小麦基因TaSAP1的单倍型及启动子分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱、高盐、低温等非生物逆境胁迫严重威胁着世界粮食的产量。小麦(Triticum aestivum L.)是世界上最主要粮食作物之一,干旱是限制小麦产量最主要的非生物胁迫因素。发掘小麦抗旱基因资源是改良小麦抗旱性、培育抗旱新品种的根本途径。在小麦种质资源中蕴藏着丰富的等位变异,分离鉴定出与抗旱相关的功能等位变异不仅有助于深入了解小麦抗旱分子机制,而且还可以依据鉴定出的优异等位变异开发功能标记,为小麦抗旱分子标记辅助选择育种奠定基础。关联分析分辨率高、研究周期短,可直接鉴定与表型紧密关联的功能性位点,是等位基因发掘的有效手段。本研究以小麦逆境应答基因TaSAP1为候选基因,进行了两方面的研究。一是通过与小麦D基因组供体种粗山羊草(Aegilops tauschii)基因组序列比对,在普通小麦中获得TaSAP1的侧翼序列,然后在30份多态性较高的小麦材料中研究TaSAP1-A1多态性,并根据多态性位点开发分子标记,进行单倍型分析,在自然群体中与表型数据进行基于标记和单倍型的关联分析;二是通过瞬时表达和稳定表达的方式对TaSAP1-A2启动子功能进行初步研究。主要研究结果如下:
     1.通过与小麦D基因组供体种粗山羊草基因组序列比对,在普通小麦中获得TaSAP1-A1和TaSAP1-A2两种序列,序列长度分别为5.1kb和4.1kb。TaSAP1-A1和TaSAP1-A2编码区长度均为510bp,启动子长度差异较大,分别为3.4kb和2.5kb。与cDNA序列比对发现TaSAP1编码区没有内含子,而在5′UTR存在两个内含子,长度分别为153bp和758bp,位于-967bp~-814bp和-771bp~-13bp。
     2.以30份小麦为材料,分析TaSAP1-A1序列多态性,在约5.1kb的序列中检测到46个多态性位点,包括43个单核苷酸多态性(SNP)位点和3个插入/缺失突变(InDel)位点,其中在启动子区有39个多态性位点,intron-2中有2个SNP位点,3′端非编码区具有5个多态性位点,TaSAP1-A1编码区未发现多态性位点。滑动窗口分析表明启动子上游-3,499bp到-1,498bp区域的序列多态性最高,π值为0.00631;然后是3′端非编码区和intron-2,π值分别为0.00133和0.00100。
     3.基于TaSAP1-A1启动子区3个多态性位点InDel5-1810、SNP-2606和InDel39-1637开发了3个分子标记,分别命名为T7AM5、T7AM2606和T7AM39。其中T7AM5和T7AM2606是CAPS标记,T7AM39是等位基因特异PCR标记。利用T7AM39将TaSAP1-A1定位于小麦7A染色体标记Xwmc530和Xbarc174之间,与两个标记距离分别为2.1cM和13.9cM。利用3个分子标记可以将自然群体300材料划分为6种单倍型,分别为HapI~HapVI,其中HapI和HapII在群体中所占比例最大,分别占45.6%和31.5%,HapVI所占比例最小为2.9%。
     4.关联分析表明3个分子标记T7AM5、T7AM2606和T7AM393与5个农艺性状显著关联,包括穗长、穗下节长、每穗总小穗数、穗粒数和千粒重。T7AM5在4种环境下与穗长显著关联,其中3种环境为旱地,在6种环境下与穗下节长显著关联,其中4种为旱地;T7AM39和T7AM2606与千粒重显著关联。不同单倍型与千粒重、穗长和每穗小穗数显著相关,其中HapIII对千粒重和穗长具有正向贡献,千粒重在所有环境下都呈现HapIII>HapII>HapI的规律。分析不同年代育成品种中HapIII的频率,结果表明HapIII在育种过程中经历了不断的正向选择。HapIII在不同小麦生态区的分布表明其在育种中的应用不受生态环境限制。
     5.序列分析表明TaSAP1-A2启动子区存在逆境相关顺式作用元件,如ABRE、MBS、ARE等。瞬时表达分析表明TaSAP1-A2启动子在小麦愈伤组织中属于诱导型启动子,且5′UTR内含子对启动子活性具有重要作用。5′缺失片段活性分析表明只有最小片段P6在拟南芥中具有转录激活活性,而TaSAP1-A2全启动子活性被片段P(5-6)抑制。P6具有组成型转录激活活性,其活性与CaMV35S相当。在拟南芥中启动子片段P-(5-6)的活性可以被干旱和低温诱导增强。研究结果表明P6和P-(5-6)在小麦等作物基因工程相关研究中具有潜在的应用价值。
Drought, salinity and low temperature are the major abiotic stresses that dramatically threaten thefood supply in the world. Wheat is one of the most important staple food crops in the world, drought isconsidered to be the major limiting factor seriously impacting the wheat production. Exploringdrought-response gene resources in germplasm is a fundamental approach for improving droughttolerance in wheat. There are abundant allelic variations in wheat germplasm. Identifying thesefunctional alleles for drought tolerance will help to further understand the drought-resistancemechanisms. Functional markers can also be developed based on the identified functional variations,which provide the basis for marker-assisted selection for drought improvement. Association mappingpossesses the advantages of higher mapping resolution and shorter research time, therefore it isconsideredas a powerful approach for identifying functional alleles in germplasm resources.
     In this study, TaSAP1gene was chosen as the candidate gene to perform two aspects of research.(1)Genomic region flanking TaSAP1was obtained by a BLASTsearch against the Aegilops tauschii draftgenome sequence. Thirty wheat accessions were selectedfor polymorphism analysis.Based on thevariations in promoter region of TaSAP1-A1, molecular markers were developed for genotyping.Association analysis were performed to identifyfunctional alleles and haplotypes;(2) The function ofTaSAP1-A2was preliminarily studied by using transient expression and stable expression. The mainresults are summarized as follows:
     1.Two fragments, designated as TaSAP1-A1(5.1kb)and TaSAP1-A2(4.1kb), were obtained by aBLAST search against the Aegilops tauschii draft genome sequence. Both of them had a coding regionof510bp. Sequence analysis indicated that the difference between TaSAP1-A1and TaSAP1-A2wasmainly located in the promoter region.Thesequences were3.4kb and2.5kbrespectively. Alignment ofthe cDNA andgenomic DNA sequence revealed two introns in the5′UTR of TaSAP1. Intron-1was153bp in length and located between-967bp and-814bp from ATG, and intron-2was758bp locatedbetween-771bp and-13bp.
