DNA甲基转移酶(DNMTs)在小鼠胚胎着床中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     研究妊娠过程小鼠子宫内膜DNA甲基转移酶( DNA methyltransferases,DNMTs)DNMT1,DNMT3a和DNMT3b的表达规律以及它们对胚胎着床的影响,初步探讨DNMTs在胚胎着床中的调控作用。
     方法:
     1.建立昆明小鼠妊娠模型,随机收集妊娠第一天(Dl)至妊娠第七天(D7)子宫内膜组织,腊块包埋或于-80℃冻存备用。
     2.荧光定量PCR检测小鼠妊娠D1-D7子宫内膜DNMTs mRNA的表达,统计分析表达规律;
     3.免疫组织化学检测妊娠D1-D7的小鼠子宫内膜DNMTs蛋白表达水平,并分析其表达规律;
     4.随机选择妊娠D1小鼠,于腹腔注射200μl浓度为0 mg/kg,0.1mg/kg和0.5 mg/kg的DNMTs抑制剂5-aza-CdR,建立DNMTs表达抑制的药物诱导小鼠模型,用于检测DNMTs对胚胎着床影响的功能实验。
     5.荧光定量PCR检测不同浓度5-aza-CdR诱导组妊娠D3、D5小鼠子宫内膜的DNMTs mRNA的表达抑制情况。
     6.免疫组织化学检测不同浓度5-aza-CdR诱导对妊娠D3、D5小鼠子宫内膜的DNMTs蛋白的表达抑制情况;
     7.荧光定量PCR和免疫组织化学检测不同药物浓度对妊娠D5小鼠子宫内膜蜕膜化标志基因Hoxa10基因和蛋白表达情况。
     8.统计分析妊娠D5天,不同浓度药物诱导下胚胎植入数。
     结果:
     1. 2-△△T法分析荧光定量PCR结果显示:D1-D7各组小鼠子宫内膜均有DNMTs mRNA表达,其中DNMT1在胚胎着床窗口期前,妊娠小鼠子宫内膜的表达随着孕天增加而增高,至妊娠第3天(D3)达最高峰(P<0.05),随后逐渐降低,胚胎着床后(D6,D7)基本恢复至妊娠D1水平;DNMT3a在妊娠小鼠子宫内膜的表达与DNMT1的表达模式相似,即在胚胎着床窗口期前随着孕天增加而增高,妊娠第3天(D3)达最高峰(P<0.05),随后逐渐降低;DNMT3b与DNMT1和DNMT3a不同,妊娠D3达最高峰(P<0.05),但在着床窗口期后(D5,D6,D7),DNMT3b的表达显著低于妊娠第1天(P<0.01)。
     2.免疫组织化学结果显示:DNMTs蛋白在妊娠小鼠子宫内膜均有表达。DNMT1主要定位于腔上皮、腺上皮以及基质细胞的胞核,在胞浆弱表达; DNMT3a主要定位于腔上皮、腺上皮以及基质细胞的胞核;DNMT3b主要定位于腔上皮、腺上皮细胞紧密处以及基质细胞的胞浆和部分胞核中。DNMTs的蛋白表达规律基本与mRNA一致,即在妊娠D3表达最高,其后表达逐渐降低。
     3.0.1 mg/kg 5-aza-CdR诱导妊娠小鼠2天(D3)、4天(D5)后,子宫内膜DNMT1、DNMT3a、DNMT3b mRNA水平均低于正常组,但差异不显著(P>0.05);0.5mg/kg 5-aza-CdR诱导妊娠小鼠2天(D3)、4天(D5)后,子宫内膜DNMT1、DNMT3a mRNA水平均低于正常组,差异显著(P<0.05);妊娠D3子宫内膜DNMT3b mRNA水平与正常组相比,无显著差异(P>0.05),妊娠D5子宫内膜DNMT3b mRNA水平显著降低(P<0.05);0.5 mg/kg 5-aza-CdR诱导组妊娠D3、D5小鼠子宫内膜DNMT1、DNMT3a和DNMT3b mRNA水平均显著低于0.1 mg/kg 5-aza-CdR诱导组(P<0.05)。
     4. 5-aza-CdR诱导后,子宫内膜DNMT1主要定位于腔上皮、腺上皮细胞胞浆以及基质细胞的胞核中;DNMT3a主要定位于腔上皮、腺上皮以及基质细胞的胞核中;DNMT3b主要定位于腔上皮、腺上皮细胞的胞浆中。DNMTs的蛋白表达抑制程度与mRNA的表达抑制具有较高的一致性。
     5. 0.1 mg/kg 5-aza-CdR诱导组小鼠子宫内膜HOXA10 mRNA、蛋白水平均高于正常组,但差异无显著性(P>0.05);0.5 mg/kg 5-aza-CdR诱导组小鼠子宫内膜HOXA10 mRNA、蛋白水平低于正常组,差异显著(P<0.05)。
     6.0.1 mg/kg 5-aza-CdR诱导组孕鼠,可见明显胚胎着床点,且着床点数量与药物空白对照组无显著差异(P>0.05);0.5 mg/kg 5-aza-CdR处理孕鼠后,妊娠D5子宫未见任何着床点,药物诱导组与空白对照组之间差异极为显著(P<0.01)。
     结论:
     1.DNMTs在妊娠早期子宫内膜组织均有表达;在植入窗口期前高表达,窗口期及着床后表达降低,以及在小鼠子宫内膜的分布变化提示DNMTs可能与胚胎着床相关;
     2. DNMTs可能通过自身的降低来调节子宫内膜容受性相关的基因表达,从而促进细胞黏附分子、糖蛋白类和细胞因子的表达或分泌,使子宫内膜容受性达最佳状态,以利于胚胎的植入。
Objective:
     To investigate the molecular mechanism of DNMTs during the blastocyst implantation, mRNA and protein expression of DNMTs were detected in early pregnancy mouse endometrium in this research.
     Methods:
     1. Establishment of mouse model of pregnancy. Pregnant Dl to D7 mice were randomly selected.The endometria of pregnant mice were collected and stored at -80℃immediately or embedded by paraffin.
     2. FQ-PCR was used to detect the mRNA level of DNMTs in the endometria of pregnant mice.
     3.Immunohistochemistry was used to analyze the expression of DNMTs protein in the endometria of early pregnant mice.
     4. Establishment of the induction mouse model by 5-aza-CdR, the pregnant mice on D1 was randomly chosed to inject i.p. (200μl per injection) with the of DNMTs inhibitor, 5-aza-CdR with the concentration of 0, 0.1, or 0.5 mg/kg).
     5. The mRNA level of DNMTs in the endometria of normal mice and the treated mice by 5-aza-CdR on pregnant D3 and D5 were detected by FQ-PCR.
     6.Immunohistochemistry was used to analyze the protein expression of DNMTs and Hoxa10 in the endometria of normol and the inducted mice with the treatment of 5-aza-CdR on the pregnant D3 and D5.
     7. FQ-PCR and Immunohistochemistry were used to analyze the mRNA level and protein expression of Hoxa10 in the endometria of normol and the inducted mice on the pregnant D5.
     8.The number of implantated blastocysts was evaluated by the way of Trypan blue injection through tail vein on pregnant D5.
     Result:
     1. The FQ-PCR data showed that the mRNA levels of DNMT1 in endometria of pregnant mice was gradually elevated,and reached the maximum level on pregnant D3 (P<0.05), then gradually declined to the level of D1 from D4 to D7; The mRNA expression of DNMT3a in endometria of pregnant mice resembling to the DNMT1, gradually increased,and reached a maximum level on D3 (P<0.05), then gradually declined from D4 to D7 in the same. The DNMT3b expression in mRNA gradually increased, and reached a maximum level on D3 ,then remarkably declined from D5 to D7(P<0.01) in the endometria of pregnant mice.
     2. Immunohistochemistry staining showed that DNMT1 protein was strong stained in the nucleus of luminal epithelia, gland epithelia and stromal cells, weak stained in the cytoplasm; DNMT3a protein was located in the nucleus of luminal epithelia, gland epithelia and stromal cells; DNMT3b protein was mainly located in the cytoplasm of luminal epithelia, gland epithelia and stromal cells, and less in nucleus. The expression patern in protein level in the endometria of pregnant mice was in concordance with mRNA level of of DNMTs, thus the expression of DNMTs protein was increased,and gradually declined when it reached a maximum level on D3 (P<0.05).
