水雾介质对连铸坯表面测温的影响及测温方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在连铸生产过程中,高温铸坯表面温度辐射测量方法的准确性常常由于受到水蒸气、水雾、水膜等参与性介质的辐射特性的影响而大大降低。这是连铸二冷区和轧钢工艺等现代冶金生产设备中常遇到的、且亟待解决的问题。本文从辐射、吸收、散射性介质的辐射特性机理出发研究了水蒸气、水雾和水膜参与性介质对辐射测温准确性影响。并联系济钢4#连铸机的实际生产,设计了铸坯矫直区在线测温系统。
     水蒸气的辐射特性具有光谱的选择性。分析了水蒸气辐射特性参数的各种谱带模型及近似处理方法。采用了指数宽谱带模型计算了水蒸气在不同温度和测温距离下的发射率。同时,对水蒸气高温谱线光谱数据库(Hitemp)进行谱带扩展,得到了适用于连铸二冷区的水蒸气窄谱带模型参数数据库(包括平均吸收系数κη、谱线平均密度1/ d、平均半宽bL )。
     利用建立起的数据库参数和单色、比色测温计测温原理模拟计算和比较分析了各工作波长下测温计的测温误差。结果表明,在高温饱和水蒸气的连铸二冷环境中,宜采用1.0μm,1.6μm范围附近的单色测温计。其工作波长能够避开水蒸气吸收波段,几乎不受水蒸气影响。或者通过数据库查寻波段发射率相近的比色测温计进行测温并对结果进行修正。
     基于Mie散射理论,建立了水雾粒子的消光模型,分析了水雾粒子的散射特性,计算了水雾粒子在各粒径、各波长的消光特性。结果表明,水雾粒子为具有非灰性、参与性特点的弥散系。粒子呈现为连续消光和强烈前向异性散射特性。对单色、比色以及全辐射的红外测温方法的准确性均有影响。水雾的粒径分布、水雾浓度和红外测温仪的工作波长是影响红外测温准确性的主要因素。求解获得了水雾粒子系的衰减系数、散射系数、相函数等参数,为求解辐射传递方程提供必要条件。
     应用数值计算的方法拟合水膜在各波长下的吸收系数,得到了水膜的透射率的公式组和不同波长、厚度下水膜透射率。研究了水膜时对单色和双色红外辐射温度计示值的测温误差。选择小于1.1μm工作波段的测温仪进行测量二冷铸坯表面存在水膜的铸坯表面温度测量并进行修正。
     在济钢4#连铸机的矫直区建立了在线测温系统。为二冷配水优化提供数据依据。
The surface temperature of continuous casting slab is am important parameter of production control, but its value can't be measured accurately for the execrable environment at the secondary cooling zone. Under conditions of the secondary cooling zone of continuous casting, the accuracy of surface temperature measurement of high temperature casting slab is frequently and greatly reduced by radiation characteristic of the water vapor, spray, water film and other participational media. This is the porblem that appears in secondary cooling zone of continuous casting and rolling mill which are modern metallurgy production units. Based on the theory and mechanism of radiation, absorption, scattering radiation characteristics of the participational media, this article studied the radiation characteristics of water vapor, spray and water film and the infection to temperature measurement of high temperature casting slab. Designed the on-line temperature measurement system of straightening section of casting slab for 4# CCM of Jinan Iron & Steel Group Corporation.
     The characteristic of water vapor is spectra selectivity. Generally described different kinds of spectral band model and approximate treatment for parameter of radiation characteristic. Studied the Edwards Indices broadband model and narrow spectrum band model.With the indices broad band model, calculated the emissivity at different temperatures and distances. At the same time, based on the high-temperature spectra line spectrum database (Hitemp), got the parameter database of narrow spectrum band model of water vapor. With these parameters and the principle of monochrome thermometers, Colorimetric Thermometer, calculated the errors under each operating wavelength. Pointed out that in the high temperature environment full of moist steam. It's suitable using thermodetector operating wavelength bound around 1.6μm, 1.0μm It can avoid the water vapor spectral absorption wave band, They are almost“translucent”, nearly no influence. Or looks up the database to look for water vapor wave length its monochromatic emissivity for the amendment of Colorimetric Thermometer temperature measurement.