     2.Forty-six variants in the entire region of TaSAP1-A1, comprising of43SNPs and3indels, wereidentified among the30accessions. These include39polymorphisms in thepromoter region, two SNPsin intron-2in the5′UTR, and five variants, including four SNPs and one indel, in the3′flanking region.No variation was observed in the coding region. Sliding-window analysis indicated the highest variationoccurred in the upstream promoter region(-3,499bp to-1,498bp)where the nucleotide diversitywas0.00631, followed by the3′flanking region(π=0.00133) and intron-2(π=0.00100).
     3.Based on three polymorphic sites in the promoter region, including InDel5-1810, SNP-2606andInDel39-1637, three marker T7AM5, T7AM2606and T7AM39were developed. T7AM5andT7AM2606were CAPS markers, and T7AM39was an allele-specific PCR marker. TaSAP1-A1wasmapped to a region flanked by Xwmc530(2.1cM) and Xbarc174(13.9cM) on chromosome7A usingmarker T7AM39. A total of six haplotypes (HapI-HapVI) were detected among the300wheataccessions based on the three markers. Among them, HapI and HapII were the main haplotypes, accounting for45.3%and31.5%of accessionsrespectively. The proportion of HapVI was the lowest(2.9%).
     4.Marker-trait association indicated T7AM5, T7AM2606and T7AM39were significantlyassociated withfive traits including spike length, peduncle length, number of spikelets per spike, numberof grains per spike and1000-grain weight. T7AM5was significantly associated with spike length in fourenvironments among which three were drought-stressed. It was again significantly associated withpeduncle length in six environments, four of which were drought-stressed. T7AM39and T7AM2606were mainly associated with1000-grain weight. Moreover, haplotype significantly affected someagronomic traits, such as1000-grain weight, spike lengthand number of spikelets per spike. HapIIImade a positive contribution to TGW and SL, and the average TGW of HapIII was the highest in allenvironments with the pattern of HapIII>HapII>HapI.The frequency of HapIII was an increasingtrend during the breeding process,showed it was positivly selected. The geographical distribution ofHapIII in China indicated the use of HapIII was not limited byecological environments, such as lightand temperature.
     5.Sequence analysis revealed several putative stress-response cis-acting regulatory elements inTaSAP1-A2promoter, such as ABRE, MBS and ARE. Transient expression in wheat calli proved thatthepromoter of TaSAP1-A2was the stress-inducible promoter. Introns in5′UTR of TaSAP1-A2wereinvolved in stress-induction. Five5′deletions were evalued by stable expression in Arabidopsis. Nopromoter activity was detected in Arabidopsis for all the fragments, except for P6. Further studyindicated a fragment named P(5-6) inhibited the promoter activity of TaSAP1-A2. P6possessesconstitutive transcriptional activation, and its activity was comparable to that of CaMV35S. The activityof P-(5-6) could be enhanced by drought and low temperature. The results showed that P6and P-(5-6)promoters have potential value in genetic engineering of crop plants.
引文
1.高世庆.大豆、小麦抗逆相关Gm/TaAREB转录因子基因、启动子克隆及功能鉴定.[博士学位论文].北京:中国农业科学院研究生学院,2007
    2.侯文胜,郭三堆,路明. cry Ia基因小麦高效表达载体的构建.西北农林科技大学学报(自然科学版),2002:121-124
    3.贾继增,黎裕.植物基因组学与种质资源新基因发掘.中国农业科学,2004,37:1585-1592
    4.景蕊莲.作物抗旱节水研究进展.中国农业科技导报,2007,09:1-5
    5.赖钟雄,张妙霞,李冬梅,车建美,王凤华,赖呈纯,郭志雄,吴金寿,陈振光.植物LEA蛋白与Lea基因表达.福建农林大学学报(自然科学版),2002,31:463-466
    6.雷梦林,李昂,昌小平,徐兆师,马有志,刘惠民,景蕊莲.小麦转录因子基因W16的功能标记作图和关联分析.中国农业科学,2012, doi:10.3864/j.issn.0578-1752.2012.09.001
    7.李玮瑜,张斌,张嘉楠,昌小平,李润植,景蕊莲.利用关联分析发掘小麦自然群体旗叶叶绿素含量的优异等位变异.作物学报,2012:962-970
    8.李云锋,朱蕊,谢龙旭,徐培林.大麦β-1,3-葡聚糖酶基因(GIII)启动子在转基因水稻中的诱导表达.植物生理与分子生物学学报,2005,31:143-148
    9.刘根齐,李秀丽,杨春玲,陈钟,赵世民.不同调控序列控制下的GUS基因在水稻和毛白杨愈伤组织中的瞬时表达.植物生理与分子生物学学报,2005,31:327-330
    10.聂丽娜,夏兰琴,徐兆师,高东尧,李琳,于卓,陈明,李连城,马有志.植物基因启动子的克隆及其功能研究进展.植物遗传资源学报,2008,9:385-391
    11.山仑.科学应对农业干旱.干旱地区农业研究,2011,29:1-5
    12.帅勇,胡兴旺,易朵,王成,赵晓蒙,周畅.重叠延伸PCR法构建小鼠Sumf1基因的定点突变真核表达载体.生命科学研究,2009,13:430-436
    13.谭贤杰,吴子恺,程伟东,王天宇,黎裕.关联分析及其在植物遗传学研究中的应用.植物学报,2011,46:108-118
    14.王彩香.小麦抗逆相关基因TaABC1和TaSAP1/2的分离及功能分析.[博士学位论文].北京:中国农业科学院研究生院,2011
    15.王荣焕.玉米核心自交系的群体结构及耐旱相关性状的关联分析.[博士学位论文].北京:中国农业科学院研究生院,2007
    16.吴乃虎.基因工程原理(上册).北京:科学出版社,2002,89-99
    17.肖娜.油菜种子特异表达启动子pFAE1和pNapB的结构与功能比较研究.[硕士学位论文].武汉:中南民族大学,2008
    18.杨小红,严建兵,郑艳萍,余建明,李建生.植物数量性状关联分析研究进展.作物学报,2007,33:523-530
    19.于永涛.玉米核心自交系群体结构及耐旱相关候选基因rab17的等位基因多样性分析.[博士学位论文].北京:中国农业科学院研究生院,2006
    20.余健.中国旱情态势及防控对策.西北农业学报,2010,19:154-158
    21.翟朝增,徐兆师,陈耀锋,刘沛,李连城,陈明,马有志.小麦蛋白激酶TaNPK启动子的克隆及活性分析.中国农业科学,2011,44:3930-3936
    22.张春晓,王文棋,蒋湘宁,陈雪梅.植物基因启动子研究进展.遗传学报,2004,31:1455-1464
    23.张磊.小麦籽粒产量候选基因(CKX)的克隆、遗传定位与多样性分析.[博士学位论文].沈阳:沈阳农业大学,2007
    24.张文英,柳斌辉,彭海城,李爱国,栗雨勤.小麦品种抗旱性鉴定指标遗传规律研究.华北农学报,2008,23:92-95
    25.庄巧生.中国小麦品种改良及系谱分析.北京:中国农业出版社,2003,1-5
    26. Agius F, Amaya I, Botella MA, Valpuesta V. Functional analysis of homologous and heterologouspromoters in strawberry fruits using transient expression. J Exp Bot,2005,56:37-46
    27. Allen AM, Barker GLA, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC,D’Amore R, McKenzie N. Transcript-specific, single-nucleotide polymorphism discovery and linkageanalysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotech J,2011,9:1086-1099
    28. Andersen JR, Schrag T, Melchinger AE, Zein I, Lubberstedt T. Validation of Dwarf8polymorphismsassociated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor ApplGenet,2005,111:206-217
    29. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, KitanoH, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science,2005,309:741-745
    30. Basehoar AD, Zanton SJ, Pugh BF. Identification and distinct regulation of yeast TATAbox-containing genes. Cell,2004,116:699-709
    31. Bennett D, Izanloo A, Edwards J, Kuchel H, Chalmers K, Tester M, Reynolds M, Schnurbusch T,Langridge P. Identification of novel quantitative trait loci for days to ear emergence and flag leafglaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australianconditions. Theor Appl Genet,2012a,124:697-711