     3. The mRNA levels of DNMTs were down-regulated without significance in endometria of the mice treated for two days (pregnant D3) or four days (pregnant D5) by 5-aza-CdR at concentration of 0.1 mg/kg, comparing with the control group (P>0.05). The expression of DNMT3b in mRNA level of the mice endometria was down-regulated without significance (P>0.05) when treated for two days while with significance (P<0.05)when treated for four days by 5-aza-CdR at concentration of 0.1 mg/kg. The expression of DNMT1, DNMT3a and DNMT3b in mRNA level in the endometria were remarkably down-regulated with significance after two or four days’treatment with 5-aza-CdR at concentration of 0.5 mg/kg, when compared with the control ones.
     4. After treated with 5-aza-CdR, immunohitochemistry staing showed that DNMT1 was mainly located in the cytoplasm of luminal epithelia, gland epithelia and stromal cells, DNMT3a was located at the nucleus of luminal epithelia, gland epithelia and stromal cells and DNMT3b was located at cytoplasm of luminal epithelia, gland epithelia and stromal cells. The protein level of DNMTs almost the same as the they were in mRNA level.
     5. No significant difference was observed in the number of implantation sites in the group treated by 5-aza-CdR at concentration of 0.1 mg/kg, when compared with control. No implantation site was observed in the mice when treated by 5-aza-CdR at level of 0.5 mg/kg. The uteri were smaller on the pregnant D5 in the mice treated by 0.5 mg/kg 5-aza-CdR treated mice than the control. No significant difference in size was found between the embryos from 0.1 mg/kg 5-aza-CdR treatment mice and the control.
     6. The expression of Hoxa10 mRNA and protein were higher than the control group after the four days’treatment of 0.1 mg/kg 5-aza-CdR but had no significant difference(P>0.05). When treated by 0.5 mg/kg 5-aza-CdR, the mRNA and protein level of Hoxa10 in endometria were significant lower than those in the control(P<0.05) .
     Conclusion:
     1. mRNA and protein expression of DNMTs in the endometria of pregnant mice were distributed regularly indicated that DNMTs might participated in the implantation process.
     2. DNMTs might promote expression of some cellular adhesion molecule, glycoproteins, cytokine, making the best reception of endometrium via decreasing methylation of those genes related to reception.
引文
[1] Robert A, Jacob Folate. DNA methylation and gene expression: factors of nature and nurture[J]. Am J Clin Nutr.2000; 72(4): 903-904.
    [2] Elsie Wainfan, Lionel A, Poirier. Methyl Groups in Carcinogenesis: Effects on DNA Methylation and Gene Expression[J]. Cancer Research.1992, 52: 2071-2077.
    [3] Cameron EE, Bachman KE, Myohanen S, et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer[J]. Nat Genet. 1999, 21(1): 103-107.
    [4] Russo V, Martienssen R, Riggs A. Epigenetic mechanisms of gene regulation[J].New York: Cold Spring Harbor Laboratory Press, 1996. 267:1938–9
    [5] Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals[J]. Nat Genet 2003,33:245–254
    [6] Reik, W, Dean, W. DNA methylation and mammalian epigenetics[J]. Electrophoresis 2001, 22(14):2838-43.
    [7] Jost J P, Oakeley E J, Zhu B, et al. 5-Methylcytosine DNA glycosylase participates in the genome-wide loss of DNA methylation occurring during mouse myoblast differentiation[J]. Nucleic Acids Res. 2001,29:4452–61.
    [8] Kaneda M, Okano M, Hata K ,et al. Essential role for de novo DNA methyltransferase DNMT3a in paternal and maternal imprinting[J]. Nature 2004,429:900–903.
    [9] Li E. Chromatin modification and epigenetic reprogramming in mammalian development[J]. Nat Rev Genet 2002, 3: 662–673.
    [10] Reik W, Dean W, Walter J. Epigenetic reprogra-mming in mammalian development[J]. Science, 2001, 293:1089–93.
    [11] Okano M., Bell, D.W., Haber, D.A., et al. DNA methyltransferases DNMT3a and DNMT3b are essential for de novo methylation and mammalian development[J]. Cell, 1999, 99: 247–57.