     This paper is based on Mie scattering theory, seted up the extinction model of the water spray particles at second cooling zone , analyzed the scattering properties , computed the extinction characteristic in various particle sizes and radiation wavelengths . It indicated the water spray particles were nongray, participant dissemination system. Under each grain-size distribution, it possessed intensely forward scattering properties and consecutively extinctive characteristic. It have influence on accuracy of both single and colorimetric thermometer temperature measurement. By theoretical analysis we got that: the spray particle size distribution and opreating wavelength is important attribute to its extinction characteristic. Its extinction increased with increasing of particle size. In the service wave band of infrared thermoscope, size distribution is the direct factor for extinction influence of water spray particles.
     Absorption coefficient of water film is only related to wavelength, thickness, with nothing to do with the temperature. Based on massive experimental data from predecessor, used 6 order polynomial to fit absorption coefficient under various wavelengths, obtained transmittance formula group and transmittivity on various wavelength and thickness. Studied errors of monochrome and colorimetric thermometer when there was vater film on the temperature measurement path of rays. Suggested selecting the service wavelength be shorter than the 1.1μm band for surface temperature measurement. And getting the revision.
     For 4 # continuous casting machine of Jinan Iron and Steel works, designed the temperature on-line analysis system on straightening section of continuous casting. Supplying water distribution optimization at secondary cooling zone
引文
[1]史宸兴.实用连铸冶金技术[M].北京,冶金工业出版社, 1998:5.
    [2]蔡开科.连续铸钢原理与工艺[M].北京,冶金工业出版社, 1994: 5-8.
    [3] Ian Christmas.钢铁工业面临的挑战. 2008中国钢铁年会论文集[C],北京,冶金工业出版社,2008: 1-6.
    [4]潘艳华.中高碳钢方坯连铸二次冷却技术的研究[D].重庆大学硕士论文, 2005.
    [5] Dario Fabro. Development and Achievement of Casting Technologies. The International Conference on Continuous Casting of Steel in Developing Countries[J], Beijing, 2004: 36-40.
    [6]张兴中.我国连续铸钢技术的发展状况和趋势[J].钢铁研究学报, 2004, 16(6): 1-6.
    [7]郭戈.连铸过程控制理论与技术[M].北京,冶金工业出版社, 2003: 2-21.
    [8] K.M rwald. SMART/ASTC技术的冶金、操作和经济效果[J].钢铁, 2003, 38(7): 21-25.
    [9]李殿明.高拉速方坯内部裂纹产生原因分析[J].连铸, 1999, (3): 18-21.
    [10]蔡开科,程士富.连续铸钢原理与上艺[M]北京:冶金上业出版社,1994: 270-301.
    [11]蔡开科.连续铸钢[M].科学出版社,1990.
    [12]胡现槐.连铸二次冷却区铸坯表面在线测温系统研制应用[J].武钢技术内部资料,(640-644), 1994.
    [13]李纯忠,熊毅刚.连贮设备[M].东北大学出版社,1995.
    [14]陈建尧,范宝明.二次冷却动态控制的研究与分析[J].宝钢技术, 2000, (4), 37-40.6.
    [15]陈登福,孙海峰,冯科. ROKOP高效方坯连铸二冷动态控制算法模型[J].重庆大学学报. 2004, 27(7): 57-59.7.
    [16] Hardin RA, Liu K, Kapoor A, Beckermann C. A transient simulation and dynamic spray cooling control model for continuous steel casting[J]. Metallurical and Materials Transactions B-process Metallugy and Materials Processing Science. 2003, 34 (3): 297-306.
    [17]陈登福,颜广庭,刘人达.方坯连铸凝固传热的数值仿真与实践[J].炼钢,1992,8(4): 3~7.
    [18]陈登福,曾丁丁,罗敏. 150mm×150mm方坯连铸高效化的二冷技术[J].特殊钢, 2004,25(3): 42-45.10.
    [19]贺刚,邢跃,陈忠平. Raytek非接触式在线测温系统在热轧连铸坯测温中的应用[J].冶金自动化,2001,(4): 68-70.
    [20]戴景民.多光谱辐射测温理论与应用[M].北京:高等教育出版社,2002.
    [21]贺刚,邢跃,陈忠平. Raytek非接触式在线测温系统在热轧连铸坯测温中的应用[J]. Metallurgical Industry Automation 2001 No 4 68~70.
    [22]吴德建,司烂.在线红外三色辐射测温技术研究[J].宝钢技术, 2000,(3): 43-47.12.