    32. Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T. Detection oftwo major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yieldpotential environments. Theor Appl Genet,2012b,125:1473-1485
    33. Bianchi M, Crinelli R, Giacomini E, Carloni E, Magnani M. A potent enhancer element in the5'-UTRintron is crucial for transcriptional regulation of the human ubiquitin C gene. Gene,2009,448:88-101
    34. Bouchet S, Pot D, Deu M, Rami JF, Billot C, Perrier X, Rivallan R, Gardes L, Xia L, Wenzl P, KilianA, Glaszmann JC. Genetic structure, linkage disequilibrium and signature of selection in Sorghum:lessons from physically anchored DArT markers. PLoS One,2012,7: e33470
    35. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding. Anal Biochem,1976,72:248-254
    36. Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, McKenzie N, Kramer M,Kerhornou A, Bolser D. Analysis of the bread wheat genome using whole-genome shotgunsequencing. Nature,2012,491:705-710
    37. Breseghello F, Sorrells ME. Association mapping of kernel size and milling quality in wheat (Triticumaestivum L.) cultivars. Genetics,2006,172:1165-1177
    38. Bucher P. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elementsderived from502unrelated promoter sequences. J mol biol,1990,212:563-578
    39. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S,Garcia A, Glaubitz JC. The genetic architecture of maize flowering time. Science,2009,325:714-718
    40. Calvo SE, Pagliarini DJ, Mootha VK. Upstream open reading frames cause widespread reduction of.protein expression and are polymorphic among humans. Proc Natl Acad Sci USA,2009,106:7507-7512
    41. Castresana C, Garcia-Luque I, Alonso E, Malik V, Cashmore A. Both positive and negative regulatoryelements mediate expression of a photoregulated CAB gene from Nicotiana plumbaginifolia. EMBO J,1988,7:1929-1936
    42. Cenik C, Derti A, Mellor JC, Berriz GF, Roth FP. Genome-wide functional analysis of human5'untranslated region introns. Genome biol,2010,11: R29
    43. Chaves M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanismsfrom whole plant to cell. Ann Bot,2009,103:551-560
    44. Chen L, Miao Y, Wang C, Su P, Li T, Wang R, Hao X, Yang G, He G, Gao C. Characterization of aNovel Pollen-Specific Promoter from Wheat (Triticum Aestivum L.). Plant Mol Biol Rep,2012,30:1426-1432
    45. Chen X, Wang Z, Gu R, Fu J, Wang J, Zhang Y, Wang M, Zhang J, Jia J, Wang G. Isolation of themaize Zpu1gene promoter and its functional analysis in transgenic tobacco plants. Plant Cell Rep,2007,26:1555-1565
    46. Chung B, Simons C, Firth A, Brown C, Hellens R. Effect of5'UTR introns on gene expression inArabidopsis thaliana. BMC genomics,2006,7:120
    47. Close TJ. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins.Physiol Plant,2006,97:795-803
    48. Corder E, Saunders A, Risch N, Strittmatter W, Schmechel D, Gaskell P, Rimmler J, Locke P,Conneally P, Schmader K. Protective effect of apolipoprotein E type2allele for late onset Alzheimerdisease. Nat Genet,1994,7:180-184
    49. Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE. Activity of a maize ubiquitinpromoter in transgenic rice. Plant Mol Biol,1993,23:567-581
    50. Cuthbert JL, Somers DJ, Brule-Babel AL, Brown PD, Crow GH. Molecular mapping of quantitativetrait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet,2008,117:595-608
    51. Das M, Chauhan H, Chhibbar A, Rizwanul Haq QM, Khurana P. High-efficiency transformation andselective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K2, by constitutiveand inducible expression of tobacco osmotin. Transgenic Res,2011,20:231-246
    52. Devlin B, Roeder K. Genomic control for association studies. Biometrics,2004,55:997-1004
    53. Dunning AM, Durocher F, Healey CS, Teare MD, McBride SE, Carlomagno F, Xu CF, Dawson E,Rhodes S, Ueda S. The extent of linkage disequilibrium in four populations with distinct demographichistories. Am J Hum Genet,2000,67:1544
    54. Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S. Differential regulation oftranscript accumulation and alternative splicing of a DREB2homolog under abiotic stress conditionsin common wheat. Genes Genet Syst,2006,81:77-91
    55. Ellis M, Spielmeyer W, Gale K, Rebetzke G, Richards R."Perfect" markers for the Rht-B1b andRht-D1b dwarfing genes in wheat. Theor Appl Genet,2002,105:1038-1042
    56. Flint-Garcia SA, Thornsberry JM, Buckler ES. Structure of linkage disequilibrium in plants. AnnuRev Plant Biol,2003,54:357-374
    57. Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S,Goodman MM, Buckler ES. Maize association population: a high-resolution platform for quantitativetrait locus dissection. Plant J,2005,44:1054-1064
    58. Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB. fw2.2: aquantitative trait locus key to the evolution of tomato fruit size. Science,2000,289:85-88
    59. Frova C, Krajewski P, Di Fonzo N, Villa M, Sari-Gorla M. Genetic analysis of drought tolerance inmaize by molecular markers I. yield components. Theor Appl Genet,1999,99:280-288
    60. Fujioka S, Yamane H, Spray CR, Katsumi M, Phinney BO, Gaskin P, MacMillan J, Takahashi N. Thedominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins.Proc Natl Acad Sci USA,1988,85:9031-9035
    61. Gautami B, Pandey M, Vadez V, Nigam S, Ratnakumar P, Krishnamurthy L, Radhakrishnan T, GowdaMVC, Narasu M, Hoisington D. Quantitative trait locus analysis and construction of consensusgenetic map for drought tolerance traits based on three recombinant inbred line populations incultivated groundnut (Arachis hypogaea L.). Mol Breeding,2012,30:757-772
    62. Geber MA, Dawson TE. Genetic variation in and covariation between leaf gas exchange, morphology,and development in Polygonum arenastrum, an annual plant. Oecologia,1990,85:153-158
    63. Gimeno-Gilles C, Gervais ML, Planchet E, Satour P, Limami AM, Lelievre E. A stress-associatedprotein containing A20/AN1zing-finger domains expressed in Medicago truncatula seeds. PlantPhysiol Biochem,2011,49:303-310