    [12] Baylin, S.B. Tying it all together: epigenetics, genetics, cell cycle and cancer[J]. Science, 1997,277:1948–9.
    [13] Smith S S, Kaplan B E, Sowers L C ,et al. Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation[J]. Proc.NatlAcad.Sci. 1992,89:4744-4748.
    [14] Yen R W. Yen RW, Vertino PM, et al. Iaolation and chaaracterrization of the cDNA encoding hunman DNA methyltransferase[J]. Nucleic Acids Res. 1992, 20:2287-2291.
    [15] Kumar S, Cheng X D, Klimasauskas S, et al. The DNA(cytosine-5) methyltransferases[J]. Nucleic Acids Res. 1994,22:1-10
    [16] Pradhan S, Bacolla A, Wells RD et al. Recombinant human DNA (cytosine-5) methyltransferase. II. Steady-state kinetics reveal allosteric activation by methylated dna[J]. J.Biol. Chem. 1999, 274:33002–33010.
    [17] Leonhardt H, Page AW, Weier HU,et al. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei[J]. Cell. 1992, 71:865–873.
    [18] Okano M, Bell DW, Haber DA ,et al. DNA methyltransferases DNMT3a and DNMT3b are essential for de novo methylation and mammalian development[J]. Cell. 1999, 99(3): 247–257.
    [19] Kim GD, Ni J, Kelesoglu N,et al. Cooperation and communication between the human maintenance and de novo DNA (cytosine-5) methyl-transferases[J]. EMBOJ 2002,21:4183–95.
    [20] Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases[J]. Nat Genet 1998,19:219–20。
    [21] Jair KW, Bachman KE, Suzuki H, et al. De novo CpG island methylation in human cancer cells[J]. Cancer Res 2006, 66: 682–692.
    [22] Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells[J]. Nature 2002, 416: 552–556.
    [23] Foltz G, Yoon JG, Lee H, et al. DNA methyltransferase-mediated transcriptional silencing in malignant glioma: a combined whole-genome microarray and promoter array analysis[J]. Oncogene 2009, 28: 2667–2677.
    [24] Robertson KD, Uzvolgyi E, Liang GN, et al. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors[J]. Nucleic Acids Res .1999, 27: 2291–2298.
    [25] Etoh T, Kanai Y, Ushijima S, et al. Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers[J]. AmJ Pathol 2004, 164: 689–699
    [26] Xie SP, Wang ZJ, Okano M, et al. Cloning, expression and chromosome locations of the human DNMT3 gene family[J]. Gene 1999, 236: 87–95.
    [27] Dong AP, Yoder JA, Zhang X, et al.Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA[J]. Nucleic Acids Res 2001, 29: 439–448.
    [28] Da Jia, Renata Z. Jurkowska, et al .Structure of DNMT3a bound to DNMT3L suggests a model for de novo DNA methylation [J] Nature. 2007, 449(7159): 248–251
    [29] Isao Suetake, Fuminori Shinozaki, Junichi Miyagawa.DNMT3L Stimulates the DNA Methylation Activity of DNMT3a and DNMT3b through a Direct Interaction[J]. Biol Chem. 2004 ,279(26):27816-23.
    [30] Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer[J]. Nat Rev Genet 2002, 3: 415–28.
    [31] Haaf T. The effects of 5-azacytidine and 5-azadeoxycytidine on chromosome structure and function: implications for methylation-associated cellular processes[J]. Pharmacol Ther 1995,65:19-46,
    [32] Branch S, Francis B M, Brownie C F, et al. Teratogenic effects of the demethylating agent 5-AZA-2’-deoxycytidine in the Swiss Webster mouse[J]. Toxicology 1996, 112: 37–43.
    [33] BranchS, Chernoff N, Brownie C, et al. 5-AZA-2’-deoxycytidine-induced dysmorphogenesis in the rat[J]. Teratog. Carcinog. Mutagen 1999,19: 329–38.
    [34] Rosen MB, Chernoff N.5-Aza-2’-Deoxycytidine-Induced Cytotoxicity and Limb Reduction Defects in the Mouse[J]. Teratology. 2002, 65:180–190.