    [23]王宏静,王军,岳尔斌.红外双色测温仪在连铸坯表面测温中的应用[J].宽厚板,1996(2): 34-36.
    [24]杜京义,施卫,刘玉华.一种消除铸坯表面水雾气对红外测温影响的方法[J].重型机械. 1999, (2):4-6.
    [25]刘庆国,孙蓟泉.连铸板坏表面温度在线实测的研究[J].钢铁,1998,33(2):18-20.
    [26]李琦,施卫,刘涵等.连铸机铸坯表面温度在线实时测量系统的研究[J].西安理工大学学报[J] 2000 16(2):143~147.
    [27]徐荣军,陈念贻.基于模式识别和人工神经网络建立的板坯连铸二冷水模型[J].钢铁,2001,36(2):26-28.
    [28]王魁汉,王连钢.连铸二冷区钢坯表面温度测量[C].炼钢及连铸自动化学术会议论文集,1994:186-190.
    [29]叶渊,李天石.连铸机铸坯表面温度测量系统模糊模型的建立[J].中国铸造装备与技术,1999,1:29-31.
    [30]李春.工业条件下高温物体表面温度非接触式测量方法的理论研究[M]:硕士学位论文.北京:北京科技大学,1997.
    [31] C.Li, X.J.Yin, X.X.Zhang. A meathematical model of surface temperature measurements under continuous casting conditions by pyrometry[C]. Proceeding of TEMPBELJING'97, Beijing :1997.
    [32]吴蓓.工业条件下高温物体表面温度辐射测量的反问题研究[D]:硕士学位论文.北京;北京科技大学,1999.
    [33]刘玉英.参与性介质影响下高温物体表面温度辐射测量方法的研究[D].博士学位论文.北京科技大学,2004.
    [34]王厚华.传热学[M].重庆大学出版社,2006.
    [35]李吉林.光电,红外,比色温度计原理与检定[M].北京:中国计量出版社,1996.
    [36]罗次申.动力机械测试技术[M].上海:上海交通大学出版社,2001.
    [37]王宏静,王军,岳尔斌.红外双色测温仪在连铸坯表面测温中的应用[J].冶金设备.宽厚板,1999,2(6):34~36.
    [38]戴景民.多光谱辐射测温理论与应用[M].北京:高等教育出版社,2002.
    [39]余其铮.辐射换热原理[M].哈尔滨:哈尔滨工业大学出版社,2000.
    [40] RHSENOW W M, HARTNETT J P, CHO Y I. Handbook of Heat Transfer [M]. 3rd ed. New York:McGraw-Hill, 1998.
    [41] JEREMY H.SCHRYBER. Computed infrared absorption properties of hot water vapor.[J] .Quant. spectroscope. Radiat. Transfer 1995, 53(4):373-380.
    [42] Maruyama S. Evaluation method for radiative heat transfer in polydisperse water droplets[J].JQSRT,2007:05-06
    [43] D. J. Segelstein. The Complex Refractive Index of Water[R]. M.S. Thesis, University of Missouri-Kansas City,1981.
    [44] JEREMY H.SCHRYBER. Computed infrared absorption properties of hot water vapor.[J]. Quant. spectroscope. Radiat. Transfer 1995, 53(4):373-380.
    [45] BREWSTER M Q, TIEN C L. Radiation Transfer in Packed Fluidized-Beds:Dependent Versus Independent Scatting[J].J.of Heat Transfer Transactions of the ASME, 1982. 104:573-579.
    [46] TIEN C L, DROLEN B L. Thermal Radiation in particulate Media with Dependent and Independent Scattering [M]. Annual Review of Numerical Fluid Mechanic and Heat Transfer.Vol.1.New York: Hemisphere Pub Corp, 1987.
    [47] TIEN C L,DROLEN B L. Thermal Radiation in Particulate Media with Dependent and Independent Scattering[R]. Annual Review of Numercal Fluid Mechanic and Heat Transfer.Vol.1.New York: Hemisphere Pub Corp,1987.
    [48]孙鸿宾,殷晓静,杨晶.辐射换热[M].北京:冶金工业出版社,1996.
    [49] Andrew A. Lacis, Valdar Oinsa. A Description of the Correlated k Distribution Method for Modeling Nongray Gaseous Absorption, Thermal Emission, and Multiple Scattering in Vertically In homogeneous Atmospheres[J]. Journal of Geophysical Research,1991,96(5): 9027-9063.