    64. Giri J, Vij S, Dansana PK, Tyagi AK. Rice A20/AN1zinc-finger containing stress-associated proteins(SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20zinc-finger andconfer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol,2011,191:721-732
    65. Gu R, Zhao L, Zhang Y, Chen X, Bao J, Zhao J, Wang Z, Fu J, Liu T, Wang J. Isolation of a maizebeta-glucosidase gene promoter and characterization of its activity in transgenic tobacco. Plant CellRep,2006,25:1157-1165
    66. Gui C, Dean A. A major role for the TATA box in recruitment of chromatin modifying complexes to aglobin gene promoter. Proc Natl Acad Sci USA,2003,100:7009-7014
    67. Guo Z, Song Y, Zhou R, Ren Z, Jia J. Discovery, evaluation and distribution of haplotypes of thewheat Ppd-D1gene. New Phytol,2010,185:841-851
    68. Gupta PK, Rustgi S, Kulwal PL. Linkage disequilibrium and association studies in higher plants:present status and future prospects. Plant Mol Biol,2005,57:461-485
    69. Hansen M, Kraft T, Ganestam S, Torbjorn S, Nilsson NO. Linkage disequilibrium mapping of thebolting gene in sea beet using AFLP markers. Genet Res Camb,2001,77:61-66
    70. Hao C, Wang L, Zhang X, You G, Dong Y, Jia J, Liu X, Shang X, Liu S, Cao Y. Genetic diversity inChinese modern wheat varieties revealed by microsatellite markers. Science in China Series C,2006,49:218-226
    71. He Z, Rajaram S, Xin Z, Huang G (2001). A history of wheat breeding in China. CIMMYT. MexicoDF Mexico
    72. Hsieh T, Lee J, Charng Y, Chan M. Tomato plants ectopically expressing Arabidopsis CBF1showenhanced resistance to water deficit stress. Plant Physiol,2002,130:618-626
    73. Huang C, Hung C, Chiang Y, Hwang C, Hsu T, Huang C, Hung K, Tsai K, Wang K, Osada N.Footprints of natural and artificial selection for photoperiod pathway genes in Oryza. Plant J,2012,70:769-782
    74. Huang J, Teng L, Li L, Liu T, Li L, Chen D, Xu L, Zhai Z, Shu H. ZNF216is an A20-like andIkappaB kinase gamma-interacting inhibitor of NF-kappa B activation. J Biol Chem,2004,279:16847-16853
    75. Huang X, Cloutier S, Lycar L, Radovanovic N, Humphreys D, Noll J, Somers D, Brown P. Moleculardetection of QTLs for agronomic and quality traits in a doubled haploid population derived from twoCanadian wheats (Triticum aestivum L.). Theor Appl Genet,2006,113:753-766
    76. Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C. Genome-wideassociation study of flowering time and grain yield traits in a worldwide collection of rice germplasm.Nat Genet,2011:32-39
    77. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y,Yamaguchi-Shinozaki K, Shinozaki K. Regulation of drought tolerance by gene manipulation of9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J,2001,27:325-333
    78. Jackson RB, Sperry JS, Dawson TE. Root water uptake and transport: using physiological processesin global predictions. Trends Plant Sci,2000,5:482-488
    79. Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principlesof its regulation. Nat Rev Mol Cell Bio,2010,11:113-127
    80. Jager CE, Symons GM, Ross JJ, Reid JB. Do brassinosteroids mediate the water stress response?Physiol Plant,2008,133:417-425
    81. Jang IC, Choi WB, Lee KH, Song SI, Nahm BH, Kim JK. High level and ubiquitous expression of therice cytochromec gene OsCc1and its promoter activity in transgenic plants provides a useful promoterfor transgenesis of monocots. Plant Physiol,2002,129:1473-1481
    82. Jefferson RA. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep,1987,5:387-405
    83. Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X. Aegilops tauschiidraft genome sequence reveals a gene repertoire for wheat adaptation. Nature,2013,496:91-95
    84. Jiang Q, Hou J, Hao C, Wang L, Ge H, Dong Y, Zhang X. The wheat (T. aestivum) sucrose synthase2gene (TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genomics,2011,11:49-61
    85. Jin H, Martin C. Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol,1999,41:577-585
    86. Jin Y, Wang M, Fu J, Xuan N, Zhu Y, Lian Y, Jia Z, Zheng J, Wang G. Phylogenetic and expressionanalysis of ZnF-AN1genes in plants. Genomics,2007,90:265-275
    87. Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J, Di Genova G, Ueda H, Cordell HJ, EavesIA, Dudbridge F, Twells RC, Payne F, Hughes W, Nutland S, Stevens H, Carr P, Tuomilehto-Wolf E,Tuomilehto J, Gough SC, Clayton DG, Todd JA. Haplotype tagging for the identification of commondisease genes. Nat Genet,2001,29:233-237
    88. Jordá L, Vera P. Local and systemic induction of two defense-related subtilisin-like proteasepromoters in transgenic Arabidopsis plants. Luciferin induction of PR gene expression. Plant Physiol,2000,124:1049-1058
    89. Kültz D, Burg M. Evolution of osmotic stress signaling via MAP kinase cascades. J Exp Bot,1998,201:3015-3021
    90. Kang M, Fokar M, Abdelmageed H, Allen RD. Arabidopsis SAP5functions as a positive regulator ofstress responses and exhibits E3ubiquitin ligase activity. Plant Mol Biol,2011,75:451-466
    91. Kanneganti V, Gupta AK. Overexpression of OsiSAP8, a member of stress associated protein (SAP)gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice.Plant Mol Biol,2008,66:445-462
    92. Karakas B, Ozias-Akins P, Stushnoff C, Suefferheld M, Rieger M. Salinity and drought tolerance ofmannitol-accumulating transgenic tobacco. Plant Cell Environ,1997,20:609-616
    93. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt, andfreezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol,1999,17:287-291
    94. Kaul R. Effect of water stress on respiration of wheat. Canadian Journal of Botany,1966,44:623-632
    95. Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, TsuiLC. Identification of the cystic fibrosis gene: genetic analysis. Science,1989,245:1073-1080
    96. Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM, Ossowski S, Ecker JR, Weigel D, Nordborg M.Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat Genet,2007,39:1151-1155