    [35] X. Ding, Y. Wang, D. Zhang, et al. Increased pre-implantation development of cloned bovine embryos treated with 5-aza-20-deoxycytidine and trichostatin A[J]. Theriogenology. 2008,70: 622–630
    [36] Jian-Ning Yu, Chun-Yang Xue, Xu-Guang Wang et al. 5-AZA-2’-deoxycytidine (5-AZA-CdR) leads to down-regulation of DNMT1o and gene expression in preimplantation mouse embryos[J]. Zygote.2009, 17(2):137-45.
    [37] Horsthemke B, Ludwig M. Assisted reproduction: the epigenetic perspective[J]. Hum Reprod Update 2005, 11:473–482.
    [38] Liu Y, Okakeley EJ, Sun L, et al. Multiple domains are involved in the targeting ofthe mouse DNA methyltransferase to the DNA replication foci[J]. Nucleic Acids Res 1998, 26:1038–1045.
    [39] Li, E., Bestor, T. H., and Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality[J]. Cell. 1992 , 69(6):915–926
    [40] Li, E., Beard, C., and Jaenisch, R. Role for DNA methylation in genomic imprinting[J]. Nature .1993,366(6453):362–365
    [41] Caspary, T., Cleary, M. A., Baker, C. C., et al. Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 gene cluster[J]. Mol. Cell. Biol. 1998,18(6):3466–3474.
    [42] Branco MR, Oda M and Reik W. Safeguarding parental identity: DNMT1 maintains imprints during epigenetic reprogramming in early embryogenesis[J]. Genes Dev .2008, 22: 1567–1571.
    [43] Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells[J]. Nature 2002,416 (6880):552-6.,
    [44] Ghabreau L, Roux JP, Niveleau A, et al. Correlation between theDNA global methylation status and progesterone receptor expression in normal endometrium, endometrioid adenocarcinoma and precursors[J]. Virchows Archiv 2004, 445:129–134.
    [45] Vincent ZL, Farquhar CM, Mitchell MD ,et al. Expression and regulation of DNA methyltransferases in human endometrium[J]. Fertil Steril 2010 (in press)
    [46] Yamagata Y, Asada H, Tamura I, et al. DNA methyltransferase expression in the human endometrium: down-regulation by progesterone and estrogen[J]. Hum Reprod 2009,24:1126–1132
    [47] Popovici RM, Kao LC, Giudice LC. Discovery of new inducible genes in in vitro decidualized human endometrial stromal cells using microarray technology[J]. Endocrinology 2000,141:3510–3513.
    [48] Kao LC, Tulac S, Lobo S, et al. Global gene profiling in human endometrium during the window of implantation[J]. Endocrinology 2002,143:2119–2138;
    [49] Riesewijk A, Martin J, Os RV, et al. Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology[J]. Mol Hum Reprod 2003,9:253–264.
    [50] Ace CI, Okulicz WC. Microarray profiling of progesterone-regulated endometrialgenes during the rhesus monkey secretory phase[J]. Reprod Biol Endocrinol 2004,2:54.
    [51] Mirkin S, Arslan M, Churikov D,et al. In search of candidate genes critically expressed in the human endometrium during the window of implantation[J]. Hum Reprod 2005,20:2104–2117).
    [52] Rahnama F, Shafiei F, Gluckman PD, et al. Epigenetic regulation of human trophoblastic cell migration and invasion[J]. Endocrinology 2006, 147:5275–5283.
    [53] Rahnama F, Thompson B, Steiner M, et al. Epigenetic regulation of E-cadherin controls endometrial receptivity[J]. Endocrinology 2009,150:1466–1472
    [54] Niklaus AL,Murphy CR,Lopata A ,et a1.Characteristics of the uterine luminal surface epithelium at preovulatory and preimplantation stages in themarmoset monkey[J]. at Rec. 2001, 264: 82-92.
    [55] Carson D D,Bagchi I,Dey S K,et a1.Embryo implantation[J].Dev Biol.2000,223(2):217-237.
    [56] Chen,R.Z. Pettersson U, Beard C et al. DNA hypomethylation leads to elevated mutation rates[J]. Nature.1998,395(6697):89–93.
    [57] Howard, G., Eiges R, Gaudet F et al. Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice[J]. Oncogene. 2008 ,27(3):404–408
    [58] Philip C. Logan1, Anna P. et a1 .The effect of DNA methylation inhibitor 5-Aza-2’-deoxycytidine on human endometrial stromal cells[J]. Mitchell Human Reproduction .2010 ,25(11):2859–2869.