    [50] M.K.Denison, B. W.Webb. The Spectral Line-Based Weighted-Sum-of-Gray -Gases Model in No-isothermal No-homogeneous Media[J]. Journal of Heat Transfer,1995 ,117:359-365.
    [51] Fengshan Liu,Gergoy J.Smallwood, Application of the Statistical Narrow-band Correlated-k Method to Low-resolution Spectral Intensity and Radiative Heat Transfer Calculations—Effects of the Quadrature Scheme[J]. Intenrational Journal of Heat and Mass Transfer 2000,43:119-135.
    [52] O. Marin, R.O.Buckius. Wide Band Correlated-k Approach to Thermal RadiativeTransportin Nonhomogeneous Media[J]. Journal of Heat Transfer, 1997,119:719-729.
    [53] WeimingLi,TimothyW.Tong,DeanDobranich,etal. Acombined Narrow-Band Wide-Band Model for Computing the Spectrla Absorption Coeficient of CO2,CO,H2O, CHq. C2H2, [J]. J.Quant.Spectrosc.Radiat.Transfer,1995,54(6):961-970.
    [54]范宏武,李炳熙,杨励月等.混合气体谱带模型的修正[J].哈尔滨工业大学学报,2000,32(2):125-127.
    [55] Z.Yan,G.Holmstedt. Fast Narrow-band Computer Model for Radiation Caculations. [J]. Numerical Heat Transfer,1997,31:61-71.
    [56] Goody R M. A Statistical Model for Water Vapor Absoption[J].Quart. J. R Meteorol.Soc,1952.78:165-173.
    [57]孙鸿宾,殷晓静,杨晶.辐射换热[M].北京:冶金工业出版社,1999.
    [58] J.G.Marakis. Application of narrow and wide band models for radiative transfer in planar media[J]. Intenrational Journal of Heat and Msas Transfer, 2001,44:131-142.
    [59] William L. Grosshandler. Radiative Heat Transfer in Nonhomogeneous Gsaes: A Simplified Approach[J]. Int. J. Heat Msas Transfer, 1980,23:1447-1459.
    [60] D.K. Edwards. Molecular Gas Band Radiation. In:Advances in Heat Transfer[M], New York: Academic Perss,1976,12:115-193.
    [61] GOODY R J. Atmospherie Radiation[M].Oxford University Press,1961.
    [62] TAYLOR J C,CARLSON A B,HASAN H. Monte Carlo Simulation of Radiating Re-Entry Flows[J]. J. of Thermo-physics and Heat Transfer, 1994,8(3):478-485.
    [63] EDWARDS D K. Molecular Gas Band Radiation[M]. Advances in Heat Transfer. New York: Academic Press.1976,12.
    [64] MODEST M F. Radiative Heat Transfer[M]. New York:McGraw-Hill Inc.,1993.
    [65] FERRISO C C,LUDWING C B. Spectral emissivityes and integrated intensities of the 2.7 mu meter H2O band between 530 and 2200K[J].JQSRT,1964,4:215-227.
    [66] P. F. Bernath. The spectroscopy of water vapour: Experiment, theory and applications[J], Phys. Chem. Chem. Phys. 2002,4:1501-1509.
    [67] Fischer J, Gamache RR, Goldman A, et.al. Total internal partition sums for molecular species on the HITRAN database[R]. ScientiFc report No. AS03-01, Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts Lowell, 2003.
    [68] J. Fischer. Total internal partition sums for molecular species in the 2000 edition of the HITRAN database[J] Journal of Quantitative Spectroscopy & Radiative Transfer 2003,82: 401–412.
    [69] D. Eisenberg and W. Kauzmann, The structure and properties of water [M]:Oxford University Press, London, 1969.
    [70] L. Pauling. The structure of water[M], Pergamon Press Ltd, London, 1959: 1-6.
    [71] ROTHMAN L S. The HITRAN molecular spectroscopic database and HAQKS(HITRAN atmospheric workstation) [J].JQSRT,1998,60(5):665—710.
    [72] JEREMY H.SCHRYBER. Computed infrared absorption properties of hot water vapor.[J] .Quant. spectroscope. Radiat. Transfer 1995, 53(4):373-380.