    97. Kline KG, Sussman MR, Jones AM. Abscisic acid receptors. Plant Physiol,2010,154:479-482
    98. Knight H, Knight MR. Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci,2001,6:262-267
    99. Ko JH, Yang SH, Han KH. Upregulation of an Arabidopsis RING-H2gene, XERICO, confers droughttolerance through increased abscisic acid biosynthesis. Plant J,2006,47:343-355
    100. Kochetov AV, Ischenko IV, Vorobiev DG, Kel AE, Babenko VN, Kisselev LL, Kolchanov NA.Eukaryotic mRNAs encoding abundant and scarce proteins are statistically dissimilar in manystructural features. FEBS Lett,1998,440:351-355
    101. Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M. An SNP caused loss of seedshattering during rice domestication. Science,2006,312:1392-1396
    102. Krill AM, Kirst M, Kochian LV, Buckler ES, Hoekenga OA. Association and linkage analysis ofaluminum tolerance genes in maize. PLoS One,2010,5: e9958
    103. Labbé D, Teranishi MA, Hess A, Bloch W, Michel O. Activation of caspase-3is associated withoxidative stress in the hydropic guinea pig cochlea. Hearing Res,2005,202:21-27
    104. Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espino J, Spielmeyer W,Brown-Guedira G, Selter LL, Keller B. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38which confers resistance to multiple fungal pathogens. Theor Appl Genet,2009,119:889-898
    105. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA. MAPMAKER: aninteractive computer package for constructing primary genetic linkage maps of experimental andnatural populations. Genomics,1987,1:174-181
    106. Laurie CC, Chasalow SD, LeDeaux JR, McCarroll R, Bush D, Hauge B, Lai C, Clark D, RochefordTR, Dudley JW. The genetic architecture of response to long-term artificial selection for oilconcentration in the maize kernel. Genetics,2004,168:2141-2155
    107. Laursen NB, Larsen K, Knudsen JY, Hoffmann HJ, Poulsen C, Marcker KA, Jensen EO. A proteinbinding AT-rich sequence in the soybean leghemoglobin c3promoter is a general cis element thatrequires proximal DNA elements to stimulate transcription. Plant Cell,1994,6:659-668
    108. Lawlor D, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation towater deficits in higher plants. Plant Cell Environ,2002,25:275-294
    109. Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A. Failure to regulate TNF-inducedNF-kappa B and cell death responses in A20-deficient mice. Sci Signal,2000,289:2350
    110. Lee SC, Hwang BK. Identification and deletion analysis of the promoter of the pepper SAR8.2geneactivated by bacterial infection and abiotic stresses. Planta,2006,224:255-267
    111. Li C, Lv J, Zhao X, Ai C, Zhu X, Wang M, Zhao S, Xia G. TaCHP: a wheat zinc finger protein genedown-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance. PlantPhysiol,2010a,154:211-221
    112. Li Q, Li L, Yang X, Warburton ML, Bai G, Dai J, Li J, Yan J. Relationship, evolutionary fate andfunction of two maize co-orthologs of rice GW2associated with kernel size and weight. BMC PlantBiol,2010b,10:143
    113. Liao L, Ning G, Liu C, Zhang W, Bao M. The intron from the5′UTR of the FBP11gene in petuniadisplays promoter-and enhancer-like functions. Sci Hortic,2013,154:96-101
    114. Lilley CJ, Wang D, Atkinson HJ, Urwin PE. Effective delivery of a nematode-repellent peptide usinga root-cap-specific promoter. Plant Biotech J,2011,9:151-161
    115. Ling H, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y. Draft genome of thewheat A-genome progenitor Triticum urartu. Nature,2013,495:87-90
    116. Linnen JM, Bailey CP, Weeks DL. Two related localized mRNAs from Xenopus laevis encodeubiquitin-like fusion proteins. Gene,1993,128:181-188
    117. Liston DR, Johnson PJ. Analysis of a ubiquitous promoter element in a primitive eukaryote: earlyevolution of the initiator element. Mol Cell Biol,1999,19:2380-2388
    118. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Twotranscription factors, DREB1and DREB2, with an EREBP/AP2DNA binding domain separate twocellular signal transduction pathways in drought-and low-temperature-responsive gene expression,respectively, in Arabidopsis. Plant Cell,1998,10:1391-1406
    119. Liu Y, He Z, Appels R, Xia X. Functional markers in wheat: current status and future prospects. TheorAppl Genet,2012,125:1-10
    120. Liu Y, Xu Y, Xiao J, Ma Q, Li D, Xue Z, Chong K. OsDOG, a gibberellin-induced A20/AN1zinc-finger protein, negatively regulates gibberellin-mediated cell elongation in rice. J Plant Physiol,2011,168:1098-1105
    121. Lu J, Sivamani E, Azhakanandam K, Samadder P, Li X, Qu R. Gene expression enhancementmediated by the5'UTR intron of the rice rubi3gene varied remarkably among tissues in transgenicrice plants. Mol Genet Genomics,2008,279:563-572
    122. Lu Y, Xu J, Yuan Z, Hao Z, Xie C, Li X, Shah T, Lan H, Zhang S, Rong T. Comparative LD mappingusing single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits ofdrought tolerance in maize. Mol Breeding,2011,30:407-418
    123. Ma Z, Zhao D, Zhang C, Zhang Z, Xue S, Lin F, Kong Z, Tian D, Luo Q. Molecular genetic analysisof five spike-related traits in wheat using RIL and immortalized F2populations. Mol Genet Genomics,2007,277:31-42
    124. Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R. TaNAC2, a NAC-type wheat transcription factorconferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot,2012,63:2933-2946
    125. Martin RC, Glover-Cutter K, Baldwin JC, Dombrowski JE. Identification and characterization of asalt stress-inducible zinc finger protein from Festuca arundinacea. BMC Research Notes,2012,5:66
    126. Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, Fujita M, Yoshiwara K,Matsukura S, Morishita Y. Metabolic pathways involved in cold acclimation identified by integratedanalysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol,2009,150:1972-1980
    127. Metzker ML. Sequencing technologies-the next generation. Nat Rev Genet,2009,11:31-46