    [59] Wu Y, Strawn E, Basir Z, et al. Aberrant expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, and DNMT3B in women with endometriosis[J]. Fertil Steril .2007,87:24–32
    [60] I. Satokata, G. Benson, R. Maas. Sexually dimorphic sterility phenotypes in Hoxa10-deficient mice[J], Nature. 1995,374:460–463.
    [61] G.V. Benson, H. Lim, B.C. Paria, et al. Mechanisms of reduced fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression[J]. Development.1996, 122 :2687–2696.
    [62] C.N. Bagot, H.J. Kliman, H.S. Tyalor, Maternal Hoxa10 is required for pinopod formation in the development of mouse uterine receptivity to embryoimplantation[J].Dev. Dyn. 2001,222:538–544.
    [63] H. Lim, L. Ma, W.G. Ma, et al. Hoxa-10 regulates uterine stromal cell responsiveness to progesterone during implantation and decidualization in the mouse[J]. Mol. Endocrinol. 1999, 13:1005–1017.
    [64] Ziemin-van der Poel, S., McCabe, N.R., Gill, et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias[J]. Proc Natl Acad Sci. 1991,88(23):10735-9
    [65] Tkachuk DC, Kohler S, Cleary ML.Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias[J]. Cell.1992,71(4), 691-700).
    [66] Milne TA, Briggs SD, Brock HW, et al. MLL targets SET domain methyltransferase activity to Hox gene promoters[J]. Mol Cell. 2002,10:1107-1117.
    [1] Esteller M. DNA methylation and cancer therapy: new developments and expectations [J]. Curr Opin Oncol, 2005, 17(1):55-60.
    [2] Das PM, Singal R. DNA methylation and cancer[J]. J Clin Oncol, 2004, 22(22): 4632-42.
    [3] Davis CD, Uthus EO. DNA methylation, cancer susceptibility,and nutrient interactions[J]. Exp Biol Med(Maywood), 2004, 229(10): 988-95.
    [4] BrownR, Strathdee G.. Epigenomics and epigenetic therapy of cancer[J]. Trends Mol Med, 2002, 8(4): S43-8.
    [5] Esteller M. Epigenetics in cancer [J]. N Engl J Med, 2008, 358(11): 1148-59.
    [6] Jones PA and Takai D. The role of DNA methylation in mammalian epigenetics[J]. Science 2001, 293(5532): 1068–1070.
    [7] Li, E. Chromatin modification and epigenetic reprogramming in mammalian development [J]. Nat. Rev. Genet. 2002, 3 (9) 662-673.
    [8] Hermann A, Gowher H and Jeltch A. Biochemistry and biology of mammalian DNA methyltransferases[J]. Cell. Mol. Life Sci. 200461 (19-20) 2571-2587.
    [9] Bird, A. DNA methylation patterns and epigenetic memory [J]. Genes Dev. 2002 16 (1) 6-21
    [10] Robertson KD. DNA methylation and chromatin-unraveling the tangled web [J]. Oncogene 2002, 21: 5361–5379.
    [11] Spada F, Haemmer A, Kuch D, Rothbauer U, Schermelleh L, Kremmer E and Carell T, et al. DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells [J]. J Cell Biol 2007, 176: 565–571.
    [12] Cirio MC, Ratnam S, Ding F, Reinhart B, Navara C and Chaillet JR. Preimplantation expression of the somatic form of DNMT1 suggests a role in the inheritance of genomic imprints [J]. Bmc Dev Biol 2008, 8: 1–14.
    [13] Kurihara Y, Kawamura Y, Uchijima Y,et al. Maintenance of genomic methylation patterns during preimplantation development requires the somatic form of DNA methyltransferase[J]. Dev Biol 2008, 313(1): 335–346.
    [14] Branco MR, Oda M and Reik W. Safeguarding parental identity: DNMT1 maintains imprints during epigenetic reprogramming in early embryogenesis [J]. Genes Dev 2008, 22: 1567–1571.
    [15] Taylor J, Moore H, Beaujean N, et al. Cloning and expression of sheep DNA methyltransferase 1 and its development-specific isoform[J]. Mol Reprod Dev 2009, 76: 501–513.