    [73] Maruyama S. Evaluation method for radiative heat transfer in polydisperse water droplets.[J]. JQSRT,2007,10: 05-06.
    [74] D. J. Segelstein. The Complex Refractive Index of Water[R]. M.S. Thesis, University ofMissouri-Kansas City, 1981.
    [75] J.E.Janssen.Themal Radiation Properties Survey[M].1960.
    [76] BREWSTER M Q, TIEN C L. Radiation Transfer in Packed Fluidized-Beds:Dependent Versus Independent Scatting[J].J.of Heat Transfer Transactions of the ASME,1982. 104:573-579.
    [77] TIEN C L, DROLEN B L. Thermal Radiation in particulate Media with Dependent and Independent Scattering [M]. Annual Review of Numerical Fluid Mechanic and Heat Transfer.Vol.1.New York: Hemisphere Pub Corp, 1987.
    [78]谈和平,夏新林,刘林华.红外辐射特性与传输的数值计算:计算热辐射学[M].哈尔滨工业大学出版社,2006,117~135.
    [79]陈永,伍兵,陈渝.攀钢板坯连铸机二冷区喷嘴特性测试[J].钢铁钒钛,1999,20(3): 11~15.
    [80]李寅,王玉龙,胡文凯等.马钢用气一水雾化喷嘴的特性及在生产上应用[J].连铸, 2002,40(5):40-42.
    [81]王集中,王玉龙,冯业文.气水雾化喷嘴在方坯连铸机上的应用[J].江苏冶金,2004,32(1):30-32.
    [82]梅国晖,武荣阳,孟红记等.气水雾化喷嘴最佳气水比的确定[J].钢铁钒钛,1999,2(25):50-53.
    [83]周华,范明豪,杨华勇.旋芯喷嘴高效雾化特性测量研究[J].机械工程学报,2004,40(8):110-114.
    [84]陈永,伍兵,陈渝.攀钢板坯连铸机二冷区喷嘴特性测试[J].钢铁钒钛,1999,20(3): 11~15.
    [85] McDonald.转引自Wallace and Hobbs, 1977.
    [86]松村尚哉.微小液滴の非接触?精密サイズ測定[R].卒業研究報告,高知工科大学,2005:5~6.
    [87] Segelstein, D. The Complex Refractive Index of WaterM.S[J]. Thesis, University of Missouri--Kansas City,1981.
    [88] KAMIUTO K. Study of Henyey-Greenstein Approximation to Scattering Phase Function [J]. J. of Quantitative Spectroscopy and Radiative Transfer,1986,37(4):411-413.
    [89]王魁汉,高魁明,赵连钢等.连铸二次冷却区钢坯表面温度测量的研究[J].自动化仪表,1995(05):6-8.
    [90]余其铮,阁蔚,谈和平.连续红外加热炉的加热均匀性[J].工业加热,1993,(4):7-11.
    [91] D. M. Wieliczka, S. Weng, M. R. Querry. Wedge shaped cell for highly absorbent liquids: infrared optical constants of water [J] . JQSRT,1989,4: 1714-1719.
    [92] G. M. Hale, M. R. Querry. Optical constants of water in the 200 nm to 200μm wavelength region[J].JQSRT,1973,4: 555-563.
    [93] D. J. Segelstein. The complex refractive index of water [M]. University of Missouri-KansasCity ,1981.
    [94] C. L. Braun and S. N. Smirnov. Why is water blue[M]. J. Chem. Educ. 1993,70: 612-615.
    [95] X. Quan, E. S. Fry. Empirical equation for the index of refraction of seawater [J].JQSRT,1995,4: 3477- 3480.
    [96] H. Buiteveld, J. M. H. Hakvoort, M. Donze. The optical properties of pure water[C]. SPIE Proceedings on Ocean Optics XII, 1994,22:174-183.
    [97] F. Sogandares. The spectral absorption of pure water [J]. Texas A&M University,1991.
    [98] S. G. Warren. Optical constants of ice from the ultraviolet to the microwave [J]. 1984,4: 1026-1225.
    [99] R. M. Pope. Optical absorption of pure water and sea water using the integrating cavity absorption meter [D]. Texas A&M University,1993.
    [100]陈登福,欧阳奇,龙木军.铸坯矫直温度在线测量和准动态二冷配水模型研究项目技术报告[R].重庆大学,2008:13-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700