    128. Mitra J. Genetics and genetic improvement of drought resistance in crop plants. Curr Sci,2001,80:758-763
    129. Morgan JM. Osmoregulation and water stress in higher plants. Ann Rev Plant Physiol,1984,35:299-319
    130. Mukhopadhyay A, Vij S, Tyagi AK. Overexpression of a zinc-finger protein gene from rice conferstolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA,2004,101:6309-6314
    131. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES. Association mapping:critical considerations shift from genotyping to experimental design. Plant Cell,2009,21:2194-2202
    132. Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N, Monna L, Minobe Y. Search for andanalysis of single nucleotide polymorphisms (SNPs) in rice (Oryza sativa, Oryza rufipogon) andestablishment of SNP markers. DNA Res,2002,9:163-171
    133. Nei M, Miller JC. A simple method for estimating average number of nucleotide substitutions withinand between populations from restriction data. Genetics,1990,125:873-879
    134. Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN,Noyes T, Oefner PJ. The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet,2002,30:190-193
    135. Odell JT, Nagy F, Chua NH. Identification of DNA sequences required for activity of the cauliflowermosaic virus35S promoter. Nature,1985,313:810-812
    136. Opipari Jr A, Boguski M, Dixit V. The A20cDNA induced by tumor necrosis factor alpha encodes anovel type of zinc finger protein. J Biol Chem,1990,265:14705-14708
    137. Ouellet F, Vazquez-Tello A, Sarhan F. The wheat wcs120promoter is cold-inducible in bothmonocotyledonous and dicotyledonous species. FEBS Lett,1998,423:324-328
    138. Palusa SG, Ali GS, Reddy AS. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-richproteins: regulation by hormones and stresses. Plant J,2007,49:1091-1107
    139. Papageorgiou GC, Murata N. The unusually strong stabilizing effects of glycine betaine on thestructure and function of the oxygen-evolving photosystem II complex. Photosynthesis Res,1995,44:243-252
    140. Pe uelas J, Munné-Bosch S, Llusià J, Filella I. Leaf reflectance and photo-and antioxidant protectionin field-grown summer-stressed Phillyrea angustifolia. Optical signals of oxidative stress? NewPhytol,2004,162:115-124
    141. Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K,Hoisington D. Stress-induced expression in wheat of the Arabidopsis thalianaDREB1A gene delayswater stress symptoms under greenhouse conditions. Genome,2004,47:493-500
    142. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, WorlandAJ, Pelica F.‘Green revolution’genes encode mutant gibberellin response modulators. Nature,1999,400:256-261
    143. Pino MT, Skinner JS, Park EJ, Jekni Z, Hayes PM, Thomashow MF, Chen TH. Use of a stressinducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance whileminimizing negative effects on tuber yield. Plant Biotech J,2007,5:591-604
    144. Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H. Yeast HOG1MAP kinasecascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1"two-component" osmosensor. Cell,1996,86:865
    145. Pritchard JK, Rosenberg NA. Use of unlinked genetic markers to detect population stratification inassociation studies. Am J Hum Genet,1999,65:220-228
    146. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P. Association mapping in structured populations.Am J Hum Genet,2000,67:170-180
    147. Rafalski JA. Association genetics in crop improvement. Curr Opin Plant Biol,2010,13:174-180
    148. Ravel C, Praud S, Murigeux A, Canaguier A, Sapet F, Dufour P, Chalhoub B, Brunel D, Beckert M,Charmet G. Single-nucleotide polymorphism frequency in a set of selected lines of bread wheat(Triticum aestivum L.). Genome,2006,49:1131-1139
    149. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S,Goodman MM, Buckler ES. Structure of linkage disequilibrium and phenotypic associations in themaize genome. Proc Natl Acad Sci USA,2001,98:11479-11484
    150. Riedelsheimer C, Lisec J, Czedik-Eysenberg A, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M,Willmitzer L, Melchinger AE. Genome-wide association mapping of leaf metabolic profiles fordissecting complex traits in maize. Proc Natl Acad Sci USA,2012,109:8872-8877
    151. Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R. When defense pathways collide.The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol,2004,134:1683-1696
    152. Rouhier N, Santos CVD, Tarrago L, Rey P. Plant methionine sulfoxide reductase A and B multigenicfamilies. Photosynthesis Res,2006,89:247-262
    153. Rouster J, Leah R, Mundy J, Cameron-Mills V. Identification of a methyl jasmonate-responsive regionin the promoter of a lipoxygenase1gene expressed in barley grain. Plant J,1997,11:513-523
    154. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by thecoalescent and other methods. Bioinformatics,2003,19:2496-2497
    155. Rustgi S, Bandopadhyay R, Balyan HS, Gupta PK. EST-SNPs in bread wheat: discovery, validation,genotyping and haplotype structure. Czech J Genet Plant Breed,2009,45:106-116
    156. Ryan CA. The systemin signaling pathway: differential activation of plant defensive genes. BiochimBiophys Acta,2000,1477:112-121
    157. Sade N, Gebremedhin A, Moshelion M. Risk-taking plants: Anisohydric behavior as astress-resistance trait. Plant Signal Behav,2012,7:767-770
    158. Sakamoto A, Murata N. Genetic engineering of glycinebetaine synthesis in plants: current status andimplications for enhancement of stress tolerance. J Exp Bot,2000,51:81-88
    159. Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K.Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought,cold, and high-salinity stress conditions. Plant Physiol,2004,136:2734-2746
    160. Samuel D, Ganesh G, Yang PW, Chang MM, Wang SL, Hwang KC, Yu C, Jayaraman G, Kumar TKS,Trivedi VD. Proline inhibits aggregation during protein refolding. Protein Science,2000,9:344-352
