraints for undamped MDOF systems [J]. Comput. Struct. 36(1990) 1013-1018.
    [146]B.H.V. Topping, Shape optimization of skeletal structures: a review [J]. Struct. Eng. ASCE 109 (1983) 1933-1951.
    [147]U.Kirsch, S.H. Liu. Structural reanalysis for general layout modifications [J]. AIAA J. 35 (2) (1997) 382-388.
    [148]S.H. Chen, C. Huang, Z.S. Liu. Structural approximate reanalysis for topological modifications of finite element systems [J]. AIAA J 36(1998) 1760-1762.
    [149].H. Chen, C. Huang, Z.J. Cao. Structural modal reanalysis for topological modifications [J]. Shock Vib. 7 (2000) 15-21.
    [150]R.J. Guyan. Reduction of stiffness and mass matrix [J]. AIAA J. 3(2) (1965) 380.
    [151]S.H. Chen. Matrix Perturbation Theory in Structural Dynamics [J]. International Academic Publisher, Beijing, 1993.
    [152] S.H. Chen, H.H. Pan. Guyan reduction [J]. Commun. Appl. Numer. Meth. 4 (1998) 549-556.
    [153] BARTHELEMY J-FM, HAFTKART. Approximation concepts for optimum structural design- A review [J]. Structural optimization, 1993,5 (3): 129-144.
    [154]CHEN S H, YANG X W, LIAN H D. Comparison of several eigenvalue reanalysis methods for modified structures [J]. Structural and Multidisciplinary Optimization,2000, 20 (4):253-259.
    [155] CHEN JC, WADA BK. Matrix perturbation for structural dynamics [J]. AIAA Journal, 1979, 5: 1095-110.
    [156]LIU XL. Accurate modal perturbation in non-self-adjoint eigenvalue problem [J]. Commun Numer Meth Engng, 2001, 17: 715-725.
    [157]ADHIKARI S. Calculation of derivative of complex modes using classical normal modes [J]. Computers and Structures, 2000,77(6):625-633.
    [158]MURTHY DV, HAFFKA RT. Derivatives of eigenvalues and eigenvectors of a general complex matrix [J]. Int. J. Numer Meth Engng,1999,26:293-311.
    [159]KWAK MK. Perturbation method for the eigen value problem of slightly dumped systems [J]. Journal of Sound and Vibration, 1993, 160:351-357.
    [160]CHEN SH, SONG DT, Ma AJ. Eigen solution reanalysis of modified structures using perturbations and Raleigh quotients [ J]. Comm. Num. Meth. Eng., 1994,10:111-119.
    [161]WANG BP. Improved approximate methods for computing eigenvector derivatives in structural dynamics[J]. AIAA Journal,1991, 29(6):1018-1020.
    [162]NAIR PB, KEANE AJ, and LANGLEY RS. Improved first-order approximation of eigen values and eigenvectors [J]. AIAA Journal, 1998,36(9):1721-1727.
    [163]LIU XL. Improved calculation of eigen value variation in dynamic system [J]. AIAA Journal, 2001,39 (9):1813-1816.
    [164] CHEN S H, YANG X W. Extended Kirsch combined method for eigenvalue reanalysis [J]. AIAA Journal, 2000, 38(5): 927-930.
    [165] KIRSCH U. Approximate vibration reanalysis of structure [J]. AIAA Journal, 2003,41 (3):504-511.
    [166]Kirsch U, Bogomolni M. Error evaluation in approximate reanalysis of structures [J]. Structural and Multidisciplinary Optimization, 2004, 28(2-3).
    [167]KIRSCH U. PARALAMBROS PY. Structural reanalysis for topological modification– a unified approach [J]. Struct Multidise Optim, 2001, 21:333-344.
    [168]YANG X W, CHEN S H, WU B S. Eigen value reanalysis of structures using perturbations and Pade approximation [J]. Mechanical Systems and Signal Processing,2001, 15(2): 257-263.
    [169]Jorge E. Hurtado, Reanalysis of linear and nonlinear structures using iterated Shanks transformation[J], Comput. Method Appl. Engrg.,2002;19:4215-4229.
    [170]NELSON R B. Simplified calculation of eigenvectors derivatives[J]. AIAA Journal,1976,1(9):1202-1205.
    [171]ADELMEN H M, HAFTKA R T. Sensitivity analysis of discrete structural systems[J].AIAA Journal,1986,24:823-832.
    [172]ZHANF Z F, CHEN S H. The standard deviations of the eigensolutions for random MODF systems[J]. Computers & Structures,1991,39(6):603-607.
    [173]SUN J G. Multiple eigenvalue sensitivity analysis[J]. Linear Algebra and Its Applications,1990,137/178:183-211.
    [174]JUANG J N, GHAEMMAGHAMI P, LIM K B. Eigen value and eigenvector derivatives of a non defective matrix [J].Journal of Guidance, Control and Dynamics,1989, 12(4): 480-486.
    [175] BRANDON J A. Second-order design sensitivities to assess the applicability of sensitivity analysis[J]. AIAA Journal,1991,29(1).
    [176]ROUSSELET B, HANG E J. Design sensitivity analysis in structural mechanics, III, effects of shape vibration [J]. Journal of Structural Mechanics, 1983, 10(3):273-310.
    [177] ANDREW A L. Convergence of and iterative method for derivatives of Eigen systems [J]. Journal of Computational Physics, 1978,26:107-112.
    [178]TING T. Accelerated subspace iteration for eigenvector derivatives [J]. AIAA Journal,1992, 30(8):2114-2118.
    [179] WANG B P. Improved approximate methods for computing eigenvectors in structural dynamics [J]. AIAA Journal, 1991, 29(6):1018-1020.
    [180]ADHIKARI S, FRISWELL MI. Eigen derivative analysis of asymmetric non-conservative systems [J]. Int. J. Numer. Meth. Engng, 2001,51:709-733.
    [181] Kirsch U, Liu S. Exact structural reanalysis by a first-order reduced basis approach [J]. Structural Optimization, 1995.10(3-4):153-158.
    [182]Koh C G, Ang K K, Xu R. Eigen-force method for finite element analysis and reanalysis [J]. International Journal for Numerical Methods in Engineering, 1997. 40(5):777-796.
    [183]Levy R,Kirsch U, Liu S. Reanalysis of trusses using modified initial designs[J]. Structural and Multidisciplinary Optimization, 2000. 19(2):105-112.
    [184] Kirsch U,Moses F. Improved reanalysis method for grillage-type structures [J]. Computers and Structures, 1998. 68(1-3):9-88
    [185] Jenkins W M. Structural reanalysis using a neural network-based iterative method [J].Journal of Structural Engineering,2002.128(7):946-950.
    [186]S.H. Chen, C. Huang, Z.J. Cao. Structural modal reanalysis for topological modifications [J]. Shock Vib: 2000, (7): 15-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700