    [16] Hsu DW, Lin MJ, Lee TL, et al. Two major forms of DNA (cytosine-5) methyltransferase in human somatic tissues[J].Proc Natl Acad Sci USA. 1999, 96: 9751–9756.
    [17] Bonfils C, Beaulieu N, Chan E, et al. Characterization of the human DNA methyltransferase splice variant DNMT1b[J]. J Biol Chem 2000, 275: 10754–10760.
    [18] Xie SP, Wang ZJ, Okano M, et al. Cloning, expression and chromosome locations of the human DNMT3 gene family[J]. Gene 1999, 236: 87–95.
    [19] Dong AP, Yoder JA, Zhang X, et al .Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA[J]. Nucleic Acids Res 2001, 29: 439–448.
    [20] Hermann A, Schmitt S, Jeltsch A. The human DNMT2 has residual DNA-(cytosine-C5) methyltransferase activity [J]. Biol Chem.2003, 278 (34): 31717–31721.
    [21] Liu K, Wang YF, Cantemir C, et al. Endogenous assays of DNA methyltransferases: evidence for differential activities of DNMT1, DNMT2, and DNMT3 in mammalian cells in vivo [J]. Mol Cell Biol. 2003, 23: 2709–2719.
    [22] Jurkowski TP, Meusburger M, Phalke S, et al. Human DNMT2 methylates tRNA(Asp) molecules using a DNA methyltransferase-like catalytic mechanism[J]. RNA .2008, 14(8): 1663–1670.
    [23] Golding MC and Westhusin ME. Analysis of DNA (cytosine 5)methyltransferase mRNA sequence and expression in bovine preimplantation embryos, fetal and adult tissues[J]. Gene Expr Patterns. 2003, 3(5):551–558.
    [24] Okano M, Xie SP and Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases[J]. Nat Genet. 1998,19: 219–220.
    [25] Chen TP, Ueda Y, Dodge JE, et al. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by DNMT3a and DNMT3b[J]. Mol Cell Biol .2003, 23:5594–5605.
    [26] K. Hata, M. Okano, H. Lei, et al. DNMT3L cooperates with the DNMT3 family of de novo DNA methyltransferases to establish maternal imprints in mice[J]. Development .2002, 129( 8):1983–1993.
    [27] M. Kaneda, M. Okano, K. Hata, et al. Essential role for de novo DNA methyltransferase DNMT3a in paternal and maternal imprinting [J]. Nature. 2004, 429(6994): 900–903.
    [28] Gowher H, Liebert K, Hermann A, et al. Mechanism of stimulation of catalytic activity of DNMT3A and DNMT3B DNA(cytosine-C5)methyltransferases by DNMT3L[J]. Biol. Chem. 280 (2005) 13341-13348.
    [29] Ramsahoye B H, Biniszkiewicz D, Lyko F, et al. Non-CpG methylation is prevalent in embryoinic stem cells and may be mediated by DNA methyltransferase 3a[J]. Proc Natl Acad Sci. USA. 97 (2000) 5237-5242.
    [30] Margot J B, Ehrenhofer-Murray A E, and Leonhardt H. Interactions within the mammalian DNA methyltransferase family [J]. Mol. Biol. 4 (2003) 7.
    [31] Deplus R, Brenner C, Burgers W A, et al. DNMT3L is a transcriptional repressor that recruits histone deacetylase[J]. Nucleic Acids Res. 30 (2002) 3831-3838
    [32] Bourc'his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking DNMT3L [J]. Nature. 2004, 431(7004):96-9.
    [33] Bourc'his D, Xu GL, Lin CS, Bollman B, et al. DNMT3L and the Establishment of Maternal Genomic Imprints [J]. Science. 2001, 294 (5551):2536-9.
    [34] Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development [J]. Sciences (New York, NY) 2001; 293: 1089–93.
    [35] Tang WY, Ho SM. Epigenetic reprogramming and imprinting in origins of disease [J]. Rev Endocr Metab Disord. 2007; 8: 173–82.
    [36] Morgan HD, Santos F, Green K, et al. Epigenetic reprogramming in mammals [J]. Hum Mol Genet .2005,14(1): 47–58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700