    161. Santel A, Kaufmann J, Hyland R, Renkawitz-Pohl R. The initiator element of the Drosophila β2tubulin gene core promoter contributes to gene expression in vivo but is not required for malegerm-cell specific expression. Nucleic Acids Res,2000,28:1439-1446
    162. Savoure A, Jaoua S, Hua X, Ardiles W, Van Montagu M, Verbruggen N. Isolation, characterization,and chromosomal location of a gene encoding the delta1-pyrroline-5-carboxylate synthetase inArabidopsis thaliana. FEBS Lett,1995,372:7
    163. Schledzewski K, Mendel RR. Quantitative transient gene expression: Comparison of the promotersfor maize polyubiquitin1, rice actin1, maize-derived Emu and CaMV35S in cells of barley, maize andtobacco. Transgenic Res,1994,3:249-255
    164. Scippa GS, Di Michele M, Onelli E, Patrignani G, Chiatante D, Bray EA. The histone-like proteinH1-S and the response of tomato leaves to water deficit. J Exp Bot,2004,55:99-109
    165. Shao H, Chu L, Lu Z, Kang C. Primary antioxidant free radical scavenging and redox signalingpathways in higher plant cells. Int J Biol Sci,2008,4:8-14
    166. Sharp R. Interaction with ethylene: changing views on the role of abscisic acid in root and shootgrowth responses to water stress. Plant Cell Environ,2002,25:211-222
    167. Shen B, Jensen RG, Bohnert HJ. Mannitol protects against oxidation by hydroxyl radicals. PlantPhysiol,1997,115:527-532
    168. Sherrard ME, Maherali H, Latta RG. Water stress alters the genetic architecture of functional traitsassociated with drought adaptation in Avena barbata. Evolution,2008,63:702-715
    169. Smale ST, Baltimore D. The" initiator" as a transcription control element. Cell,1989,57:103-113
    170. Somers DJ, Kirkpatrick R, Moniwa M, Walsh A. Mining single-nucleotide polymorphisms fromhexaploid wheat ESTs. Genome,2003,46:431-437
    171. Solanke AU, Sharma MK, Tyagi AK, Sharma AK. Characterization and phylogenetic analysis ofenvironmental stress-responsive SAP gene family encoding A20/AN1zinc finger proteins in tomato.Mol Genet Genomics,2009,282:153-164
    172. Sreedharan S, Shekhawat UK, Ganapathi TR. MusaSAP1, a A20/AN1zinc finger gene from bananafunctions as a positive regulator in different stress responses. Plant Mol Biol,2012,80:503-517
    173. Sridha S, Wu K. Identification of AtHD2C as a novel regulator of abscisic acid responses inArabidopsis. Plant J,2006,46:124-133
    174. Stroher E, Wang XJ, Roloff N, Klein P, Husemann A, Dietz KJ.2009. Redox-dependentregulation ofthe stress-induced zinc-finger protein SAP12in Arabidopsisthaliana. Mol Plant2:357–67
    175. Su Z, Hao C, Wang L, Dong Y, Zhang X. Identification and development of a functional marker ofTaGW2associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet,2011,122:211-223
    176. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.Genetics,1989,123:585-595
    177. Tan MP. Analysis of DNA methylation of maize in response to osmotic and salt stress based onmethylation-sensitive amplified polymorphism. Plant Physiol Biochem,2010,48:21-26
    178. Tena G, Asai T, Chiu WL, Sheen J. Plant mitogen-activated protein kinase signaling cascades. CurrOpin Plant Biol,2001,4:392-400
    179. Thameur A, Ferchichi A, López-Carbonell M. Quantification of free and conjugated abscisic acid infive genotypes of barley (Hordeum vulgare L.) under water stress conditions. South African Journal ofBotany,2011,77:222-228
    180. Thilmony R, Guttman M, Thomson JG, Blechl AE. The LP2leucine-rich repeat receptor kinase genepromoter directs organ-specific, light-responsive expression in transgenic rice. Plant Biotech J,2009,7:867-882
    181. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler EST. Dwarf8polymorphisms associate with variation in flowering time. Nat Genet,2001,28:286-289
    182. Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, ShinozakiK, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NACtranscription factors that bind to a drought-responsive cis-element in the early responsive todehydration stress1promoter. Plant Cell,2004,16:2481-2498
    183. Tuteja N, Sopory SK. Chemical signaling under abiotic stress environment in plants. Plant SignalBehav,2008,3:525-536
    184. Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K. Atransmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell,1999,11:1743-1754
    185. Verdaguer B, de Kochko A, Fux CI, Beachy RN, Fauquet C. Functional organization of the cassavavein mosaic virus (CsVMV) promoter. Plant Mol Biol,1998,37:1055-1067
    186. Verdonk JC, Shibuya K, Loucas HM, Colquhoun TA, Underwood BA, Clark DG. Flower-specificexpression of the Agrobacterium tumefaciensisopentenyltransferase gene results in radial expansionof floral organs in Petunia hybrida. Plant Biotech J,2008,6:694-701
    187. Vij S, Tyagi AK. Genome-wide analysis of the stress associated protein (SAP) gene family containingA20/AN1zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis. Mol GenetGenomics,2006,276:565-575
    188. Visscher PM. Sizing up human height variation. Nat Genet,2008,40:489-490
    189. Walker JC, Howard EA, Dennis ES, Peacock WJ. DNA sequences required for anaerobic expressionof the maize alcohol dehydrogenase1gene. Proc Natl Acad Sci USA,1987,84:6624-6628
    190. Wang J, He X, He Z, Wang H, Xia X. Cloning and phylogenetic analysis of phytoene synthase1(Psy1)genes in common wheat and related species. Hereditas,2009,146:208-256
    191. Wang J, Jiang J, Oard JH. Structure, expression and promoter activity of two polyubiquitin genes fromrice (Oryza sativa L.). Plant Sci,2000,156:201-211
    192. Wang L, Li L, Xu L, Zhou J, Zhuang H, Gong X, Wang M, Sun S, Zhuge Q. Isolation and functionalanalysis of the poplar RbcS gene promoter. Plant Mol Biol Rep,2013,31:120-127
    193. Wang WYS, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: theoretical andpractical concerns. Nat Rev Genet,2005,6:109-118
    194. Wang Y, Li H, Zhang L, Lü W, Wang J. On the use of mathematically-derived traits in QTL mapping.Mol Breeding,2012,29:661-673
    195. Wei B, Jing R, Wang C, Chen J, Mao X, Chang X, Jia J. DREB1genes in wheat (Triticum aestivumL.): development of functional markers and gene mapping based on SNPs. Mol Breeding,2009,23:13-22
    196. Wei T, Chang X, Min D, Jing R. Analysis of genetic diversity and trapping elite alleles for plant heightin drought-tolerant wheat cultivars. Acta Agronomica Sinica,2010,36:895-904
    197. Werner T, Nehnevajova E, K llmer I, Novák O, Strnad M, Kr mer U, Schmülling T. Root-specificreduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment inArabidopsis and tobacco. Plant Cell,2010,22:3905-3920
    198. Winfield MO, Wilkinson PA, Allen AM, Barker GLA, Coghill JA, Burridge A, Hall A, Brenchley RC,D’Amore R, Hall N. Targeted re-sequencing of the allohexaploid wheat exome. Plant Biotech J,2012,10:733-742
    199. Winicov I, Valliyodan B, Xue L, Hoober JK. The MsPRP2promoter enables strong heterologous geneexpression in a root-specific manner and is enhanced by overexpression of Alfin1. Planta,2004,219:925-935
    200. Wu X, Chang X, Jing R. Genetic insight into yield-associated traits of wheat grown in multiplerain-fed environments. PLoS One,2012,7: e31249
    201. Xie Z, Jiang D, Cao W, Dai T, Jing Q. Relationships of endogenous plant hormones to accumulationof grain protein and starch in winter wheat under different post-anthesis soil water statusses. PlantGrowth Regul,2003,41:117-127
    202. Xu D, McElroy D, Thornburg RW, Wu R. Systemic induction of a potato pin2promoter by wounding,methyl jasmonate, and abscisic acid in transgenic rice plants. Plant Mol Biol,1993,22:573-588
    203. Xu L, Ye R, Zheng Y, Wang Z, Zhou P, Lin Y, Li D. Isolation of the endosperm-specific LPAAT genepromoter from coconut (Cocos nucifera L.) and its functional analysis in transgenic rice plants. PlantCell Rep,2010,29:1061-1068
    204. Yamaguchi-Shinozaki K, Shinozaki K. Characterization of the expression of a desiccation-responsiverd29gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol GenetGenomics,1993,236:331-340
    205. Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic-andcold-stress-responsive promoters. Trends Plant Sci,2005,10:88-94
    206. Yan J, Kandianis CB, Harjes CE, Bai L, Kim EH, Yang X, Skinner DJ, Fu Z, Mitchell S, Li Q. Raregenetic variation at Zea mays crtRB1increases [beta]-carotene in maize grain. Nat Genet,2010,42:322-327
    207. Yan J, Warburton M, Crouch J. Association mapping for enhancing maize (Zea mays L.) geneticimprovement. Crop Sci,2011,51:433-449
    208. Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J. Allelic variation at the VRN-1promoter region in polyploid wheat. Theor Appl Genet,2004,109:1677-1686
    209. Yang S, Vanderbeld B, Wan J, Huang Y. Narrowing down the targets: towards successful geneticengineering of drought-tolerant crops. Mol Plant,2010a,3:469-490
    210. Yang X, Yan J, Shah T, Warburton ML, Li Q, Li L, Gao Y, Chai Y, Fu Z, Zhou Y. Genetic analysis andcharacterization of a new maize association mapping panel for quantitative trait loci dissection. TheorAppl Genet,2010b,121:417-431
    211. Yang Z, Lu Q, Wen X, Chen F, Lu C. Functional analysis of the rice rubisco activase promoter intransgenic Arabidopsis. Biochem Biophys Res Commun,2012,418:565-570
    212. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, UmeharaY, Nagamura Y. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely relatedto the Arabidopsis flowering time gene CONSTANS. Plant Cell,2000,12:2473-2483
    213. Yin Y, Beachy RN. The regulatory regions of the rice tungro bacilliform virus promoter andinteracting nuclear factors in rice (Oryza sativa L.). Plant J,1995,7:969-980
    214. Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K,Yamaguchi-Shinozaki K. AREB1, AREB2, and ABF3are master transcription factors thatcooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance andrequire ABA for full activation. Plant J,2010,61:672-685
    215. Yu J, Holland JB, McMullen MD, Buckler ES. Genetic design and statistical power of nestedassociation mapping in maize. Genetics,2008,178:539-551
    216. Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM,Holland JB. A unified mixed-model method for association mapping that accounts for multiple levelsof relatedness. Nat Genet,2005,38:203-208
    217. Zahur M, Maqbool A, Irfan M, Jamal A, Shahid N, Aftab B, Husnain T. Identification andcharacterization of a novel gene encoding myb-box binding zinc finger protein in Gossypiumarboreum. Biol Plantarum,2012:641-647
    218. Zarei A, Korbes AP, Younessi P, Montiel G, Champion A, Memelink J. Two GCC boxes andAP2/ERF-domain transcription factor ORA59in jasmonate/ethylene-mediated activation of thePDF1.2promoter in Arabidopsis. Plant Mol Biol,2011,75:321-331
    219. Zhang D, Hao C, Wang L, Zhang X. Identifying loci influencing grain number by microsatellitescreening in bread wheat (Triticum aestivum L.). Planta,2012a:1-11
    220. Zhang H, Mao X, Zhang J, Chang X, Jing R. Single nucleotide polymorphisms and associationanalysis of drought resistance gene TaSnRK2.8in common wheat. Plant Physiol Biochem,2013, doi:j.plaphy.2013.04.010
    221. Zhang J, Hao C, Ren Q, Chang X, Liu G, Jing R. Association mapping of dynamic developmentalplant height in common wheat. Planta,2011,234:891-902
    222. Zhang L, Zhao Y, Gao L, Zhao G, Zhou R, Zhang B, Jia J. TaCKX6-D1, the ortholog of rice OsCKX2,is associated with grain weight in hexaploid wheat. New Phytol,2012b,195:574-584
    223. Zhang S, Li C, Cao J, Zhang Y, Zhang S, Xia Y, Sun D, Sun Y. Altered architecture and enhanceddrought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13activation. Plant Physiol,2009,151:1889-1901
    224. Zhu C, Buckler M, Edward SY. Status and prospects of association mapping in plants. Plant Genome,2008,1:5-20
    225. Zondervan KT, Cardon LR. The complex interplay among factors that influence allelic association.Nat Rev Genet,2004,5:89-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700